连续流微生物脱盐燃料电池的构建及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺及水污染严重已成为制约我国经济社会可持续发展的瓶颈之一。传统的废水处理技术导致了较高的化石能源需求,海水淡化技术可以增加水资源的供应量,但高能耗的问题同样制约其应用和推广,低能耗的海水淡化技术及水中有机物定向转化和能源化新方法是可持续水处理技术发展趋势。
     微生物脱盐电池(Microbial desalination cell, MDC)是根据生物电化学系统(Bioelectrochemical system, BES)技术衍生出来的,利用阳极上的产电微生物氧化有机物污染物产生电能,在阴阳极间形成电场推动脱盐室中盐离子去除,不需要任何外加的压力和电场即可实现同步产电、脱盐和污染物去除。然而目前MDC系统内存在的pH不平衡问题严重抑制了反应器的性能,并且空气阴极生物电化学系统中溶解氧对反应器性能影响较大,上述问题都将影响MDC系统的未来应用。本论文以MDC为研究手段,开展了新型反应器设计、海水淡化、污染物去除和溶解氧对反应器性能影响等方面研究。
     开发了无pH抑制效应的内循环MDC(recirculation MDC, rMDC)反应器。利用反应器阳极室和阴极室产生的酸碱相互中和以消除反应器内pH不平衡,运行周期内可保持溶液pH近中性的环境,MDC阳极溶液pH=5.0为反应器性能降低的拐点,阳极溶液pH<5.0时由于产电菌的活性受到抑制反应器性能迅速下降。rMDC的最大功率密度和COD去除率远高于MDC反应器,在25mM PBS条件下rMDC的NaCl去除率比MDC反应器提高了48%,而50mM PBS时却比MDC降低了13%,高缓冲盐浓度增加了底物循环过程中阴阳极室间的电势损失,rMDC在低缓冲液条件下的优异性能可以降低其在实际应用中因污水电导率较低产生的影响。
     在rMDC基础上设计并构建了四个反应器单元串联的连续流微生物脱盐燃料电池(串联MDC)。四个反应器单元的最大功率密度均高于间歇流运行的普通三室MDC,通过增加串联MDC单元数目可以有效提高污染物的处理能力。盐溶液HRT延长脱盐效果随之提高,盐溶液HRT为1d时NaCl去除率为76±1%,HRT增加到2d时NaCl去除率提高到97±1%。阳极微生物16S rDNA基因文库结果显示,兼性厌氧微生物Klebsiella ornithinolytica为各单元中最优势菌群,能够发酵木糖产生多种小分子的混合酸,推测其功能为严格厌氧的产电微生物提供厌氧环境,维持产电系统的稳定。
     探索了使用青贮秸秆和啤酒废水两种废弃生物质为底物驱动串联MDC实现同步产电脱盐的可行性。青贮秸秆水洗液作为碳源和同时作为碳源、氮源时MFC反应器的最大功率密度分别为847±3mW·m-2和609±3mW·m-2。分别以青贮秸秆水洗液和啤酒废水运行串联MDC时,青贮秸秆水洗液为底物的反应器NaCl去除率可达到74±2%(盐溶液HRT=1d)和96±2%(盐溶液HRT=2d)。不添加任何缓冲液直接进啤酒废水的反应器COD去除率在75%-83%之间, NaCl去除率为50%-55%。
     研究了空气阴极MES系统中溶解氧对反应器性能的影响。开发了用于纯菌研究的空气阴极立方体反应器,通过研究非产电菌Escherichia coli和产电菌Geobacter sulfurreducens在不同运行模式反应器中的性能,发现溶解氧浓度变化与反应器输出电压之间密切联系,随着混合培养反应器内溶解氧浓度降低输出电压逐渐升高,而纯培养反应器均无明显电压产生。混合培养时E. coli消耗掉溶液中的溶解氧,为厌氧产电菌G. sulfurreducens创造厌氧环境,维持其代谢活性并产生电能。
The shortage of water resources and water pollution have restricted theeconomic and social sustainable development. Although seawater desalinationtechnology can increase the supply of fresh water, high energy consumptionrestricts its application and enlargement. Traditional wastewater treatment processesalso needed large amount of fossil energy. The desalination of low energyconsumption, directed transfer of organic matter in water and energy collection isthe development trend of sustainable water treatment.
     A microbial desalination cell (MDC) is a new type of bioelectrochemicalsystem (BES) that can simultaneously desalinate water, produce electrical current,and treat waste water. The ions in the salty water are transported through therespective AEM and CEM membranes when current is generated by theexoelectrogenic bacteria to balance charge in the anode chamber from release ofprotons, and in the cathode chamber by the consumption of protons. This results indesalination of the salty water without the use of any external energy source.However, a low pH can develop in the MDC anode chamber that inhibits bacterialactivity and the higher catholyte pH also can result in potential losses, limiting theextent of water desalination and electricity generation. Dissolved oxygen has beenshown to adversely affect reactor performance. These all restricts its futureapplications. In present thesis, research works were performed focusing on the newreactor configuration, seawater desalination, pollutant removal and influence ofdissolved oxygen.
