生物膜填料塔净化中低浓度硫化氢臭气的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高,人们对环境质量的要求越来越高,对恶臭问题也更加敏感。恶臭物质尤其是含硫物质来源极广,毒性极大,其中以H2S最为常见,低浓度的H2S就具有强烈的恶臭气味,它不仅直接危害人体健康,而且在有氧和湿热的条件下,严重腐蚀设备、管道和仪表等。另外,它在空气中易被氧化为二氧化硫,转化为硫酸导致酸雨。所以,净化硫化氢臭气已成为国民经济、环保领域中迫切需要解决的问题。
    目前去除H2S的方法有物理法、化学法和生物法,其中由于生物法具有设备简单、能耗低、产生二次污染的可能性小等优点已成为国内外恶臭防治研究与应用中的主流方法,但是国内对硫化氢的生物治理只限于低浓度水平,且对生物膜填料的种类及组合的系统研究报道很少。本试验就是针对此研究现状,进行了中低浓度硫化氢臭气的生物处理研究。获得如下结论:
    1.在确定菌种来源和培养液基础上,进行了液相去除规律和去除能力的试验研究。结果表明:此脱硫菌在适宜条件下对S2-具有较好的去除性,净化效率达100%;去除能力为1290mg/L。
    2.通过对混合菌液及纯化后的优势菌进行特征鉴定可知:混合菌主要菌种为氧化亚铁硫杆菌、硫化细菌、脱硫弧菌。纯化优势菌为氧化亚铁硫杆菌。
    3.研究了一层活性炭生物膜填料塔净化硫化氢臭气最佳的生态条件为:温度30℃、营养盐喷淋量10L/h、通气量0.16 m3/h、入口H2S浓度低于60mg/L和pH值2.0。在这种条件下,生物膜填料塔对H2S的净化效率可达到99.5%。
    4.首次进行了不同填料、填料的不同组合和填料的不同层数对硫化氢气体的净化效率的研究。结果表明:不同填料净化效率的高低顺序为活性炭>沸石>拉西环;复合填料>相同填料;三层的净化效率>两层的净化效率>一层的净化效率。
    5.首次研究了生物膜填料塔对中浓度硫化氢的净化效果。当复合填料为三层,且入口H2S浓度低于40.0mg/L时,净化效率可达100%;当入口H2S浓度为60.0~80.0mg/L时,其净化效率仍可达95%以上。且在此条件下,系统对H2S净化效率大于90%的运行时间为19d。
    6.试验结果表明:当入口H2S浓度低于20.0mg/L时,选用一层填料;H2S浓度在20.0~60.0mg/L之间时,可选用两层填料;H2S浓度在60.0~80.0mg/L之间时,选用三层复合填料,上述情况净化效率均可在90%以上。
    综上所述本试验培养的脱硫菌在三层复合填料的情况下,对中浓度硫化氢臭气有较好的净化效果,这为我国解决中浓度硫化氢臭气污染提供一条有效的治理途径。
The odor from sulfur hydrogen (H2S) is extensive and toxic even at low concentrations. Sulfur hydrogen could also damage the health of human being and corrode equipments. In addition, it can be oxidized to SO2 by oxygen and ozone, resulting in acidic rain and destroy our environment. Therefore, decreasing H2S concentration and its odor is in great demand in both environmental and economic aspects. Biological method, among many available ones, has great advantages to eliminate odor from H2S because it needs simple equipment, is easy to be operated and economical without secondary pollution. In the experiment, the biological membrane system was used to decrease the H2S concentration and its odor and results of the experiment were achieved as follows:
    1. Suitable resources and media were selected for the growth of microbes used to decrease the H2S concentration. After domestication of the microbes, the cleaning efficiency of H2S could be up to 90℅and the elimination capability could be up to 1290mg/L.
    2. It was recognized that the main microbes used in the experiment are FeSO4 bacillus、sulfur bacteria、and amoebae, among which the FeSO4 bacillus was dominant.
    3. The ranking of the efficiency from high to low are: Activated carbon (zeolite (Raschig ring; mix filling ( pure filling; three layers ( two layers ( one layer.
    4. The suitable ecological conditions for microbial degradation of sulfur compounds are: temperature at 30℃, the nutrient sprinkling rate at 10L/h, aeration rate at 0.16m3/h with incoming H2S concentration at 20mg/L, pH at 2.0, under which, the cleaning efficiency of H2S could be up to 99.5℅. When the incoming H2S concentration was increased to 60mg/L, the efficiency could still reach 90℅.
