同步脱色刚果红与产电的微生物燃料电池的性能和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织品生产中,大量使用偶氮染料。在纺织品着色过程中,部分偶氮染料脱落进入水体,产生了偶氮染料废水。偶氮染料废水的排放不仅会影响环境美观,而且它自身及其转化产物还会对水体产生生物毒性,有致癌作用,威胁人体健康。目前处理偶氮染料废水主要有物理法、化学法和生物法。物理和化学方法处理成本高,反应条件苛刻,且可能产生二次污染。相比之下,廉价、高效和环境友好的生物法更为人们所接受。一般只有厌氧处理才能实现微生物对偶氮染料的有效脱色。微生物燃料电池(MFC)是一种新型的同步废水处理与产电的技术,其厌氧阳极为微生物脱色偶氮染料提供了可能,有望成为一种全新概念的处理偶氮染料废水与产电的技术。
     本研究以刚果红为模型偶氮染料,采用MFC技术同步脱色刚果红与产电,考察了关键因素对MFC同步脱色刚果红与产电的影响,探明了MFC同步脱色与产电的相互作用机制以及电子传递机理,优化了MFC同步脱色刚果红和产电性能。得到如下主要结果与结论:
     构建了空气阴极—单室MFC,探讨了分隔膜种类、阳极生物膜生长以及驯化过程对MFC性能的影响和作用机制。实验结果表明,采用截留分子量为1K的超滤膜(UFM-1K)的MFC产生的功率密度最大,可以达到324 mW/m2,并且与微滤膜(MFM)相比,可以明显提高MFC的库伦效率。UFM-10K对刚果红的脱色速度最快(4.77 mg/L h),接下来分别是MFM(3.61 mg/L h),UFM-5K(2.38 mg/L h),UFM-1K(2.02 mg/L h)和质子交换膜(PEM)(1.72 mg/L h)。综合产电与刚果红脱色以及成本三个方面考量,UFM-1K是最佳选择,可替代空气阴极—单室MFC的PEM,提高MFC同步脱色刚果红与产电的性能。生物膜在阳极的生长可以加速阳极表面电化学反应速率,增强阳极的电化学活性,从而提高MFC的产电功率输出。在阳极生物膜生长1 d和5 d后,MFC的最大功率密度分别为8.6 mW/m2和33.4 mW/m2,而当阳极生物膜生长成熟后(30 d),MFC的最大功率密度可以达到297 mW/m2。通过改变共基质添加顺序考察了驯化过程对MFC同步脱色刚果红与产电的影响。研究发现驯化过程对MFC产电性能影响较大,而对脱色基本没有影响。16S rRNA测序结果显示驯化过程会对阳极生物膜微生物多样性产生影响。
     在好氧生物阴极MFC同步脱色刚果红与产电的研究中,MFC以UFM-1K作为分隔膜可以维持阴、阳极pH值、Na+浓度和磷酸盐浓度在一个相对稳定的水平,且产电和脱色刚果红性能都略高于以PEM作为分隔膜的MFC。另外,生物阴极MFC的最大功率密度(122 mW/m2)是非生物阴极MFC最大功率密度(24 mW/m2)的5倍。生物阴极MFC能够在30 h内完成90%的刚果红脱色,而非生物阴极MFC则需要大约50 h以上才能达到相同脱色率。表明与非生物阴极MFC相比,生物阴极MFC不仅可以提高MFC产电性能,而且能够加速刚果红在阳极的脱色。但是生物阴极MFC的启动周期较长。
     探索了阳极关键工况条件(包括:阳极悬浮污泥、阳极面积、共基质浓度、刚果红浓度、外接电阻和添加电子介体)对生物阴极MFC同步脱色刚果红与产电性能的影响。结果表明,对刚果红脱色和产电起主导作用的是阳极生物膜微生物,阳极悬浮污泥可在一定程度上加速MFC刚果红脱色,提高MFC的产电功率输出。刚果红脱色速率随着阳极面积的增大而加快,而MFC最大功率密度却呈现出一个先升高后降低的变化趋势。说明阳极面积并非越大越好,选择合适的阳极面积,既能提高性能又能有效利用资源节约成本。共基质(葡萄糖)浓度过低会显著降低MFC脱色刚果红和产电的性能,适宜的共基质浓度为300 mg COD/L。增大刚果红浓度将降低MFC对刚果红的脱色速率。浓度低于900 mg/L的刚果红不会对MFC产电产生明显影响。继续增大刚果红浓度,MFC产电性能则明显降低,最大稳定电压逐渐减小。但在更换了新的不含刚果红的阳极溶液后,MFC的最大稳定电压能够恢复至无染料时的水平。故刚果红浓度以不高于900 mg/L为宜。与高外接电阻相比,低外接电阻下MFC电子产生和传递速率要快,刚果红的脱色速率要高。电子介体在阳极中有利于促进刚果红脱色,而对MFC产电性能没有明显影响。好氧生物阴极MFC的阳极表面生物膜致密,且生物膜微生物以链状形式生长。阴极关键工况条件(包括:阴极悬浮污泥、阴极曝气量和添加铁锰混合液)对生物阴极MFC同步脱色刚果红与产电性能的影响研究表明,阴极悬浮污泥可以在一定程度上提高MFC的产电性能,但是对刚果红脱色基本没有作用。当阴极曝气量低于100 mL/min时,MFC最大稳定电压随着阴极曝气量的增大而升高。当阴极曝气量高于100 mL/min后,MFC最大稳定电压开始下降。与此同时,刚果红脱色速率随着阴极曝气量的增大而持续降低。表明在基于同步脱色刚果红与产电的好氧生物阴极MFC中,阴极曝气量有一个最佳值(100 mL/min),过度曝气不仅不会提高生物阴极MFC脱色刚果红和产电性能,相反还会产生抑制作用。阴极未添加铁锰混合液的MFC阴极生物膜致密,生物膜微生物以链状形式生长。阴极添加铁锰混合液的MFC阴极生物膜稀疏,并且在生物膜微生物表面包裹了许多呈多孔絮状的铁锰氧化物,表明添加的铁锰离子参与了阴极的电化学反应。因此,启动初期在阴极添加铁锰混合液能够显著缩短MFC的启动周期,并且将MFC的最大周期电压和最大功率密度分别提高了40%和74%,不过对刚果红脱色性能没有影响。
     采用变性梯度凝胶电泳(DGGE)和16S rRNA的指纹序列分析等分子生物学技术分析了基于同步脱色刚果红与产电的好氧生物阴极MFC阴、阳极微生物多样性。结果表明,阳极生物膜微生物以具有发酵能力的Bacteroidetes为主,并且存在大量的产甲烷菌和自养反硝化细菌。另外还检测到了隶属于δ-Proteobacteria的能够脱色刚果红的硫还原菌。不论阴极是否添加铁锰混合液启动,阴极生物膜微生物也均以Bacteroidetes为主。与未添加铁锰混合液启动的MFC相比,阴极添加铁锰混合液启动的MFC阴极生物膜催生出新的菌种,分别是锰氧化菌Leptothrix discophora和自养反硝化菌Uncultured Chlorobi bacterium。
     刚果红在MFC阳极的脱色同时存在两条脱色途径。在其中一种途径中,刚果红得到4个来自葡萄糖氧化产生的电子,这4个电子平均分配给刚果红的两个偶氮键,使得两个偶氮键同时被还原成为氮氮单键;在另外一种途径中,刚果红将得来的4个电子全部用于其中一个偶氮键,使得该偶氮键直接断裂。对二氨基联苯是刚果红脱色的主要产物,而且不能被阳极微生物进一步分解矿化,会在MFC阳极溶液中积累。
     阳极脱色微生物与产电微生物是一种竞争的生存关系。刚果红的脱色会在一定程度上抑制MFC的产电性能,然而MFC中阳极的存在却能够提高刚果红的脱色速率。MFC的启动是对阴、阳极微生物的一个筛选和富集的过程,直接影响到MFC的性能。在启动阶段可以通过调控影响微生物代谢途径的主要因素,实现目标微生物(耐受性强的产电微生物和高效脱色微生物)的富集。在MFC运行过程,阴、阳极工况条件的同时调控,可以优化MFC同步脱色刚果红和产电性能。
Azo dyes represent the largest class of dyes applied in textile processing. In textile dyebaths, the degree of fixation of dyes to fabrics is never complete, resulting in dye-containing effluents. The removal of dyes from these effluents is desired, not only for aesthetic reasons, but also because many azo dyes and their breakdown products are toxic to aquatic life and mutagenic to humans. Different physical, chemical and biological techniques can be applied to remove dyes from wastewater. Each technique has its technical and economical limitations. Most physicochemical dye removal methods have drawbacks because