废生物体资源化利用吸附处理低浓度重金属废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以开发高效、经济的重金属废水处理技术为主要目标。研究不同类型的废生物体对多种重金属离子的吸附作用和机理,探讨了生物吸附重金属离子的影响因素,选择适当的生物包埋方法和生物吸附材料再生方法,并对生物吸附和解吸过程的反应速率方程进行了探讨,研究了固定床反应器对重金属离子的吸附作用和选择性。结果表明:实验范围内,活性污泥吸附重金属离子的能力远远高于酵母和小球藻。在对Cd~(2+)离子的对比吸附实验中,活性污泥的吸附效果可达8.62mg/g;pH是影响生物吸附的最主要因素,在pH=4~5的范围内,三种生物材料对重金属均可以取得最佳去除效果;海藻酸包埋法和其他包埋法相比更具有优势;固定化CA球的吸附与解吸是可逆反应的两个方面,且反应速度均符合一级反应动力学方程;包埋污泥固定床反应器对重金属离子的吸附能力为Cu~(2+)>Cd~(2+)>Zn~(2+)。
In this paper, various kinds of waste biomass were tested to find the most powerful one to remove the heavy metal ions from solutions. At the same time, the mechanism of biosorption, the operation parameters, the immobilization method and the desorption method were studied. Moreover, the kinetic equations of the adsorption and desorption process were discussed. In addition, chromatographic effects in the performance of fix-bed reactor caused by different sorption affinities of the metal ions were also investigated. The result indicated that the heavy metal absorption capacity of activated sludge was far higher than the yeast and chlorella. In the Cd2+ adsorption experiment, the adsorption capacity of 8.62mg/g could be achieved by activated sludge. Among all the factors, pH was the most important parameter. All the three biomaterials presented high removal efficiencies of heavy metal ions within the pH range 4.0-5.0. Compared with the other media, the sodium alginate was the most effective. Moreover, the kine
    tic studies showed the adsorption process and desorption process could modeled by the equilibrium equation. Besides, according to the adsorption performance of the reactor for the mixture of Cu2+, Cd2+and Zn2+, the affinities of metals towards the CA beans decreased in the following order: Cu2+, Cd2+,Zn2+.
引文
[1] 孟祥和,胡国飞.重金属废水处理.第一版.北京:化学工业出版社,2001
    [2] 吴涓,李清彪.重金属生物吸附的研究进展.离子交换与吸.1998,14(2):180—187
    [3] 王建龙,韩英健.微生物吸附金属离子的研究进展.微生物学报.2000,27(6):449—452
    [4] 陈旻,甘一如.重金属的生物吸附.化学工业与工程.1999,16(1):19-25
    [5] F·维戈利奥.综述回收金属的生物吸附法.国外金属矿选矿.1998(12):27-35
    [6] A. V. Vethkar, K. M. Paknikar. Recovery of gold form solutions using Cladosporium cladosporioides biomass beads. Journal of biotechnology, 1998(63): 121-136
    [7] 任洪强,陈坚.重金属生物吸附剂的应用研究现状.生物技术.2000,10(1):33—36
    [8] 陈坚,任洪强,堵国成等.环境生物技术应用与发展.北京:中国工业出版社,2001
    [9] 陈勇生,孙启俊.重金属的生物吸附技术研究.环境科学进展.1997,5(6):34—43
    [10] 叶锦韶,尹华.重金属的生物吸附研究进展.城市环境与城市生态.2001,14(3):30-32
    [11] 陈坚.生物吸附剂的生产与应用.环境生物技术应用与发展.2001:199—241
    [12] Anoop Kapoor & T. Viraraghavan. Heavy metal biosorption sites in Aspergillus Niger. Bioresource Technology, 1997, 61(1097): 221-227
    [13] V. K. GUPTA. BIOSORPTION OF CHROMIUM FROM AQUEOUS SOLUTION BY GREEN ALGAE SPIROGYRA SPECIES. Wat. Res., 2001, 35(17): 4079-4085
    [14] Y. sag. Equilibrium parameters for the single-and multicomponent biosorption of Cr and Fe ions on R. arrhizus in a column. Hydrometallurgy, 1999, 55: 165-179
    [15] Antonio Sanchez. Biosorption of copper and zinc by Cymodocea nodosa. Microbiology reviews, 1999, 23: 527-536
    [16] E. Valdman. Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp.. Process Biochemistry, 2001, 36: 869-873
    [17] G. Cetinkaya Donmez. A comparartive study on heavy metal biosorptin characteristics of some algae. Process Biochemistry, 1999, 34: 885-892
    [18] Ayla Ozer. Appliction of Freundlich and Langmuir models to multistage purification process to remove heavy metal ions by using Schizomeris leibleinii. Process Biochemistry, 1999, 34: 919-927
    [19] 国家环保局.《水和废水监测分析方法》编委会,水和废水监测分析方法,第三版,中国环境科学出版社,1989
    [20] 刘刚,李清彪.重金属生物吸附的基础和过程研究.水处理技术.2002,28(1):17—20
    [21] 刘瑞霞,汤鸿霄.重金属的生物吸附机理及吸附平衡模式研究.化学进展.2002,14(2):87—92
    [22] David Kratochvil & Bohumil Volesky. Advances in the biosorption of heavy metal.