    5. The suitable incoming H2S concentration for zeolite,Raschig ring are low 20mg/L apart; two layers pure and mix fillings are low 40mg/L and 60mg/L apart; then three layers mix fillings is low 80mg/L.
    6. Under three layers filling and incoming H2S concentration between 60 and 80mg/L, the cleaning efficiency on H2S of the bio-membrane system could be 95℅. When the incoming H2S concentration was reduced to 60.0 mg/L, the efficiency could be up to 100℅. The operating time of biological filling tower system could last as long as19d.
    
     So to sum up, Under three layers filling, the cleaning efficiency of the microbes which cultivated and domesticated from sludge to H2S is best. It provides a aavailable method to solve the pollution issue of H2S of middle concentration.
    
    
    
     Appliant:Wang Fan
     Major:Ecology
     Supervisor: Prof.Li Shuqin
引文
布坎南R E, 吉布斯编. 中国科学院微生物研究所译. 伯杰细菌鉴定手册(第八版)[M]. 北京: 科学出版社, 1984. 622~651.
    2 岑运华. 生物脱臭法及其应用分类[J]. 污染防治技术. 1993, (6):8~11
    邓伟良等. 生物脱硫机理及其研究进展[J]. 上海环境科学. 1998, (5)
    付钟, 何品晶, 李国建. 恶臭的治理方法—生物脱臭法[J]. 环境卫生工程. 1997,(1): 3~7
    郭静, 黄焱歆, 王召, 李敏. 生物滤池与固定悬浮填料复合式生物膜反应器脱臭[J]. 中国环境科学. 1999, 19(1):59~62
    6 贺启环. 生物法脱臭[J]. 环境导报. 1992, (1):11~12
    7 贺延龄, 陈爱侠. 环境微生物学[M]. 中国轻工业出版社. 2001
    8 胡尚勤. 微生物除臭牛粪的初步研究[J]. 重庆环境科学. 1994, (1):9~11
    9 环境污染与恶臭测试技术[M]. 环境科学丛刊. 1990, (4)
    黄兵, 杜永林等. 生物法净化低浓度硫化氢废气的基础研究[J]. 云南化工. 1998, (3): 17~19
    黄焱歆, 郭静. 生物膜法控制硫化氢气体污染实验研究[J]. 城市环境与城市生态. 1996, 9 (1):15~18
    黄兵, 李晓梅, 孙佩石, 黄若华, 杜永林. 生物膜填料塔净化低浓度硫化氢恶臭气体研究[J]. 环境科学与技术. 1994, (4):17~21
    纪树满. 恶臭污染的防治[J]. 重庆环境科学. 1999, 21 (2):27~29
    姜安玺, 杨义飞, 王晓辉. 人工筛选菌脱除硫化氢恶臭气体的实验研究[J]. 中国环境科学
    金耀民, 陈建孟.大气污染控制中的应用[J]. 环境污染治理技术与设备. 2001, 2(3):76~80
    16 马红. 固定化微生物脱臭研究[J]. 上海:同济大学研究生毕业论文. 1993
    17 马红, 李国建. 固定化微生物处理含氨臭气的研究[J]. 中国环境科学. 1995, (4)
    马肖卫. 生物滤池去除硫化氢气体污染的实验研究[J]. 上海: 同济大学研究生毕业论文. 1991
    马肖卫, 李国建. 生物法净化硫化氢气体的研究[J]. 环境工程. 1994, 12 (2):18~21 
    20 彭清涛. 恶臭污染及其治理技术[J]. 现代科学仪器. 2000, (5):44~46
    21 羌宁. 气态污染物的生物净化技术及应用[J]. 环境科学. 1996, 17(4):32~34
    22 日本. 利用微生物高效脱臭处理技术[J]. 国外环境科学技术. 1992, (3):64~67
    23 邵立明, 何品静, 傅钟, 李国建. 固定化微生物处理含硫化氢气体的实验研究. 环境科学. 1999, 20(1):19~22
    
    24 沈根祥. EM微生物用于鸡粪除臭的实验[J]. 上海环境科学. 1996, (3):25~28
    孙佩石, 黄兵等. 生物法废气净化专用微生物菌种及其作用[J]. 中国环境科学. 2002,22 (1):28~31
    26 孙佩石, 杨显万, 黄若华等. 生物膜填料塔净化有机废气的研究[J]. 中国环境科学. 1996, 16 (2):92~95
    27 陶有胜. 微生物法在空气污染控制中的应用[J]. 环境科学生态. 1995, (3) :8~11
    28 王学谦, 宁平. 硫化氢废气治理研究进展[J]. 环境污染治理技术与设备. 2001,2(4): 77~85
    29 王玉亭, 林大泉. 利用微生物治理炼油厂废气中的硫化物恶臭污染[J]. 石油炼制与化工. 1998, 29 (10):40~42
    30 王玉亭, 曾向东, 林大泉. 硫化物恶臭脱除技术的发展[J]. 油气田环境保护. 1999, 9(4): 37~40
    31 吴志超. 生物脱臭技术初探[J]. 重庆环境科学. 1994, (4):26~29
    32 谢冰, 史家樑, 徐亚同. 恶臭的微生物处理概述[J]. 环境导报. 1997, 16~10
    33 谢冰等. 微生物法脱臭及其应用[J]. 上海环境科学. 1997, 16 (3):25~28
    34 许景文. 恶臭生物处理的研究[J]. 上海环境科学. 1993, 12(11):21~31
    35 徐亚同, 史家樑, 张明. 微生物脱臭[J]. 污染控制微生物工程. 2001, 5:159~165
    36 殷峻, 方士, 陈英旭. 泥炭生物滤塔处理低浓度硫化氢气体的实验研究. 环境科学学报. 2003, 23(1): 39~42
    37 郑士民等. 细菌脱硫[J]. 环境保护. 1992, 7 (3): 44~45
    38 郑士民, 庄国强, 吴志红. 酸性工业气体的细菌脱硫[J]. 微生物学报. 1993, 33(3): 192~198
    39 邹平, 高建耀. 废气的生物处理[J]. 江苏环境科技. 1995, (4):43~47