they are expensive, have limited versatility, are greatly interfered by other wastewater constituents, and/or generate waste products that must be handled. Alternatively, biological treatment may present a relatively inexpensive and environment-friendly way to remove dyes from wastewater. Generally, high rate bacterial azo dyes decolorization is usually achieved under anaerobic condition. Microbial fuel cell (MFC) is a promising environmental technology for simultaneous wastewater treatment and energy recovery in 21st century. The anaerobic anode chamber of the MFC could be employed for high rate bacterial azo dyes decolorization. MFCs may offer a new technique in enhancing azo dye decolorization while simultaneously recovering electricity in practical applications.
     In this study, the effect of key operation parameters on the performance of the MFC for simultaneous Congo red decolorization and electricity generation was investigated. In addition, the interaction of Congo red decolorization with electricity generation and the charge transfer mechanism were explored and the performance of the MFC was optimized. The major conclusions are given below:
     The effects of membrane type, biofilm growth and enrichment procedure on the performance of an air-cathode single-chamber MFC used for simultaneous Congo red decolorization and power generation were firstly investigated. Batch test results showed that the MFC using an ultrafiltration membrane (UFM) with molecular cutoff weight of 1K (UFM-1K) produced the highest power density of 324 mW/m2 coupled with an enhanced coulombic efficiency compared to microfiltration membrane (MFM). The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/L h) and Proton exchange membrane (PEM) (1.72 mg/L h). Based on the consideration of both cost and performance, UFM-1K was the best one. Biofilm growth greatly reduced the anode polarization impedance and facilitated the kinetics of the electrochemical reactions so as to enhance extracellular electron transfer from bacteria to anode electrode and increase the power generation. Higher power density of 297 mW/m2 was observed on day 30 (a maturate bioflim) compared with the power density of 33.4 mW/m2 and 8.9 mW/m2 on day 5 and day 1, respectively. Two different enrichment procedures in which glucose and Congo red were added into the MFCs sequentially or simultaneously were tested. The results showed that the enrichment procedures have a negligible effect on the dye decolorization, but significantly affected the electricity generation. 16S rRNA sequencing analysis demonstrated a phylogenetic diversity in the communities of the anode biofilm and showed clear differences between the anode-attached populations in the MFCs with a different enrichment procedure.
     In the study of biocathode MFC used for simultaneous Congo red decolorization and electricity generation, the pH value and the concentration of Na+ and phosphate could be maintained in a relative stable level in both anode and cathode chamber by using UFM-1K as the separator. The performance of the MFC coupled with UFM-1K was a little better than that of the MFC coupled with PEM in terms of Congo red decolorization and electricity generation. A 400% increase in maximum power density was observed in a biocathode MFC as compared with the abiotic cathode MFC. The biocathode MFC completed 90% of Congo red decolorization within 30 h while the abiotic cathode MFC required 50 h to achieve the same decolorization efficiency. These results demonstrated that the biocathode MFC could increase the electricity generation and accelerate the Congo red decolorization. However, startup period of biocathode MFC was much longer than that of the abiotic cathode MFC.