     In this study, we designed and operated a recirculation microbial desalinationcell (rMDC) that recirculates the solutions between the anode and cathode chambers.This recirculation avoided pH imbalances and bacterial respiration inhibition. Acomparison of the anode potentials and anode pH suggests that a pH<5.0substantially reduced MDC performance due to adverse effects of low pH onmicrobial activity. Both maximum power density and COD removal of rMDC werehigher than that of MDC. The extent of desalination using the rMDC is a48%increase in performance compared to reactors operated in MDC mode with25mM PBS, although it is slightly less (13%) than that compared with the MDC with50mM PBS. The reduction in performance results from a potential losses when thesolutions were mixed between the electrode chambers, with a greater effect for thehigher PBS concentration. The lower concentration of PBS in rMDC with betterdesalination efficiency showed well potential in the practical application.
     A series of hydraulically connected MDCs was designed based on rMDC andoperated under continuous flow. The power densities of each unit reactor are muchgreater than those previously obtained using three-chamber MDCs when they wereoperated under fed batch conditions. COD removal of series of hydraulicallyconnected MDCs was improved compared to a single MDC. The NaCl removal was76±1%at an HRT=1d, and increased to97±1%at an HRT=2d. These results showthat increasing the HRT enhanced NaCl removal as a result of the longer period oftime for desalination. The most abundant sequences were most similar to Klebsiellaornithinolytica, which is a facultative anaerobe that can ferment D-xylose to mixedacids and butanediol. This suggests that this microbe would have been able toconsume dissolved oxygen and help maintain anaerobic conditions forexoelectrogenic bacteria in the air-cathode MDCs while degrading the xylose.
     Corn silage and beer brewery wastewater was demonstrated as substrate inseries of hydraulically connected MDCs. The maximum power densities were847±3mW m-2using corn silage washing liquid as carbonsource and609±3mWm-2as carbon and nitrogen sources in air-cathode MFC. When the series ofhydraulically connected MDCs was fed with corn silage washing liquid, the NaClremoval was74±2%at an HRT=1d and96±2%at an HRT=2d. The COD removaland NaCl removal is75%-83%and50%-55%, respectively, when the substratesolution was change to brewery wastewater without any buffer.
     A air-cathode MFC for pure culture was developed to study the nteraction ofmicroflora. Oxygen has been shown to adversely affect current generation by otherexoelectrogens. When the co-culture reactors were operated with a closed circuit,the dissolved oxygen in the bulk solution was rapid decrease.But no electricity wasproduced by pure cultures of G. sulfurreducens or E. coli. These results show thatoxygen consumption by E. coli created sufficiently anaerobic conditions for currentgeneration by G. sulfurreducens.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(03):345-359.
    [2]樊东黎.世界能源现状和未来[J].金属热处理,2011,36(10):119-131.
    [3]陈清泰.中国能源战略构想[J].财经界,2005,(12):26-44.
    [4]周志强.中国能源现状、发展趋势及对策[J].能源与环境,2008,(06):9-10.
    [5] Glassner D A, Hettenhaus J R, Schechinger T M. Corn Stover Potential:Recasting the Corn Sweetener Industry[M]. ASHS Press,1999
    [6]杨长军,汪勤,张光岳.木质纤维素原料预处理技术研究进展[J].酿酒科技,2008,(3):85-89.
    [7]李冬梅.玉米秸秆为原料燃料乙醇制备的关键问题研究[D].哈尔滨:哈尔滨工业大学,2008.
    [8] Logan B E. Extracting Hydrogen Electricity from Renewable Resources[J].Environmental Science&Technology,2004,38(9):160a-167a.
    [9]任南琪,王宝贞.有机废水发酵法生物制氢技术–原理与方法[M].黑龙江科学技术出版社,1994
    [10] Benemann J. Hydrogen Biotechnology: Progress and Prospects[J]. NatureBiotechnology,1996,14(9):1101-1103.
    [11]尤世界.微生物燃料电池处理有机废水过程中的产电特性研究[D].哈尔滨:哈尔滨工业大学,2008.
    [12] Pienkos P T, Darzins A. The Promise and Challenges of Microalgal-DerivedBiofuels[J]. Biofuels Bioproducts&Biorefining,2009,3(4):431-440.
    [13] Williams P, Laurens L. Microalgae as Biodiesel and Biomass Feedstocks:Review and Analysis of the Biochemistry, Energetics and Economics[J].Energy&Environmental Science,2010,3(5):554-590.
    [14] Chisti Y. Biodiesel from Microalgae[J]. Biotechnology Advances,2007,25(3):294-306.
    [15] Graves W, Parfit M. Water: The Power, Promise, and Turmoil of NorthAmerica's Fresh Water. National Geographic Special Edition[M]. NationalGeographic Society,1993
    [16] Khawaji A D, Kutubkhanah I K, Wie J M. Advances in SeawaterDesalination Technologies[J]. Desalination,2008,221(1-3):47-69.
    [17]李琦.海水淡化-沿海城市水资源可持续发展的重要策略[J].科学管理研究,2010,28(1):58-60.
    [18]周洪军.我国海水利用业发展现状与问题研究[J].海洋信息,2009,(4):19-23.
    [19] Kalogirou S A. Seawater Desalination Using Renewable Energy Sources[J].Progress in Energy and Combustion Science,2005,31(3):242-281.
    [20] Mehanna M, Kiely P D, Call D F, et al. Microbial Electrodialysis Cell forSimultaneous Water Desalination and Hydrogen Gas Production[J].Environmental Science&Technology,2010,44(24):9578-9583.
    [21] Semiat R. Energy Issues in Desalination Processes[J]. EnvironmentalScience&Technology,2008,42(22):8193-8201.
    [22]杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别[J].给水排水,2008,34(10):42-45.