    40 周顺桂, 王世梅, 余素萍, 周立祥. 污泥中氧化亚铁硫杆菌的分离及其应用效果[J]. 环境科学. 2003, 24(3):56~60
    41 周为列, 王家德, 郑荣勤, 陈建梦. 塔填料生物膜工艺及其特性参数研究[J]. 浙江工业大学学报. 1999, 27(4):300~304
    A Paul Togna. Biological Vapor—phase Treat-ment Using Biofilter and Biotricking Filter Reactors Practical operatihg Regimes[J]. Environmental Progress. 1994 , 13 (2):94~97
    43 B Gene Goar. Hydrocarbon Processing [J]. 1988, (9):248~252
    44 Buisman-C J N,Boonstra-J-de .Biotechnological Hydrogen Solphide removal from biogas as solphur-paques. Environmental Technology Balk . 1993
    45 Caunt P, Akinetic Model for volative fatty acid biodegration during aerobic treatmeat of piggery waste . Biotechnol Bioeng. 1989, (34):126~129
    Chung-Yc,Huang-chihpin,Tseng-Chingping,Huang-cp,Tseng-Cp.Microbal oxidation of
    Hydrogen Sulfide with biofilter[J]. Institute of Environmental Engineering National Chiao Tung University Hsinchu 30039 Taiwan. 1996
    47 Chou M S , Lin J H.Biotrickling filtration of nitric oxide[J]. Joural of the Air & Waste
    
    Management Association. 2000, 50:502~508
    48 D’Aquino, Rita L. July focus on biotreatment[J]. Chemical Engineering .1999, 106(7): 81~82
    49 Devinny J.S, Chitwood D.E.Two-stag biofiltration of sulfides and VOCs from waste water treatment plants[J]. Water Science and Technology. 2000, 42(5~6):411~418
    Denome S A, Olson E S, Young K D. Appl Environ Microbial . 1994, 59(9):2837~2843
    51 Don H. Kampbell Removal of Volative Aliphatic Hydrocarbons in a soil Bioreator. JAPCA. 1987, 37(10):1236~1240
    52 Dr-IngJ. Mackowiale Abschdung von Formaldchyd aus der Abluft im Bioflter. WLB. 1992, (3):65~66
    53 Dr M Angrick. Neue Entwicklungen im Bereichder. A bgasrinigungsverfahren WLB. 1993, (3):42~46
    54 Edmonton, Alberta. The 38th Canadian Chemical Engineering Conference[R]. Oct, 1988 ,5
    F. Adler Stephen, Biofilation-a primer[J]. Chemical Engineering Progress. 2001, 97 (4):33~41
    56 Focht G D, Ranade P V, Harison D P Chem [J]. Eng. Sci.. 1988, 43(11):3005~3013
    57 FRANJO SABO. Entwicklung und Erprobung des Rotor-Biofilters. WLB. 1994, (11-12):64~65
    G Stucki, A Goy, R Schmuckli. Biologische Reimigung von Abluf aus der chemischen Industric[J]. Staub- Rcindaltung der Luft. 1995, 53~57
    59 Gero Leson and Arthur M Winer. Biofiltration An Innovative Air Pollution Control Technology For Voc Emmission. J Air. Waste Manage Association .1991, 41(8): 1045~1054
    Hansnaa Jorio, Louise Bibeau, Guy Viel, etal. Effects of gas flow rate and inlet concentration on xylene vapors biofiltration perfornance[J].Chemical Engineering Journal. 2000, 76: 209~221
    61 Hartmanns and J. Tramper Dichloromethane Removal from waste Gases with a Trickle-bed Bioreator. Bioprocess Eng. 1991, (6):83~92
    62 Ing-J Loy.Biologische Abluftreinigung mit den Tropfkorperverfahren. WLB. 1993, (3): 53~55
    63 I Schninelen, A Friedl. Abbau Von fluchtigen organischen Verbimdungen(voc) im Tropfkorper-bioreator. Staub-Reinhaltung der luft. 1995, (55):259~262
    64 Kelly,D P.Physiology and Biochemisty of Unicellular Sulphur Bacteria. Autotrophic Bacteria (Schlegel H G and Bowien B. eds.). 1989, 193-213. Spinger – Verlag, Berlin.