     Effect of the anode operation parameters (including suspended sludge in the anode, anode surface area, concentration of the co-substrate, concentration of Congo red, resistor and adding electron redox mediator) on performance of the biocathode MFC for simultaneous Congo red decolorization and electricity generation was investigated. Batch test results showed that the suspended sludge in the anode could accelerate Congo red decolorization and increase electricity output. The Congo red decolorization increased with the anode surface area increased. However, the power density of the MFC increased firstly and then decreased. Thus, an appropriated anode surface area should be selected. The low concentration of the co-substrate (glucose) could significantly decrease the performance of the MFC in terms Congo red decolorization and electricity generation. The optimum concentration of co-substrate was 300 mg COD/L. The increased concentration of Congo red could decrease the decolorization rate. Electricity generation was not significantly affected by Congo red at 900 mg/L, while higher concentrations inhibited electricity generation due to accumulation of decolorization products. However, voltage can be recovered to the original level after replacement with anodic medium without Congo red. Thus, the preferable concentration of Congo red was not higher than 900 mg/L. Low resistor was more helpful for Congo red decolorization as compared with high resistor. The electron redox mediator in the anode was more favorable for accelerating Congo red decolorization. A thick and dense biofilm was obtained on the anode of a biocathode MFC and many spherical microorganisms on the anode surface formed chain-like colonies.
     Effect of the cathode operation parameters (including suspended sludge in the cathode, cathode aeration rate and adding Fe-Mn mixed solution) on performance of the biocathode MFC for simultaneous Congo red decolorization and electricity generation was also investigated. The suspended sludge in the cathode could improve the performance of the MFC in electricity generation, but had a negligible effect on the Congo red decolorization. The maximum voltage increased as the aeration rate was increased up to 100 ml/min. At the aeration rate of 200 ml /min, the maximum voltage was lower than that at 100 ml /min. In the meantime, Congo red decolorization rate decreased with the increasing of the cathode aeration rate. These results showed that excessive aeration was not favorable in a biocathode MFC used for simultaneous Congo red decolorization and electricity generation. A thick and dense biofilm was obtained on the cathode in the MFC without Fe-Mn mixed solution and many spherical microorganisms on the cathode surface formed chain-like colonies. However, a sparse biofilm was observed on the cathode in the MFC with Fe-Mn mixed solution and SEM images revealed that the microorganisms were wrapped by a lot of porous iron and manganese oxides, indicating that Fe2+ and Mn2+ were involed in the cathode reaction. Therefore, addition of the Fe-Mn mixed solution to the biocathode resulted in a significant decrease in startup period accompanied by a 40% increase in maximum voltage output from 0.25 V to 0.35 V and a 74% increase in maximum power density from 122 mW/m2 to 212 mW/m2,but had no effect on the Congo red decolorization.
     Denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene analysis were performed to explore the bacterial diversity in the anode and cathode of a aerobic biocathode MFC. The results revealed that the microbial communities in the anode biofilm of the aerobic biocathode MFC were dominate by fermentative Bacteroidetes and a lot of methanogenic bacteria and autotrophic denitrifying bacteria were obtained simultaneously. In addition, the observed sulfate-reducing bacteria which belonged to the phylumδ-Proteobacteria were responsible for the Congo red decolorization. There are some unique bacterial species in the cathode of the MFC with Fe-Mn mixed solution compared to that in the cathode of the MFC without Fe-Mn mixed solution, mainly including of Leptothrix discophora and Uncultured Chlorobi bacterium-like species.
     Congo red was decolorized in the MFC through two different pathways simultaneously. In one pathway, 4 electrons were assigned averagely to the two azo linkages in the Congo red at the same time. In another pathway, all of the 4 electrons were given to one of the azo linkages for complete cleavage. Benzidine was identified as the main decolorization products and can not be further mineralized in the anode.
     The reduction of Congo red would consume some electrons produced from co-substrate degradation, thus there is a competition between decolorizing microorganisms and electricity-producing bacteria. Congo red decolorization would inhibit electricity output whereas the presence of the anode in the MFC could accelerate the decolorization rate of Congo red.
     The target microorganisms, such as electricity-producing bacteria with high tolerability and highly efficient decolorization bacteria, could be obtained by regulating the factors which could affect the metabolism pathway of the microorganisms during the startup period of MFC. The performance of the MFC used for Congo red decolorization and electricity generation could be optimized by regulating the working conditions of the anode and the cathode simultaneously.
引文
[1]杨凌波,曾思育,鞠宇平,等我国城市污水处理厂能耗规律的统计分析与定量识别[J].给水排水, 2008, 34(010):42-45
    [2] Logan B.E. Peer reviewed: extracting hydrogen and electricity from renewable resources[J]. Environmental science and technology, 2004, 38(9):160-167
    [3] Chisti Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3):294-306
    [4] Spolaore P., Joannis-Cassan C., Duran E., et al. Commercial applications of microalgae[J]. Journal of bioscience and bioengineering, 2006, 101(2):87-96
    [5] Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation[J]. TRENDS in Biotechnology, 2005, 23(6):291-298
    [6] Logan B.E., Regan J.M. Microbial fuel cells-challenges and applications[J]. Environmental science and technology, 2006, 40(17):5172-5180
    [7] Cheng S., Liu H., Logan B.E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental science and technology, 2006, 40(1):364-369
    [8] Liu H., Cheng S., Logan B.E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J]. Environmental science and technology, 2005, 39(2):658-662
    [9] Min B., Cheng S., Logan B.E. Electricity generation using membrane and salt bridge microbial fuel cells[J]. Water research, 2005, 39(9):1675-1686
    [10] Moon H., Chang I.S., Kim B.H. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell[J]. Bioresource technology, 2006, 97(4):621-627
    [11] Hernandez M.E., Kappler A., Newman D.K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Applied and environmental microbiology, 2004, 70(2):921-928
    [12] Reimers C., Tender L., Fertig S., et al. Harvesting energy from the marine sediment- water interface[J]. Environmental Science and Technology, 2001, 35(1):192-195
    [13] Bond D., Holmes D., Tender L., et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554):483-485
    [14] Rosenbaum M., Schr der U., Scholz F. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides[J]. Environ. Sci. Technol, 2005, 39(16):6328-6333
    [15] Potter M.C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911, 84(571):260-276
    [16] Cohen B. The bacterial culture as an electrical half-cell[J]. Journal of Bacteriology, 1931, 21(1):18-19
    [17] Reimers C.E., Leonard M., Fertig S., et al. Harvesting energy from the marine sediment-water interface[J]. Environmental science and technology, 2001, 35(1):192-195
    [18] He Z., Minteer S.D., Angenent L.T. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmental science and technology, 2005, 39(14):5262-5267
    [19] Fan Y., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environ. Sci. Technol, 2008, 42(21):8101-8107
    [20] Liu H., Logan B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental science and technology, 2004, 38(14):4040-4046
    [21] Kim B., Park D., Shin P., et al. Mediator-less biofuel cell [P]. 1999.