    [23]王鑫.微生物燃料电池中多元生物质产电特性与关键技术研究[D].哈尔滨:哈尔滨工业大学,2010.
    [24] Arends J B A, Verstraete W.100Years of Microbial Electricity Production:Three Concepts for the Future[J]. Microbial Biotechnology,2012,5(3):333-346.
    [25]冯玉杰,王鑫,李贺,等.基于微生物燃料电池技术的多元生物质生物产电研究进展[J].环境科学,2010,31(10):2525-2531.
    [26] Potter M C. Electrical Effects Accompanying the Decomposition of OrganicCompounds[J]. Proc Roy Soc London Ser B,1911,84:260-276.
    [27] Cohen B. The Bacterial Culture as an Electrical Half-Cell[J]. Journal ofBacteriology,1931,21:18-19.
    [28] Allen R M, Bennetto H P. Microbial Fuel-Cells-Electricity Production fromCarbohydrates[J]. Applied Biochemistry and Biotechnology,1993,39:27-40.
    [29] Delaney G M, Benetto H P, Mason J R, et al. Electron-Transfer Coupling inMicrobial Fuel Cells. Ii. Performance of Fuel Cells Containing SelectedMicroorganism-Mediator Combinations[J]. Journal of Chemical Technologyand Biotechnology,1984,34:13-27.
    [30] Kim H J, Hyun M S, Chang I S, et al. A Microbial Fuel Cell Type LactateBiosensor Using a Metal-Reducing Bacterium, Shewanella Putrefaciens[J].Journal of Microbiology and Biotechnology,1999,9(3):365-367.
    [31] Liu H, Ramnarayanan R, Logan B E. Production of Electricity DuringWastewater Treatment Using a Single Chamber Microbial Fuel Cell[J].Environmental Science&Technology,2004,38(7):2281-2285.
    [32] Oh S E, Logan B E. Hydrogen and Electricity Production from a FoodProcessing Wastewater Using Fermentation and Microbial Fuel CellTechnologies[J]. Water Research,2005,39(19):4673-4682.
    [33] Huang L P, Logan B E. Electricity Generation and Treatment of PaperRecycling Wastewater Using a Microbial Fuel Cell[J]. Applied Microbiologyand Biotechnology,2008,80(2):349-355.
    [34] Min B, Kim J R, Oh S E, et al. Electricity Generation from SwineWastewater Using Microbial Fuel Cells[J]. Water Research,2005,39(20):4961-4968.
    [35] Zhang C P, Liu G L, Zhang R D, et al. Electricity Production from andBiodegradation of Quinoline in the Microbial Fuel Cell[J]. Journal ofEnvironmental Science and Health Part a-Toxic/Hazardous Substances&Environmental Engineering,2010,45(2):250-256.
    [36] Luo H P, Liu G L, Zhang R D, et al. Phenol Degradation in Microbial FuelCells[J]. Chemical Engineering Journal,2009,147(2-3):259-264.
    [37] Liu H, Grot S, Logan B E. Electrochemically Assisted Microbial Productionof Hydrogen from Acetate[J]. Environmental Science&Technology,2005,39(11):4317-4320.
    [38] Wang X, Feng Y J, Liu J, et al. Sequestration of Co2Discharged from Anodeby Algal Cathode in Microbial Carbon Capture Cells (Mccs)[J]. Biosensors&Bioelectronics,2010,25(12):2639-2643.
    [39]刘文宗.乙酸盐为底物电化学辅助生物产氢初步研究[D].哈尔滨:哈尔滨工业大学,2007.
    [40] Rabaey K, Boon N, Siciliano S D, et al. Biofuel Cells Select for MicrobialConsortia That Self-Mediate Electron Transfer[J]. Applied andEnvironmental Microbiology,2004,70(9):5373-5382.
    [41] Logan B E. Exoelectrogenic Bacteria That Power Microbial Fuel Cells[J].Nature Reviews Microbiology,2009,7(5):375-381.
    [42] Richardson D J. Bacterial Respiration: A Flexible Process for a ChangingEnvironment[J]. Microbiology-Uk,2000,146:551-571.
    [43] Magnuson T S, Isoyama N, Hodges-Myerson A L, et al. Isolation,Characterization and Gene Sequence Analysis of a Membrane-Associated89Kda Fe(III) Reducing Cytochrome C from Geobacter Sulfurreducens[J].Biochemical Journal,2001,359:147-152.
    [44] Kim H J, Park H S, Hyun M S, et al. A Mediator-Less Microbial Fuel CellUsing a Metal Reducing Bacterium, Shewanella Putrefaciense[J]. Enzymeand Microbial Technology,2002,30(2):145-152.
    [45]卢娜,周顺桂,倪晋仁.微生物燃料电池的产电机制[J].化学进展,2008,20(7/8):1233-1240.
    [46] Reguera G, McCarthy K D, Mehta T, et al. Extracellular Electron TransferVia Microbial Nanowires[J]. Nature,2005,435(7045):1098-1101.
    [47] Gorby Y A, Yanina S, McLean J S, et al. Electrically Conductive BacterialNanowires Produced by Shewanella Oneidensis Strain MR-1and OtherMicroorganisms[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2006,103(30):11358-11363.
    [48] Rabaey K, Boon N, Hofte M, et al. Microbial Phenazine ProductionEnhances Electron Transfer in Biofuel Cells[J]. Environmental Science&Technology,2005,39(9):3401-3408.