    
    Tibteh, 1998, 16(6): 291-299
    [23] 吴乾菁.微生物治理电镀废水的研究.环境科学.1997,18(5):48-50
    [24] 胡洪波.微生物吸附贵重金属的研究与应用.微生物学通报.2002,29(3):94—97
    [25] 郑展望.酿酒酵母对铜离子的吸附.水处理技术.2000,26(4):240—244
    [26] 潘进芬,林荣根.海洋微藻类吸附重金属的机理研究.海洋科学.2000.24(2):31-33
    [27] 李建宏,曾昭琪,薛宇鸣.极大螺旋藻富积重金属机理的研究.海洋与湖沼.29(3):274—279
    [28] 夏畅斌.碳黑泥吸附铬的动力学研究.水处理技术.2001,27(5):261—263
    [29] 林荣根,周俊良,黄朋林.螺旋藻吸附水溶液中铜离子的初步研究.海洋环境科学.1998,17(2): 8—11
    [30] 梁想,尹平河,赵玲.海带生物吸附铜废水的试验.广州环境科学.2000,15(4):13—15
    [31] 王亚雄.微生物吸附剂对重金属的吸附特性.环境科学.2001,22(6):72—75
    [32] 赵旭涛,顾国维.生物吸附作用的性能探讨.中国给排水.1994.10(3):28—30
    [33] Guibal E. Roulph C. Le Cloirec P. Uranium biosorption by a filamentous fungus Mucor miehei pH effect on mechanism and performances of uptake. Wat Res, 1992(26): 1139-1145
    [34] M. Teszos. Biosorption of metals: The experience accumulated and the outlook for technology development. Hydrometallurgy, 2001(59): 241-243
    [35] Volesky B.. Biosorption of heavy metal[M]. USA Bacca Raton: CRC Press, 1990: 105-109
    [36] Tobin JM, White C, Gadd GM. Metal accumulation by fungi: application in environmetal biotechnology. J Ind Microbial, 1994, 13: 126-130
    [37] 黄淑惠.细胞固定金属的机制.微生物学通报,1992,19(3):171-173
    [38] 尹平河,赵玲.海藻生物吸附废水中铅、铜和镉的研究.海洋环境科学.2000,19(3):11-15
    [39] 刘学虎,张清,马伟.非活性藻类吸附重金属的研究.山东化工.2002,31(3):15—17
    [40] Tobin J. M.. Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbial, 1987(47) 821
    [41] P. R. Puranik, K. M. paknikar. Biosorption of lead and zinc from solution using Streptoverticillium cinnamoneum waste biomass. Journal of Biotechnology, 1997(55): 113-124
    [42] A. V. Vethkar, K. M. Paknikar. Recovery of gold form solutions using Cladosporium cladosporioides biomass beads. Journal of biotechnology, 1998(63): 121-136
    [43] 苏海佳,菌丝体-甲壳素水处理剂对重金属Ni~(2-) 吸附性能的研究.环境污染治理技术与设备.2002,3(7):5—8
    [44] 常秀莲.生物吸附剂—虾壳吸附镉(Ⅱ) 的实验研究.离子交换与吸附.2002,18(3):241—247
    [45] 李清彪.黄孢展齿革菌对镉离子的吸附.离子交换与吸附.2001,17(6):501—506
    [46] 况金蓉,冯道伦.固定化细胞技术在废水处理中的应用.武汉理工大学学报.2001,23(11):88—91
    
    
    [47] 沈耀良,黄勇.固定化微生物污水处理技术.第一版.北京:化学工业出版社,2002
    [48] 李伟.适用于酶包埋的高分子载体材料的研究进展.功能高分子学报.1999,20(1):365—368
    [49] 王建龙.聚乙烯醇包埋固定化微生物的研究及进展.工业微生物.1998,28(2):35-39
    [50] 陈敏.聚乙烯醇包埋活性炭与微生物的固定化技术及其对水胺硫磷降解的研究.环境科学.1993,15(3):11—14
    [51] 赵海霞.采用PVA包埋土壤中微生物处理含酚废水.山东环境.1996,11(1):8—10
    [52] 胡罡.聚乙烯醇包埋龟裂链霉菌对水中Pb~(2+) 吸附性能的研究.离子交换与吸附.2000,16(6): 534-539
    [53] 许景文.聚乙烯醇对厌氧发酵菌包埋固定条件的研究.重庆环境科学.1992,14(4):14—20
    [54] 屠娟.非活性黑根霉菌对废水中重金属离子的吸附.环境科学.1994,16(1):12—15
    [55] 赵力.明胶包埋黑根霉菌丝体对水中pb~(2+) 吸附性能的研究.离子吸附与交换.1996,12(5): 418-424
    [56] 王保军.微生物与重金属的相互作用.重庆环境科学.1996,18(1):35—38
    [57] Volesky B., May H, Holan Z R. Cadium biosorption by saccharomyces cerevisiate. Biotech Bioeng, 1993, 41: 826-829
    [58] Strandberg G. M., Shumate S. E. Microbial cells as biosorbents for heavy metals, accumulation of Uranium by S. cerevisiate and P. aeruginosa. Appl. Environ. Microbial, 1981(41): 237
    [59] 黄民生,郑乐平,朱莉.微生物对重金属的吸附与解吸.化工装备技术.2000,21(2):17—22
    [60] G. Yan, T. Viraraghavan, Heavy metal removal in a biosorption column by immobilized M. rouxil biomass. Bioresource Tech. 2001, 78: 243-249
    [61] Lynne E. Macaskie, A. C. R. Dean. Cadium Accumulation by a Citrobacter sp. J. General Microbiology. 1984, 130: 53-62
    [62] M. spini, H, Zhuang, E. M. Trujillo. Evalution of immobilized biomass beads for removing heavy metals from the wastewater. Water Environ. Res. 2000, 67: 943-954
    [63] Z. Aksu et al. Biosorption of chromium ions by Mowital B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Process Biochem. 2002, 38: 175-186
    [64] David Kratochvil. Multicomponent biosorption in fixed beds. Wat. Res., 2000, 34(12): 3186-9196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700