    [22] Rabaey K., Boon N., Siciliano S.D., et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and environmental microbiology, 2004, 70(9):5373-5382
    [23] Chaudhuri S.K., Lovley D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10):1229-1232
    [24]冯雅丽,周良,祝学远,等Geobacter metallireducens异化还原铁氧化物三种方式[J].北京科技大学学报, 2006(06):524-529
    [25]曹效鑫,梁鹏,黄霞“三合一”微生物燃料电池的产电特性研究[J].环境科学学报, 2006(08):1252-1257
    [26]冯玉杰,王鑫,王赫名,等以玉米秸秆为底物的纤维素降解菌与产电菌联合产电的可行性[J].环境科学学报, 2009, 29(11):2295-2299
    [27]王凯鹏,郝文钰,陈胜利污水微生物燃料电池的细菌催化剂驯化[J].化工学报, 2008, 59(S1):70-74
    [28]周良,刘志丹,连静,等利用微生物燃料电池研究Geobacter metallireducens异化还原铁氧化物[J].化工学报, 2005, 56(012):2398-2403
    [29] Liu Z.D., Lian J., Du Z.W., et al. Construction of sugar-based microbial fuel cells bydissimilatory metal reduction bacteria[J]. Chinese Journal of biotechnology, 2006, 22(1):131-137
    [30]孙寓姣,左剑恶,崔龙涛,等不同废水基质条件下微生物燃料电池中细菌群落解析[J].中国环境科学, 2008, 28(12):1068-1073
    [31]双陈冬,张恩仁,刁国旺,等复合菌体及单一菌体催化的微生物燃料电池产电机理初步研究[J].电化学, 2008, 55(3):313-318
    [32] You S., Zhao Q., Zhang J., et al. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. Journal of power sources, 2006, 162(2):1409-1415
    [33] You S., Ren N., Zhao Q., et al. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification[J]. Biosensors and Bioelectronics, 2009, 24(12):3698-3701
    [34]邓丽芳,李芳柏,周顺桂,等克雷伯氏菌燃料电池的电子穿梭机制研究[J].科学通报, 2009, 54(19):2983-2987
    [35] Zhang B., Zhao H., Zhou S., et al. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation[J]. Bioresource technology, 2009, 100(23):5687-5693
    [36] Zhuang L., Zhou S., Li Y., et al. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode[J]. Bioresource technology, 2010, 101(10):3514-3519.
    [37] Yuan Y., Zhou S., Zhuang L. Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells[J]. Journal of power sources, 2009, 195(11):3490-3493.
    [38] Liu J., Zhao T., Liang Z., et al. Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells[J]. Journal of Power Sources, 2006, 153(1):61-67
    [39] Oh S.E., Logan B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells[J]. Applied microbiology and biotechnology, 2006, 70(2):162-169
    [40] Rabaey K., Clauwaert P., Aelterman P., et al. Tubular microbial fuel cells for efficient electricity generation[J]. Environmental science and technology, 2005, 39(20):8077-8082
    [41] Biffinger J.C., Ray R., Little B., et al. Diversifying biological fuel cell designs by use of nanoporous filters[J]. Environmental science and technology, 2007, 41(4):1444-1449
    [42] Chae K.J., Choi M., Ajayi F.F., et al. Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells[J]. Energy and Fuels, 2007, 22(1):169-176
    [43] Kim J.R., Cheng S., Oh S.E., et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells[J]. Environmental science and technology, 2007, 41(3):1004-1009
    [44] Cheng S., Liu H., Logan B.E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental science and technology, 2006, 40(7):2426-2432
    [45] Grzebyk M., Pozniak G. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes[J]. Separation and Purification Technology, 2005, 41(3):321-328
    [46] Fan Y., Hu H., Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. Journal of Power Sources, 2007, 171(2):348-354
    [47] Zhuang L., Zhou S., Wang Y., et al. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells[J]. Biosensors and Bioelectronics, 2009, 24(12):3652-3656
    [48] Venkata Mohan S., Veer Raghavulu S., Sarma P. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane[J]. Biosensors and Bioelectronics, 2008, 23(9):1326-1332
    [49] Zhang X., Cheng S., Wang X., et al. Separator characteristics for increasing performance of microbial fuel cells[J]. Environmental science and technology, 2009, 43(21):8456-8461
    [50] Watson V.J., Saito T., Hickner M.A., et al. Polymer coatings as separator layers for microbial fuel cell cathodes[J]. Journal of Power Sources, 2011, 196(6):3009-3014
    [51] Park D.H., Zeikus J.G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and bioengineering, 2003, 81(3):348-355
    [52] Liu H., Ramnarayanan R., Logan B.E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental science and technology, 2004, 38(7):2281-2285
    [53] Zuo Y., Cheng S., Logan B.E. Ion exchange membrane cathodes for scalable microbial fuel cells[J]. Environmental science and technology, 2008, 42(18):6967-6972
    [54] Tartakovsky B., Guiot S. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors[J]. Biotechnology progress, 2006, 22(1):241-246
    [55] Zhao F., Harnisch F., Schr der U., et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environmental science and technology, 2006, 40(17):5193-5199
    [56] Park D., Zeikus J. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens[J]. Applied microbiology and biotechnology, 2002, 59(1):58-61
    [57] Zhao F., Harnisch F., Schroder U., et al. Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells[J]. Electrochemistry Communications, 2005, 7(12):1405-1410
    [58] He Z., Angenent L.T. Application of bacterial biocathodes in microbial fuel cells[J]. Electroanalysis, 2006, 18(19-20):2009-2015
    [59] Jang J.A.E.K., Chang I.N.S., Kim B.H. Improvement of cathode reaction of a mediatorless microbial fuel cell[J]. Journal of Microbiology and Biotechnology, 2004, 14(2):324-329
    [60] Powell E.E., Mapiour M.L., Evitts R.W., et al. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell[J]. Bioresource technology, 2009, 100(1):269-274
    [61] Lovley D.R. Dissimilatory Fe (III) and Mn (IV) reduction[J]. Microbiology and Molecular Biology Reviews, 1991, 55(2):259-287
    [62] Shea C., Clauwaert P., Verstraete W., et al. Adapting a denitrifying biocathode for perchlorate reduction[J]. Water science and technology: a journal of the International Association on Water Pollution Research, 2008, 58(10):1941-1946