    [49]黄杰勋.产电微生物菌种的筛选及其在微生物燃料电池中的应用研究
    [D].合肥:中国科学技术大学,2009.
    [50] Rabaey K, Rodriguez J, Blackall L L, et al. Microbial Ecology MeetsElectrochemistry: Electricity-Driven and Driving Communities[J]. IsmeJournal,2007,1(1):9-18.
    [51] Ishii S, Watanabe K, Yabuki S, et al. Comparison of Electrode ReductionActivities of Geobacter Sulfurreducens and an Enriched Consortium in anAir-Cathode Microbial Fuel Cell[J]. Applied and EnvironmentalMicrobiology,2008,74(23):7348-7355.
    [52] Watson V J, Logan B E. Power Production in Mfcs Inoculated withShewanella Oneidensis MR-1or Mixed Cultures[J]. Biotechnology andBioengineering,2010,105(3):489-498.
    [53] Freguia S, Rabaey K, Yuan Z G, et al. Syntrophic Processes Drive theConversion of Glucose in Microbial Fuel Cell Anodes[J]. EnvironmentalScience&Technology,2008,42(21):7937-7943.
    [54] Logan B E. Microbial Fuel Cells[M]. Wiley-Interscience,2007
    [55] Davis J B, Yarbrough H F. Preliminary Experiments on a Microbial FuelCell[J]. Science,1962,137:615-616.
    [56] Bennetto H P. Microbial Fuel Cells[M]. London: Harwood Academic, Lifechemisty reports,1984:363-453.
    [57] Berk R S, Canfield J H. Bioelectrochemical Energy Conversion[J]. Journalof Applied Microbiology,1964,12:10-12.
    [58] Kim J R, Cheng S, Oh S E, et al. Power Generation Using Different Cation,Anion, and Ultrafiltration Membranes in Microbial Fuel Cells[J].Environmental Science&Technology,2007,41(3):1004-1009.
    [59] Ter Heijne A, Hamelers H V M, De Wilde V, et al. A Bipolar MembraneCombined with Ferric Iron Reduction as an Efficient Cathode System inMicrobial Fuel Cells[J]. Environmental Science&Technology,2006,40(17):5200-5205.
    [60] Fan Y Z, Sharbrough E, Liu H. Quantification of the Internal ResistanceDistribution of Microbial Fuel Cells[J]. Environmental Science&Technology,2008,42(21):8101-8107.
    [61]刘佳.三室微生物燃料电池系统构建及碳氮硫去除特性研究[D].哈尔滨:哈尔滨工业大学,2012.
    [62] Logan B, Cheng S, Watson V, et al. Graphite Fiber Brush Anodes forIncreased Power Production in Air-Cathode Microbial Fuel Cells[J].Environmental Science&Technology,2007,41(9):3341-3346.
    [63] Wang X, Cheng S A, Feng Y J, et al. Use of Carbon Mesh Anodes and theEffect of Different Pretreatment Methods on Power Production in MicrobialFuel Cells[J]. Environmental Science&Technology,2009,43(17):6870-6874.
    [64] Bond D R, Holmes D E, Tender L M, et al. Electrode-ReducingMicroorganisms That Harvest Energy from Marine Sediments[J]. Science,2002,295(5554):483-485.
    [65] Chaudhuri S K, Lovley D R. Electricity Generation by Direct Oxidation ofGlucose in Mediatorless Microbial Fuel Cells[J]. Nature Biotechnology,2003,21(10):1229-1232.
    [66] Cheng S A, Logan B E. Ammonia Treatment of Carbon Cloth Anodes toEnhance Power Generation of Microbial Fuel Cells[J]. ElectrochemistryCommunications,2007,9(3):492-496.
    [67] Peng L, You S J, Wang J Y. Carbon Nanotubes as Electrode ModifierPromoting Direct Electron Transfer from Shewanella Oneidensis[J].Biosensors&Bioelectronics,2010,25(5):1248-1251.
    [68] Feng Y J, Yang Q, Wang X, et al. Treatment of Carbon Fiber Brush Anodesfor Improving Power Generation in Air-Cathode Microbial Fuel Cells[J].Journal of Power Sources,2010,195(7):1841-1844.
    [69] Park D H, Zeikus J G. Electricity Generation in Microbial Fuel Cells UsingNeutral Red as an Electronophore[J]. Applied and EnvironmentalMicrobiology,2000,66(4):1292-1297.
    [70] Oh S E, Logan B E. Proton Exchange Membrane and Electrode SurfaceAreas as Factors That Affect Power Generation in Microbial Fuel Cells[J].Applied Microbiology and Biotechnology,2006,70(2):162-169.
    [71] Zuo Y, Xing D F, Regan J M, et al. Isolation of the ExoelectrogenicBacterium Ochrobactrum Anthropi Yz-1by Using a U-Tube Microbial FuelCell[J]. Applied and Environmental Microbiology,2008,74(10):3130-3137.
    [72] You S J, Zhao Q L, Zhang J N, et al. A Microbial Fuel Cell UsingPermanganate as the Cathodic Electron Acceptor[J]. Journal of PowerSources,2006,162(2):1409-1415.
    [73]张玲,梁鹏,黄霞,等.生物阴极型微生物燃料电池研究进展[J].环境科学与技术,2010,33(11):110-114.