    65 Kirchner k, Gossen C A, Rehrn H J. Purification of exhaust air contanining organic pollutants in a trickle-bed bioreator. Appel Microbiol. Biotechnol. 1991, (35):396~400
    66 M axwell ,B Band, David E ,Copper chee-Pan. Compost filtors for H2S removal from anaerobic digestion and rendering exhausts. JWPCF, 1981,53(2):185~189
    Nascimento D M, Chang D P Y, et al .Bio-oxidation of nitric oxides in a nitrifying aerobic
    
    
    filter[J]. Air & Waste Management Assoc ,Salt Lake City, Utah, USA. 2000-Paper AE-2b
    Okuno K ,Hirai M, Sugiyama M, et al. Micobial removal of nitrogen monoxide under aerobic conditions[J]. Biotechnoloy Letter . 2000 , 22(1):77~79
    69 Ottengraf S P P. Biological elimination of volative xenobioric Compounds in biofilters. Bioproc Eng. 1986, (1):61~65
    70 Ottengraf S P P. Biological Systems for waste gas elimination. TIBTECH. 1987, (5):132~135
    71 PKJ, LiuRLGregg and H K Sabol. Engineered Biofiler for Removing Organic Contaminants in Air. AIR&WASTE. 1994, 44(3):299~303
    R. E. Steinberger, A. R. Allen, H. G. Hansma, P. A. Holder. Elongation. Correlates with
    Natriest. Deprivetion in Pseudomonas Aeruginosa -Unsaturated Biofilms [J] Microb. Ecol. 2002, 43:416~423.
    Sa L N, Focht G D, Rana de P V . Harrison D P Chem [J]. Eng Chem Res . 1995,
    34 : 1181~1188
    Schroeder E.D, Eweis J.B, Chang D.P.Y.etal. Biodegradation of recalcitrant components
    of organic mixtures[J]. Water Air and Soil Pollution. 2000, 123 (1~4):133~146
    Sekoulov I , Brinke Seiferth S , Application of biofiltration in the oil processing
    industry[J]. Water Science and Technology. 1999, 39 (8):71~76
    Susan Lew, Adel F. Sarofimn and maria flytzani stephanopoulos [J]. Ind. Eng. Chen.Res,
    1992, 31:1890~1899
    77 Tangi Y. Removal of diomethyl mecaptan hydrogen sulfide by immobacillus thioparus. TK-m.J .Ferment Bioeng . 1989, 67(4)
    78 Wang Yu ting, Lin Daquan. Proceedings of Fourth Asia-Pacific. Biochemical Engineering Conference[R]. Beijing. 1997, 10:11~13
    79 Wolf F. Biologische Abluftreinigung mit cincm intermittier-end befeuchren Tropfkorpeur. Elsevier Science Pubisher B V Biotechniques for air pollution abarement and odour control polices. 1992:49~62
    Wu G, Conti B, Leroux A. A high performance biofilter for VOC emission control[J].
    Joural of the Air & Waste Management Association. 1999 ,49 , (2) : 185~192
    81 YangHua Yang. Biofiltration Control of Hydrogen Sulfide. AIR & WASTE. 1994. 44(7):863~868
    82 Zhuang-G, Pan-J, Zheng-S. Bacterial desulfurization of the H2S-Containing Biogas. Microbiology Department of Shandong university Jinan 250100 China .1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700