    [63] Clauwaert P., Rabaey K., Aelterman P., et al. Biological denitrification in microbial fuel cells[J]. Environ. Sci. Technol, 2007, 41(9):3354-3360
    [64] Virdis B., Rabaey K., Yuan Z., et al. Microbial fuel cells for simultaneous carbon and nitrogen removal[J]. Water research, 2008, 42(12):3013-3024
    [65] Tandukar M., Huber S., Onodera T., et al. Biological Chromium (VI) Reduction in the Cathode of a Microbial Fuel Cell[J]. Environ. Sci. Technol, 2009, 43(21):8159-8165
    [66] Lefebvre O., Al-Mamun A., Ng H. A microbial fuel cell equipped with a biocathode for organic removal and denitrification[J]. Water Science and Technology, 2008, 58(4):881-885
    [67] Virdis B., Read S.T., Rabaey K., et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J]. Bioresource technology,2010, 102(1):334-341
    [68] Rhoads A., Beyenal H., Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant[J]. Environmental science and technology, 2005, 39(12):4666-4671
    [69] Shantaram A., Beyenal H., Veluchamy R.R.A., et al. Wireless sensors powered by microbial fuel cells[J]. Environmental science and technology, 2005, 39(13):5037-5042
    [70] Freguia S., Rabaey K., Yuan Z., et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes[J]. Environ. Sci. Technol, 2008, 42(21):7937-7943
    [71] Huang L., Zeng R., Angelidaki I. Electricity production from xylose using a mediator-less microbial fuel cell[J]. Bioresource technology, 2008, 99(10):4178-4184
    [72] Ren Z., Ward T., Regan J. Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J]. Environ. Sci. Technol, 2007, 41(13):4781-4786
    [73] Niessen J., Schr der U., Scholz F. Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch[J]. Electrochemistry communications, 2004, 6(9):955-958
    [74] Rezaei F., Richard T.L., Brennan R.A., et al. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems[J]. Environmental science and technology, 2007, 41(11):4053-4058
    [75] Park H., Kim B., Kim H., et al. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell[J]. Anaerobe, 2001, 7(6):297-306
    [76] Logan B., Murano C., Scott K., et al. Electricity generation from cysteine in a microbial fuel cell[J]. Water research, 2005, 39(5):942-952
    [77] Ha P., Tae B., Chang I. Performance and Bacterial Consortium of Microbial Fuel Cell Fed with Formate[J]. Energy Fuels, 2008, 22(1):164-168
    [78] Kim J., Jung S., Regan J., et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[J]. Bioresource technology, 2007, 98(13):2568-2577
    [79] Oh S.E., Logan B.E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies[J]. Water research, 2005, 39(19):4673-4682
    [80] Li J., Liu G., Zhang R., et al. Electricity generation by two types of microbial fuel cellsusing nitrobenzene as the anodic or cathodic reactants[J]. Bioresource technology, 2010, 101(11):4013-4020
    [81] Luo H., Liu G., Zhang R., et al. Phenol degradation in microbial fuel cells[J]. Chemical Engineering Journal, 2009, 147(2-3):259-264
    [82] Pham H., Boon N., Marzorati M., et al. Enhanced removal of 1, 2-dichloroethane by anodophilic microbial consortia[J]. Water research, 2009, 43(11):2936-2946
    [83] Morris J., Jin S., Crimi B., et al. Microbial fuel cell in enhancing anaerobic biodegradation of diesel[J]. Chemical Engineering Journal, 2009, 146(2):161-167
    [84] Liu G.L., Zhang C.P., Zhang R.D., et al. Electricity production from and biodegradation of quinoline in the microbial fuel cell[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances and Environmental Engineering, 2010, 45(2):250-256
    [85] Zhang C., Li M., Liu G., et al. Pyridine degradation in the microbial fuel cells[J]. Journal of hazardous materials, 2009, 172(1):465-471
    [86] Luo Y., Zhang R., Liu G., et al. Electricity generation from indole and microbial community analysis in the microbial fuel cell[J]. Journal of hazardous materials, 2010, 176(1-3):759-764
    [87] Luo Y., Liu G., Zhang R., et al. Power generation from furfural using the microbial fuel cell[J]. Journal of power sources, 2010, 195(1):190-194
    [88] Nam J.Y., Kim H.W., Shin H.S. Ammonia inhibition of electricity generation in single-chambered microbial fuel cells[J]. Journal of Power Sources, 2010, 195(19):6428-6433
    [89] Catal T., Fan Y., Li K., et al. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells[J]. Journal of Power Sources, 2008, 180(1):162-166
    [90] Min B., Logan B.E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental science and technology, 2004, 38(21):5809-5814
    [91] Min B., Kim J.R., Oh S.E., et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water research, 2005, 39(20):4961-4968
    [92] Feng Y., Wang X., Logan B.E., et al. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Applied microbiology and biotechnology, 2008, 78(5):873-880
    [93] Lu N., Zhou S., Zhuang L., et al. Electricity generation from starch processing wastewater using microbial fuel cell technology[J]. Biochemical Engineering Journal,2009, 43(3):246-251
    [94] Huang L., Logan B.E. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell[J]. Applied microbiology and biotechnology, 2008, 80(2):349-355
    [95] Phung N.T., Lee J., Kang K.H., et al. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences[J]. FEMS microbiology letters, 2004, 233(1):77-82
    [96] Holmes D., Bond D., O`neil R., et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments[J]. Microbial ecology, 2004, 48(2):178-190
    [97] Min B., Logan B. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environ. Sci. Technol, 2004, 38(21):5809-5814
    [98] Aelterman P., Rabaey K., Hai The Pham, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental science and technology, 2006, 40(10):3388-3394