    [74] Cheng S, Liu H, Logan B E. Power Densities Using Different CathodeCatalysts (Pt and Cotmpp) and Polymer Binders (Nafion and Ptfe) in SingleChamber Microbial Fuel Cells[J]. Environmental Science&Technology,2006,40(1):364-369.
    [75] Rhoads A, Beyenal H, Lewandowski Z. Microbial Fuel Cell UsingAnaerobic Respiration as an Anodic Reaction and BiomineralizedManganese as a Cathodic Reactant[J]. Environmental Science&Technology,2005,39(12):4666-4671.
    [76] Scott K, Cotlarciuc I, Head I, et al. Fuel Cell Power Generation from MarineSediments: Investigation of Cathode Materials[J]. Journal of ChemicalTechnology and Biotechnology,2008,83(9):1244-1254.
    [77] Shi X X, Feng Y J, Wang X, et al. Application of Nitrogen-Doped CarbonPowders as Low-Cost and Durable Cathodic Catalyst to Air-CathodeMicrobial Fuel Cells[J]. Bioresource Technology,2012,108:89-93.
    [78] Feng Y J, Shi X X, Wang X, et al. Effects of Sulfide on Microbial Fuel Cellswith Platinum and Nitrogen-Doped Carbon Powder Cathodes[J]. Biosensors&Bioelectronics,2012,35(1):413-415.
    [79] Dong H, Yu H B, Wang X, et al. A Novel Structure of Scalable Air-Cathodewithout Nafion and Pt by Rolling Activated Carbon and Ptfe as CatalystLayer in Microbial Fuel Cells[J]. Water Research,2012,46(17):5777-5787.
    [80] Dong H, Yu H B, Wang X. Catalysis Kinetics and Porous Analysis of RollingActivated Carbon-Ptfe Air-Cathode in Microbial Fuel Cells[J].Environmental Science&Technology,2012,46(23):13009-13015.
    [81] Liu J, Feng Y J, Wang X, et al. The Use of Double-Sided Cloth withoutDiffusion Layers as Air-Cathode in Microbial Fuel Cells[J]. Journal ofPower Sources,2011,196(20):8409-8412.
    [82] Liu J, Feng Y J, Wang X, et al. The Effect of Water Proofing on thePerformance of Nickel Foam Cathode in Microbial Fuel Cells[J]. Journal ofPower Sources,2012,198:100-104.
    [83] Hasvold O, Henriksen H, Melvaer E, et al. Sea-Water Battery for SubseaControl Systems[J]. Journal of Power Sources,1997,65(1-2):253-261.
    [84] Bergel A, Feron D, Mollica A. Catalysis of Oxygen Reduction in Pem FuelCell by Seawater Biofilm[J]. Electrochemistry Communications,2005,7(9):900-904.
    [85] Rabaey K, Read S T, Clauwaert P, et al. Cathodic Oxygen ReductionCatalyzed by Bacteria in Microbial Fuel Cells[J]. Isme Journal,2008,2(5):519-527.
    [86]毛艳萍,蔡兰坤,张乐华,等.生物阴极微生物燃料电池[J].化学进展,2009,21(7/8):1672-1677.
    [87] Holmes D E, Bond D R, O'Neill R A, et al. Microbial CommunitiesAssociated with Electrodes Harvesting Electricity from a Variety of AquaticSediments[J]. Microbial Ecology,2004,48(2):178-190.
    [88] Gregory K B, Bond D R, Lovley D R. Graphite Electrodes as ElectronDonors for Anaerobic Respiration[J]. Environmental Microbiology,2004,6(6):596-604.
    [89] Park H I, Kim D K, Choi Y J, et al. Nitrate Reduction Using an Electrode asDirect Electron Donor in a Biofilm-Electrode Reactor[J]. ProcessBiochemistry,2005,40(10):3383-3388.
    [90] Li Z J, Zhang X W, Lei L C. Electricity Production During the Treatment ofReal Electroplating Wastewater Containing Cr6+Using Microbial FuelCell[J]. Process Biochemistry,2008,43(12):1352-1358.
    [91] Wang G, Huang L P, Zhang Y F. Cathodic Reduction of HexavalentChromium [Cr(VI)] Coupled with Electricity Generation in Microbial FuelCells[J]. Biotechnology Letters,2008,30(11):1959-1966.
    [92] Clauwaert P, Rabaey K, Aelterman P, et al. Biological Denitrification inMicrobial Fuel Cells[J]. Environmental Science&Technology,2007,41(9):3354-3360.
    [93] Virdis B, Rabaey K, Yuan Z, et al. Microbial Fuel Cells for SimultaneousCarbon and Nitrogen Removal[J]. Water Research,2008,42(12):3013-3024.
    [94] Liu H, Logan B E. Electricity Generation Using an Air-Cathode SingleChamber Microbial Fuel Cell in the Presence and Absence of a ProtonExchange Membrane[J]. Environmental Science&Technology,2004,38(14):4040-4046.
    [95] Oh S, Min B, Logan B E. Cathode Performance as a Factor in ElectricityGeneration in Microbial Fuel Cells[J]. Environmental Science&Technology,2004,38(18):4900-4904.
    [96]曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257.
    [97] Rozendal R A, Hamelers H V M, Buisman C J N. Effects of MembraneCation Transport on Ph and Microbial Fuel Cell Performance[J].Environmental Science&Technology,2006,40(17):5206-5211.
    [98] Gil G C, Chang I S, Kim B H, et al. Operational Parameters Affecting thePerformance of a Mediator-Less Microbial Fuel Cell[J]. Biosensors&Bioelectronics,2003,18(4):327-334.