    [99] Cheng S., Xing D., Logan B.E. Electricity generation of single-chamber microbial fuel cells at low temperatures[J]. Biosensors and Bioelectronics, 2011, 26(5):1913-1917
    [100] Gralnick J.A., Newman D.K. Extracellular respiration[J]. Molecular microbiology, 2007, 65(1):1-11
    [101] Kim B., Park H., Kim H., et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Applied microbiology and biotechnology, 2004, 63(6):672-681
    [102] Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and environmental microbiology, 2003, 69(3):1548-1555
    [103] Gorby Y.A., Yanina S., McLean J.S., et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences, 2006, 103(30):11358-11363
    [104] Reguera G., McCarthy K.D., Mehta T., et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101
    [105] Reguera G., Nevin K.P., Nicoll J.S., et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells[J]. Applied and environmental microbiology, 2006, 72(11):7345-7348
    [106] Bond D.R., Holmes D.E., Tender L.M., et al. Electrode-reducing microorganisms thatharvest energy from marine sediments[J]. Science, 2002, 295(5554):483-485
    [107] Kim H.J., Park H.S., Hyun M.S., et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens[J]. Enzyme and Microbial Technology, 2002, 30(2):145-152
    [108] Pham C.A., Jung S.J., Phung N.T., et al. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell[J]. FEMS microbiology letters, 2003, 223(1):129-134
    [109] Rabaey K., Boon N., H fte M., et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental science and technology, 2005, 39(9):3401-3408
    [110] Marsili E., Baron D.B., Shikhare I.D., et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences, 2008, 105(10):3968-3973
    [111] Von Canstein H., Ogawa J., Shimizu S., et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and environmental microbiology, 2008, 74(3):615-623
    [112] Fan Y., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environmental science and technology, 2008, 42(21):8101-8107
    [113] Wong P.K., Yuen P. Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13[J]. Water research, 1996, 30(7):1736-1744
    [114] Field J.A., Brady J. Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge[J]. Water Science and Technology, 2003, 48(6):187-193
    [115] van der Zee F.P., Bouwman R.H.M., Strik D.P., et al. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors[J]. Biotechnology and bioengineering, 2001, 75(6):691-701
    [116] Mendez-Paz D., Omil F., Lema J. Anaerobic treatment of azo dye Acid Orange 7 under batch conditions[J]. Enzyme and Microbial Technology, 2005, 36(2-3):264-272
    [117] Chang J.S., Chou C., Lin Y.C., et al. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola[J]. Water research, 2001, 35(12):2841-2850
    [118] Keck A., Klein J., Kudlich M., et al. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6[J]. Applied and environmental microbiology, 1997, 63(9):3684-3690
    [119] Cao Y., Hu Y., Sun J., et al. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell[J]. Bioelectrochemistry, 2010, 79(1):71-76
    [120] Sun J., Hu Y., Bi Z., et al. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell[J]. Bioresource technology, 2009, 100(13):3185-3192
    [121] Mu Y., Rabaey K., Rozendal R.A., et al. Decolorization of azo dyes in bioelectrochemical systems[J]. Environmental science and technology, 2009, 43(13):5137-5143
    [122] Yi H., Nevin K.P., Kim B.C., et al. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells[J]. Biosensors and Bioelectronics, 2009, 24(12):3498-3503
    [123] Biffinger J.C., Fitzgerald L.A., Ray R., et al. The utility of Shewanella japonica for microbial fuel cells[J]. Bioresource technology, 2011, 102(1):290-297
    [124] Xia X., Cao X., Liang P., et al. Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells[J]. Applied microbiology and biotechnology, 2010, 87(1):383-390
    [125] Liu M., Yuan Y., Zhang L., et al. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells[J]. Bioresource technology, 2010, 101(6):1807-1811
    [126] Finch A.S., Mackie T.D., Sund C.J., et al. Metabolite analysis of Clostridium acetobutylicum: Fermentation in a microbial fuel cell[J]. Bioresource technology, 2011, 102(1):312-315
    [127] Samrot A.V., Senthilkumar P., Pavankumar K., et al. Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(15):7723-7729
    [128] Freguia S., Masuda M., Tsujimura S., et al. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone[J]. Bioelectrochemistry, 2009, 76(1-2):14-18
    [129] Zuo Y., Xing D., Regan J.M., et al. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell[J]. Applied and environmental microbiology, 2008, 74(10):3130-3137
    [130] Liu Y., Harnisch F., Fricke K., et al. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells[J]. Biosensors and Bioelectronics, 2010, 25(9):2167-2171
    [131] Logan B.E., Murano C., Scott K., et al. Electricity generation from cysteine in a microbial fuel cell[J]. Water research, 2005, 39(5):942-952
    [132] Lee J., Phung N.T., Chang I.S., et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses[J]. FEMS microbiology letters, 2003, 223(2):185-191
    [133] Kim J.R., Jung S.H., Regan J.M., et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[J]. Bioresource technology, 2007, 98(13):2568-2577
    [134] Rismani-Yazdi H., Christy A.D., Carver S.M., et al. Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells[J]. Bioresource technology, 2011, 102(1):278-283
    [135] Lovley D.R., Phillips E.J.P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and environmental microbiology, 1988, 54(6):1472-1480
    [136]曹楚南,张鉴清,冶金工业,电化学阻抗谱导论[M]. 2002:科学出版社.
    [137] Li Z., Zhang X., Lin J., et al. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system[J]. Bioresource technology, 2010, 101(12):4440-4445
    [138] Logan B.E., Hamelers B., Rozendal R., et al. Microbial fuel cells: methodology and technology[J]. Environmental science and technology, 2006, 40(17):5181-5192
    [139] Gil G.C., Chang I.S., Kim B.H., et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics, 2003, 18(4):327-334
    [140] Harnisch F., Wirth S., Schroder U. Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron (II) phthalocyanine based electrodes[J]. Electrochemistry Communications, 2009, 11(11):2253-2256
    [141] IsIk M., Sponza D.T. Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye[J]. Bioresource technology, 2005, 96(5):633-643
    [142] Dos Santos A.B., De Madrid M.P., De Bok F.A.M., et al. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium[J]. Enzyme and Microbial Technology, 2006, 39(1):38-46
    [143] Sun J., Hu Y., Bi Z., et al. Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation[J]. Journal of Power Sources, 2009, 187(2):471-479
    [144] Sun J., Bi Z., Hou B., et al. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode[J]. Water research, 2011, 45(1):283-291
    [145] Ren Z., Ramasamy R.P., Cloud-Owen S.R., et al. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells[J]. Bioresource technology, 2011, 102(1):416-421
    [146] Ramasamy R.P., Ren Z., Mench M.M., et al. Impact of initial biofilm growth on the anode impedance of microbial fuel cells[J]. Biotechnology and bioengineering, 2008, 101(1):101-108
    [147] Venkata Mohan S., Veer Raghavulu S., Sarma P. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia[J]. Biosensors and Bioelectronics, 2008, 24(1):41-47
    [148] Park D.H., Zeikus J.G. Electricity generation in microbial fuel cells using neutral red as an electronophore[J]. Applied and environmental microbiology, 2000, 66(4):1292-1297
    [149] Sund C.J., McMasters S., Crittenden S.R., et al. Effect of electron mediators on current generation and fermentation in a microbial fuel cell[J]. Applied microbiology and biotechnology, 2007, 76(3):561-568
    [150] Chae K.J., Choi M.J., Lee J.W., et al. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells[J]. Bioresource technology, 2009, 100(14):3518-3525
    [151] Ariesyady H.D., Ito T., Okabe S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water research, 2007, 41(7):1554-1568
    [152] Chouari R., Le Paslier D., Dauga C., et al. Novel major bacterial candidate division within a municipal anaerobic sludge digester[J]. Applied and environmental microbiology, 2005, 71(4):2145-2153
    [153] Cao X., Huang X., Boon N., et al. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell[J]. Electrochemistry Communications, 2008, 10(9):1392-1395
    [154] Sy A., Giraud E., Jourand P., et al. Methylotrophic Methylobacterium bacteria nodulateand fix nitrogen in symbiosis with legumes[J]. Journal of Bacteriology, 2001, 183(1):214-220
    [155] Trinh N.T., Park J.H., Kim B.W. Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens[J]. Korean Journal of Chemical Engineering, 2009, 26(3):748-753
    [156] Lovley D.R. Bug juice: harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4(7):497-508
    [157] Ryckelynck N., Stecher H.A., Reimers C.E. Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity[J]. Biogeochemistry, 2005, 76(1):113-139
    [158] Yoo E., Libra J., Adrian L. Mechanism of decolorization of azo dyes in anaerobic mixed culture[J]. Journal of environmental engineering, 2001, 127(9):844-849
    [159] Oh S.E., Min B., Logan B.E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environmental science and technology, 2004, 38(18):4900-4904
    [160] Morris J.M., Jin S., Wang J., et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(7):1730-1734
    [161] Li X., Hu B., Suib S., et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells[J]. Journal of Power Sources, 2010, 195(9):2586-2591
    [162] Ter Heijne A., Hamelers H.V.M., Buisman C.J.N. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte[J]. Environmental science and technology, 2007, 41(11):4130-4134
    [163] Clauwaert P., Van der Ha D., Boon N., et al. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environmental science and technology, 2007, 41(21):7564-7569
    [164] Bergel A., F¨|ron D., Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm[J]. Electrochemistry Communications, 2005, 7(9):900-904
    [165]魏复盛,国家环境保护总局,水和废水监测分析方法编委会,水和废水监测分析方法[M]. 2002:中国环境科学出版社.