    [99] Chang I S, Jang J K, Gil G C, et al. Continuous Determination ofBiochemical Oxygen Demand Using Microbial Fuel Cell Type Biosensor[J].Biosensors&Bioelectronics,2004,19(6):607-613.
    [100] Diebold U. Structure and Properties of TiO2Surfaces: A Brief Review[J].Applied Physics a-Materials Science&Processing,2003,76(5):681-687.
    [101] Kim J R, Min B, Logan B E. Evaluation of Procedures to Acclimate aMicrobial Fuel Cell for Electricity Production[J]. Applied Microbiology andBiotechnology,2005,68(1):23-30.
    [102] Logan B E, Murano C, Scott K, et al. Electricity Generation from Cysteine ina Microbial Fuel Cell[J]. Water Research,2005,39(5):942-952.
    [103] Min B K, Cheng S A, Logan B E. Electricity Generation Using Membraneand Salt Bridge Microbial Fuel Cells[J]. Water Research,2005,39(9):1675-1686.
    [104] Min B, Logan B E. Continuous Electricity Generation from DomesticWastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell[J].Environmental Science&Technology,2004,38(21):5809-5814.
    [105] He Z, Minteer S D, Angenent L T. Electricity Generation from ArtificialWastewater Using an Upflow Microbial Fuel Cell[J]. Environmental Science&Technology,2005,39(14):5262-5267.
    [106] Wang Z H, Wang C Y, Chen K S. Two-Phase Flow and Transport in the AirCathode of Proton Exchange Membrane Fuel Cells[J]. Journal of PowerSources,2001,94(1):40-50.
    [107] Park D H, Zeikus J G. Improved Fuel Cell and Electrode Designs forProducing Electricity from Microbial Degradation[J]. Biotechnology andBioengineering,2003,81(3):348-355.
    [108] Cao X X, Huang X, Liang P, et al. A New Method for Water DesalinationUsing Microbial Desalination Cells[J]. Environmental Science&Technology,2009,43(18):7148-7152.
    [109] Chen X, Xia X, Liang P, et al. Stacked Microbial Desalination Cells toEnhance Water Desalination Efficiency[J]. Environmental Science&Technology,2011,45(6):2465-2470.
    [110] Reimers C E, Tender L M, Fertig S, et al. Harvesting Energy from theMarine Sediment-Water Interface[J]. Environmental Science&Technology,2001,35(1):192-195.
    [111] Heilmann J, Logan B E. Production of Electricity from Proteins Using aMicrobial Fuel Cell[J]. Water Environment Research,2006,78(5):531-537.
    [112] Wang X, Feng Y J, Lee H. Electricity Production from Beer BreweryWastewater Using Single Chamber Microbial Fuel Cell[J]. Water Scienceand Technology,2008,57(7):1117-1121.
    [113] Pant D, Van Bogaert G, Diels L, et al. A Review of the Substrates Used inMicrobial Fuel Cells (Mfcs) for Sustainable Energy Production[J].Bioresource Technology,2010,101(6):1533-1543.
    [114]李贺.折流板管状空气阴极微生物燃料电池构建及产电特性研究[D].哈尔滨:哈尔滨工业大学,2010.
    [115] Zhang C P, Li M C, Liu G L, et al. Pyridine Degradation in the MicrobialFuel Cells[J]. Journal of Hazardous Materials,2009,172(1):465-471.
    [116] Luo Y, Zhang R D, Liu G L, et al. Electricity Generation from Indole andMicrobial Community Analysis in the Microbial Fuel Cell[J]. Journal ofHazardous Materials,2010,176(1-3):759-764.
    [117] Nam J Y, Cusick R D, Kim Y, et al. Hydrogen Generation in MicrobialReverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated SaltSolution[J]. Environmental Science&Technology,2012,46(9):5240-5246.
    [118] Malik S, Drott E, Grisdela P, et al. A Self-Assembling Self-RepairingMicrobial Photoelectrochemical Solar Cell[J]. Energy&EnvironmentalScience,2009,2(3):292-298.
    [119] Qian F, Wang G M, Li Y. Solar-Driven Microbial Photoelectrochemical Cellswith a Nanowire Photocathode[J]. Nano Letters,2010,10(11):4686-4691.
    [120] Lu A H, Li Y, Jin S, et al. Microbial Fuel Cell Equipped with aPhotocatalytic Rutile-Coated Cathode[J]. Energy&Fuels,2010,24:1184-1190.
    [121] Chae K J, Choi M J, Kim K Y, et al. A Solar-Powered Microbial ElectrolysisCell with a Platinum Catalyst-Free Cathode to Produce Hydrogen[J].Environmental Science&Technology,2009,43(24):9525-9530.
    [122] Yuan S J, Sheng G P, Li W W, et al. Degradation of Organic Pollutants in aPhotoelectrocatalytic System Enhanced by a Microbial Fuel Cell[J].Environmental Science&Technology,2010,44(14):5575-5580.
    [123] He Z, Angenent L T. Application of Bacterial Biocathodes in Microbial FuelCells[J]. Electroanalysis,2006,18(19-20):2009-2015.
    [124] Pandit S, Nayak B K, Das D. Microbial Carbon Capture Cell UsingCyanobacteria for Simultaneous Power Generation, Carbon DioxideSequestration and Wastewater Treatment[J]. Bioresource Technology,2012,107:97-102.