    [166] Chen G.W., Choi S.J., Lee T.H., et al. Application of biocathode in microbial fuel cells: cell performance and microbial community[J]. Applied microbiology and biotechnology, 2008, 79(3):379-388
    [167] Manohar A.K., Bretschger O., Nealson K.H., et al. The polarization behavior of theanode in a microbial fuel cell[J]. Electrochimica Acta, 2008, 53(9):3508-3513
    [168] Rozendal R.A., Hamelers H.V.M., Buisman C.J.N. Effects of membrane cation transport on pH and microbial fuel cell performance[J]. Environmental science and technology, 2006, 40(17):5206-5211
    [169] Morris J.M., Jin S., Crimi B., et al. Microbial fuel cell in enhancing anaerobic biodegradation of diesel[J]. Chemical Engineering Journal, 2009, 146(2):161-167
    [170] Aelterman P., Freguia S., Keller J., et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Applied microbiology and biotechnology, 2008, 78(3):409-418
    [171] Feng C., Ma L., Li F., et al. A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors and Bioelectronics, 2010, 25(6):1516-1520
    [172] Adachi M., Shimomura T., Komatsu M., et al. A novel mediator¨Cpolymer-modified anode for microbial fuel cells[J]. Chem. Commun., 2008(17):2055-2057
    [173] Lowy D.A., Tender L.M., Zeikus J.G., et al. Harvesting energy from the marine sediment-water interface II:: Kinetic activity of anode materials[J]. Biosensors and Bioelectronics, 2006, 21(11):2058-2063
    [174] Costa M., Mota S., Nascimento R., et al. Anthraquinone-2, 6-disulfonate (AQDS) as a catalyst to enhance the reductive decolourisation of the azo dyes Reactive Red 2 and Congo Red under anaerobic conditions[J]. Bioresource technology, 2010, 101(1):105-110
    [175] Jing W., Lihua L., Jiti Z., et al. Enhanced biodecolorization of azo dyes by electropolymerization-immobilized redox mediator[J]. Journal of hazardous materials, 2009, 168(2-3):1098-1104
    [176] Jamal F., Qidwai T., Pandey P.K., et al. Azo and anthraquinone dye decolorization in relation to its molecular structure using soluble Trichosanthes dioica peroxidase supplemented with redox mediator[J]. Catalysis Communications, 2011, 12(13):1218-1223
    [177] Alvarez L.H., Perez-Cruz M.A., Rangel-Mendez J.R., et al. Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process[J]. Journal of hazardous materials, 2010, 184(1-3):268-272
    [178] Santos A.B., Cervantes F., Lier J.B. Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2, 6-disulfonate (AQDS) on the reductive biochemical transformation[J]. Applied microbiology andbiotechnology, 2004, 64(1):62-69
    [179] Ghangrekar M., Shinde V. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J]. Bioresource technology, 2007, 98(15):2879-2885
    [180] Logan B., Cheng S., Watson V., et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental science & technology, 2007, 41(9):3341-3346
    [181] Di Lorenzo M., Scott K., Curtis T.P., et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal, 2010, 156(1):40-48
    [182] You S., Zhao Q., Zhang J., et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions[J]. Journal of Power Sources, 2007, 173(1):172-177
    [183] Khehra M., Saini H., Sharma D., et al. Biodegradation of azo dye CI Acid Red 88 by an anoxic-aerobic sequential bioreactor[J]. Dyes and Pigments, 2006, 70(1):1-7
    [184] Ong S., Toorisaka E., Hirata M., et al. Decolorization of azo dye (Orange II) in a sequential UASB-SBR system[J]. Separation and Purification Technology, 2005, 42(3):297-302
    [185] Tay J.H., He Y.X., Yan Y.G. Improved anaerobic degradation of phenol with supplemental glucose[J]. Journal of environmental engineering, 2001, 127(1):38-45
    [186] Jang J.K. Construction and operation of a novel mediator-and membrane-less microbial fuel cell[J]. Process Biochemistry, 2004, 39(8):1007-1012
    [187] Venkata Mohan S., Mohanakrishna G., Reddy B.P., et al. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment[J]. Biochemical Engineering Journal, 2008, 39(1):121-130
    [188] Bragger J., Lloyd A., Soozandehfar S., et al. Investigations into the azo reducing activity of a common colonic microorganism[J]. International journal of pharmaceutics, 1997, 157(1):61-71
    [189] Moir D., Masson S., Chu I. Structure¨Cactivity relationship study on the bioreduction of AZO dyes by Clostridium paraputrificum[J]. Environmental toxicology and chemistry, 2001, 20(3):479-484
    [190] Dos Santos A., Traverse J., Cervantes F., et al. Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobictreatment and redox mediators[J]. Biotechnology and bioengineering, 2005, 89(1):42-52
    [191] Grabowski A., Tindall B.J., Bardin V., et al. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir[J]. International journal of systematic and evolutionary microbiology, 2005, 55(3):1113-1121
    [192]吴昌永,彭永臻,王淑莹,等强化反硝化除磷对A2O工艺微生物种群变化的影响[J].化工学报, 2010, 61(1):186-191
    [193] Aelterman P., Versichele M., Genettello E., et al. Microbial fuel cells operated with iron-chelated air cathodes[J]. Electrochimica Acta, 2009, 54(24):5754-5760
    [194] Cai L.K., Mao Y.P., Zhang L.H., et al. Power generation from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria[J]. Electrochimica Acta, 2010, 55(27):7804-7808
    [195] Tang Z.Y., Geng X., Wang Z.L., et al. Preparation of Fe 3+ Doped Manganese Dioxide for Electrode Material of Supercapacitor[J]. CHINESE JOURNAL OF APPLIED CHEMISTRY, 2002, 19(10):936-940
    [196] Corstjens P., De Vrind J., Goosen T., et al. Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains[J]. Geomicrobiology Journal, 1997, 14(2):91-108
    [197] Bansal P., Singh D., Sud D. Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS[J]. Separation and Purification Technology, 2010, 72(3):357-365
    [198] Wen Q., Wu Y., Zhao L., et al. Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell[J]. Fuel, 2010, 89(7):1381-1385
    [199] Kaewkannetra P., Chiwes W., Chiu T.Y. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology[J]. Fuel, 2011, 90(8):2746-2750
    [200] Patil S.A., Surakasi V.P., Koul S., et al. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber[J]. Bioresource technology, 2009, 100(21):5132-5139
    [201] Thygesen A., Poulsen F.W., Min B., et al. The effect of different substrates and humic acid on power generation in microbial fuel cell operation[J]. Bioresource technology, 2009, 100(3):1186-1191
    [202] Zhang Y., Huang L., Chen J., et al. Electricity generation in microbial fuel cells: Using humic acids as a mediator[J]. Journal of Biotechnology, 2008, 136(Supplement 1):S474-S475
    [203] Huang L., Angelidaki I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells[J]. Biotechnology and bioengineering, 2008, 100(3):413-422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700