    [125] Xiao L, Young E B, Berges J A, et al. Integrated Photo-BioelectrochemicalSystem for Contaminants Removal and Bioenergy Production[J].Environmental Science&Technology,2012,46(20):11459-11466.
    [126] Kim B H, Chang I S, Gil G C, et al. Novel Bod (Biological Oxygen Demand)Sensor Using Mediator-Less Microbial Fuel Cell[J]. Biotechnology Letters,2003,25(7):541-545.
    [127] Kim M, Hyun M S, Gadd G M, et al. A Novel Biomonitoring System UsingMicrobial Fuel Cells[J]. Journal of Environmental Monitoring,2007,9(12):1323-1328.
    [128] Wang X, Gao N S J, Zhou Q X. Concentration Responses of Toxicity Sensorwith Shewanella Oneidensis MR-1Growing in BioelectrochemicalSystems[J]. Biosensors&Bioelectronics,2013,43:264-267.
    [129] Mehanna M, Saito T, Yan J L, et al. Using Microbial Desalination Cells toReduce Water Salinity Prior to Reverse Osmosis[J]. Energy&Environmental Science,2010,3(8):1114-1120.
    [130] Kim Y, Logan B E. Microbial Reverse Electrodialysis Cells forSynergistically Enhanced Power Production[J]. Environmental Science&Technology,2011,45(13):5834-5839.
    [131] Luo H P, Jenkins P E, Ren Z Y. Concurrent Desalination and HydrogenGeneration Using Microbial Electrolysis and Desalination Cells[J].Environmental Science&Technology,2011,45(1):340-344.
    [132] Forrestal C, Xu P, Ren Z Y. Sustainable Desalination Using a MicrobialCapacitive Desalination Cell[J]. Energy&Environmental Science,2012,5(5):7161-7167.
    [133] Cusick R D, Kim Y, Logan B E. Energy Capture from Thermolytic Solutionsin Microbial Reverse-Electrodialysis Cells[J]. Science,2012,335(6075):1474-1477.
    [134] Jacobson K S, Drew D M, He Z. Efficient Salt Removal in a ContinuouslyOperated Upflow Microbial Desalination Cell with an Air Cathode[J].Bioresource Technology,2011,102(1):376-380.
    [135] Lovley D R, Phillips E J P. Novel Mode of Microbial Energy-Metabolism-Organic-Carbon Oxidation Coupled to Dissimilatory Reduction of Iron orManganese[J]. Applied and Environmental Microbiology,1988,54(6):1472-1480.
    [136] Cheng S, Liu H, Logan B E. Increased Performance of Single-ChamberMicrobial Fuel Cells Using an Improved Cathode Structure[J].Electrochemistry Communications,2006,8(3):489-494.
    [137] Logan B E, Hamelers B, Rozendal R A, et al. Microbial Fuel Cells:Methodology and Technology[J]. Environmental Science&Technology,2006,40(17):5181-5192.
    [138] American Water Works Association, American Public Health Association,Water Pollution Control Federation.Standard Methods for the Examinationof Water and Wastewater[S]. American Public Health Association1998.
    [139] Bond D R, Lovley D R. Electricity Production by Geobacter SulfurreducensAttached to Electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555.
    [140] Huang L P, Logan B E. Electricity Production from Xylose in Fed-Batch andContinuous-Flow Microbial Fuel Cells[J]. Applied Microbiology andBiotechnology,2008,80(4):655-664.
    [141] You S J, Ren N Q, Zhao Q L, et al. Improving Phosphate Buffer-FreeCathode Performance of Microbial Fuel Cell Based on BiologicalNitrification[J]. Biosensors&Bioelectronics,2009,24(12):3698-3701.
    [142] Rozendal R A, Hamelers H V M, Rabaey K, et al. Towards PracticalImplementation of Bioelectrochemical Wastewater Treatment[J]. Trends inBiotechnology,2008,26(8):450-459.
    [143] Zhao F, Harnisch F, Schrorder U, et al. Challenges and Constraints of UsingOxygen Cathodes in Microbial Fuel Cells[J]. Environmental Science&Technology,2006,40(17):5193-5199.
    [144] Zhang X Y, Cheng S A, Wang X, et al. Separator Characteristics forIncreasing Performance of Microbial Fuel Cells[J]. Environmental Science&Technology,2009,43(21):8456-8461.
    [145] Kim Y, Logan B E. Series Assembly of Microbial Desalination CellsContaining Stacked Electrodialysis Cells for Partial or Complete SeawaterDesalination[J]. Environmental Science&Technology,2011,45(13):5840-5845.
    [146] Zhong C, Zhang B G, Kong L C, et al. Electricity Generation from MolassesWastewater by an Anaerobic Baffled Stacking Microbial Fuel Cell[J].Journal of Chemical Technology and Biotechnology,2011,86(3):406-413.
    [147]何赞,王海燕,田华菡,等.污泥减量化水处理技术的研究进展[J].中国给水排水,2009,25(8):1-7.
    [148] Tolan J S, Finn R K. Fermentation of D-Xylose to Ethanol by GeneticallyModified Klebsiella-Planticola[J]. Applied and Environmental Microbiology,1987,53(9):2039-2044.
    [149] Sakazaki R, Tamura K, Kosako Y, et al. Klebsiella-Ornithinolytica Sp-Nov,Formerly Known as Ornithine-Positive Klebsiella-Oxytoca[J]. CurrentMicrobiology,1989,18(4):201-206.
    [150] Carrondo M J T, Crespo J P S G, Moura M J. Production of Propionic-AcidUsing a Xylose Utilizing Propionibacterium[J]. Applied Biochemistry andBiotechnology,1988,17:295-312.
    [151] Turner K W, Roberton A M. Xylose, Arabinose, and Rhamnose Fermentationby Bacteroides Ruminicola[J]. Applied Microbiology and Biotechnology,1979,38:7-12.
    [152] Kiely P D, Call D F, Yates M D, et al. Anodic Biofilms in Microbial FuelCells Harbor Low Numbers of Higher-Power-Producing Bacteria ThanAbundant Genera[J]. Applied Microbiology and Biotechnology,2010,88(1):371-380.
    [153] Lovley D R, Roden E E, Phillips E J P, et al. Enzymatic Iron and UraniumReduction by Sulfate-Reducing Bacteria[J]. Marine Geology,1993,113(1-2):41-53.
    [154]陈洪章,刘健,李佐虎.半纤维素蒸汽爆破水解物抽提及其发酵生产单细胞蛋白工艺[J].化工冶金,1999,20(4):428-431.
    [155] Zuo Y, Maness P C, Logan B E. Electricity Production from Steam-ExplodedCorn Stover Biomass[J]. Energy&Fuels,2006,20(4):1716-1721.
    [156] Liu H, Cheng S A, Logan B E. Power Generation in Fed-Batch MicrobialFuel Cells as a Function of Ionic Strength, Temperature, and ReactorConfiguration[J]. Environmental Science&Technology,2005,39(14):5488-5493.
    [157] Pham T H, Jang J K, Moon H S, et al. Improved Performance of MicrobialFuel Cell Using Membrane-Electrode Assembly[J]. Journal of Microbiologyand Biotechnology,2005,15(2):438-441.
    [158] Cheng S, Liu H, Logan B E. Increased Power Generation in a ContinuousFlow Mfc with Advective Flow through the Porous Anode and ReducedElectrode Spacing[J]. Environmental Science&Technology,2006,40(7):2426-2432.
    [159]曹效鑫.微生物燃料电池中产电菌与电极的作用机制及其应用[D].北京:清华大学,2009.
    [160] Kiely P D, Cusick R, Call D F, et al. Anode Microbial CommunitiesProduced by Changing from Microbial Fuel Cell to Microbial ElectrolysisCell Operation Using Two Different Wastewaters[J]. BioresourceTechnology,2011,102(1):388-394.
    [161] Kiely P D, Rader G, Regan J M, et al. Long-Term Cathode Performance andthe Microbial Communities That Develop in Microbial Fuel Cells FedDifferent Fermentation Endproducts[J]. Bioresource Technology,2011,102(1):361-366.
    [162] Kiely P D, Regan J M, Logan B E. The Electric Picnic: SynergisticRequirements for Exoelectrogenic Microbial Communities[J]. CurrentOpinion in Biotechnology,2011,22(3):378-385.
    [163] Caccavo F, Lonergan D J, Lovley D R, et al. Geobacter SulfurreducensSp-Nov, a Hydrogen-Oxidizing and Acetate-Oxidizing DissimilatoryMetal-Reducing Microorganism[J]. Applied and EnvironmentalMicrobiology,1994,60(10):3752-3759.
    [164] Lin W C, Coppi M V, Lovley D R. Geobacter Sulfurreducens Can Grow withOxygen as a Terminal Electron Acceptor[J]. Applied and EnvironmentalMicrobiology,2004,70(4):2525-2528.
    [165] Nevin K P, Zhang P, Franks A E, et al. Anaerobes Unleashed: Aerobic FuelCells of Geobacter Sulfurreducens[J]. Journal of Power Sources,2011,196(18):7514-7518.
    [166] Nevin K P, Richter H, Covalla S F, et al. Power Output and ColumbicEfficiencies from Biofilms of Geobacter Sulfurreducens Comparable toMixed Community Microbial Fuel Cells[J]. Environmental Microbiology,2008,10(10):2505-2514.
    [167] Choi S, Lee H S, Yang Y, et al. A Ul-Scale Micromachined Microbial FuelCell Having High Power Density[J]. Lab on a Chip,2011,11(6):1110-1117.
    [168] Yang Q, Feng Y J, Logan B E. Using Cathode Spacers to Minimize ReactorSize in Air Cathode Microbial Fuel Cells[J]. Bioresource Technology,2012,110:273-277.
    [169] Zhang T, Cui C Z, Chen S L, et al. A Novel Mediatorless Microbial Fuel CellBased on Direct Biocatalysis of Escherichia Coli[J]. ChemicalCommunications,2006,(21):2257-2259.
    [170] Cao X X, Huang X, Zhang X Y, et al. A Mini-Microbial Fuel Cell for VoltageTesting of Exoelectrogenic Bacteria[J]. Frontiers of Environmental Science&Engineering in China,2009,3(3):307-312.
    [171] Call D F, Wagner R C, Logan B E. Hydrogen Production by GeobacterSpecies and a Mixed Consortium in a Microbial Electrolysis Cell[J]. Appliedand Environmental Microbiology,2009,75(24):7579-7587.
    [172] Oh M K, Rohlin L, Kao K C, et al. Global Expression Profiling ofAcetate-Grown Escherichia Coli[J]. Journal of Biological Chemistry,2002,277(15):13175-13183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700