污泥破解预处理技术和破解后污泥厌氧消化效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前污水处理技术领域内,活性污泥法是应用最为广泛的技术之一,具有技术成熟、工艺种类多、污水处理效果良好等特点。但是活性污泥法在处理污水的同时一直存在一个最大的弊端,就是会产生大量的剩余污泥。剩余污泥中含有病原体、重金属及有机物等对环境有害的物质,处置不当会引起环境的二次污染。目前的处置处理技术主要有卫生填埋、农用、土地利用、焚烧等,随着法律法规对污泥处置的要求越来越严格和环境保护的发展,污水处理厂污泥处置的压力将越来越大,成为世界各国面临的日益严重的污泥问题。针对污水处理厂的剩余污泥问题,国内、外许多学者进行了各种各样的探索和研究,提出了多种技术路线,并取得了很多成果。其中,污泥厌氧消化处理是最古老和最常见的污泥生物处理方法之一,对大型污水处理厂而言也是最为经济的污泥处理方法,消化过程中不需供氧,相对好氧稳定工艺而言耗能少,同时又产生沼气能源,在当今能源紧缺的背景下,是一种高效经济的处理技术。但是该技术在污泥处理工艺存在着一些问题:由于污泥固体属难生物降解物质,因此厌氧消化降解速率低、停留时间长,一般在20-30天的停留时间下才能达到中等程度的降解。研究认为,厌氧消化过程的限速步骤是水解反应,对污泥进行厌氧前预处理可以提高水解速率,其目的就是破坏污泥的结构及细胞壁,使污泥絮体结构发生变化,减小污泥粒径,细胞内的内含物溶出,进入水相,在胞外酶的作用下快速水解为小分子化合物,从而提高污泥的水解速率和厌氧消化的效率。但是,污泥预处理技术在实现污泥破解过程中能否与现有的污水处理厂的工艺相适应,在污水处理厂的实际应用经济、能源效益如何?需要进一步的研究。
     本文主要开展了以下研究:选用超声波、高温和过氧乙酸三种预处理方法对污泥进行破解,以研究破解的效果和对厌氧消化的促进作用。研究结果表明,声能密度为0.4w/ml的超声波破解污泥,SCOD的溶出率、VFA的含量、TSS和VSS的减少率随时间延长线性增长,但污泥的破解率仍维持在5%以下的水平。70℃处理2天的高温可以使SCOD溶出率达22.8%;TSS和VSS去除率分别为17.5%和31.5%,破解效果显著,但污泥的沉降性能略为变差。过氧乙酸预处理所用的过氧乙酸浓度越高,破解效果越好,但是单位浓度引起的SCOD增加值急剧下降,且初始浓度大于0.012%的过氧乙酸在反应进行了12h后,均仍有不利厌氧消化的过氧乙酸和过氧化氢残留。过氧乙酸预处理污泥以0.01%浓度左右比较合适,12h后TSS去除率达21%,污泥的沉降性也得到改善,但污泥的pH值下降至4.66。
     将破解后污泥进行厌氧消化。0.4w/m1声能密度的超声波处理污泥10min,厌氧消化的产气率提高了14%,污泥有机质的去除率为29%。高温预处理后产气率提高了95%,污泥有机质的去除率为34%。由于过氧乙酸预处理后,污泥呈酸性,在实验选择了合适的pH后,预调pH值9.50,0.011%浓度的过氧乙酸预处理污泥的产气率提高了77%,即使在扣除投加过氧乙酸引入的乙酸所产生的理论最大产气量后,增幅为17%。尽管过氧乙酸预处理引入了COD到污泥中,但是有机质的去除率效果还是以过氧乙酸最好,为42%。
     剩余污泥的初始pH值调节到碱性后,可促进VFA的生成,SCOD值增加。调节初始pH值到4.02也能大量促进有机物的溶出,但是不利VFA的产生。综合SCOD、VFA和微生物对pH值得适应能力,初始pH值8.69最有利于厌氧消化产气。厌氧消化的产气组成会受到污泥初始pH值的影响,初始pH值越高,其产气组成中的甲烷比例越高。
     以超声波和高温预处理后,虽然增加了产气,有助于回收能源,但是预处理方式本身要消耗能源,在理论上来说,与普通厌氧消化体系相比,扣除产生的能量,超声波预处理多耗能236 kJ/L污泥;高温预处理在余热利用良好的情况下,仅增产能源3.2kJ/L污泥,并且均须要在工艺流程中增添一个反应池。过氧乙酸预处理方式不需额外耗能,反应可以在浓缩池进行,还能增产能量23kJ/L污泥。
As the most widely applied biological treatment process in the wastewater treatment field, the conventional activated sludge process is technically mature and efficient, but at the same time, has its drawback of high sludge production. The are many harmful components in sludge including pathogenic matter, heavy metals and residual organic matter, which could pollute the environment without proper treatment. At present the main disposal technics include sanitary landfill, agricultural applications and burning. As the environmental and legislative requirements on the discharge of sludge have been strengthened, the disposal of excess sludge is strongly limited. To solve the sludge problem, there are many sorts of study and achievement on it. Among them, sludge anaerobic fermentation is one of the most age-old, usual and economical biological treatment, which needn't oxygen supply in digesting process, consumes less energy compared with aerobic digestion, and could produce biogas, making sense in the background of energy shortage. However, the disadvantages of the treatment technique are that the waste activated sludge is difficult to degrade, resulting in the slow degradation and long residence time. It is reported that the restricted step of anaerobic digestion is hydrolyzation, so pretreatment before digestion are taken to promote it by disintegrating the sludge flocs and disrupting bacterial cells'wall. After pretreatment the intracellular inclusions are released into the aqueous phase, and rapidly hydrolyzed to small molecular compounds by extracellular enzyme, the hydrolysis can be improved a lot, so that the anaerobic digestion can be enhanced and methane production be significantly increased. However, further research is needed to make sure whether the pretreatment is accommodated to the existing treatment process in wastewater plant, and how its practical economical and energy benefit is.
     The aim of this experiment is to study and compare the upgrading of anaerobic digestion of ultrasonic, high temperature and peracetic acid pretreatment. It has been found that the SCOD dissolving rate, VFA concentration and TSS, VSS reduction are increased linearly with the argument of 0.4W/ml ultrasonic function time, but in sum the disintegration rate is under 5% level. Setting the sludge temperature at 70℃for 2 days shows a notable disintegration effect, which promotes the SCOD dissolving rate to 22.8%, TSS and VSS reduction to 17.5% and 31.5% separately, but the settlement capability becomes worse slightly. As for the peracetic acid, the higher is the concentration, the better the disintegration effect, but the lower the SCOD increasing rate caused by per unit peracetic acid. Besides, there are peracetic acid and Hydrogen Peroxide left even after the reaction for 12h, if the peracetic acid original concentration is bigger than 0.012%, which may prejudice the following anaerobic digestion. So the 0.01% is the proper peracetic acid concentration to pretreat sludge, it reduces the TSS for 21% after 12h, and improves the settlement, but low the pH to 4.66.
     In the anaerobic digestion step, the biogas production of sludge pretreated by 0.4W/ml ultrasonic for 10 minutes is 14% more than the original sludge, and the reduction rate of organic matter is 29%. The biogas production of sludge pretreated at 70℃for 2 days is 95% more than the original sludge, and the reduction rate of organic matter is 34%. Because the sludge is acidic after peracetic acid pretreatment, proper pH should be tested to choose. Alkalescent pH is good for increase the VFA, SCOD, biogas production and the methane proportion in biogas, while the acidic pH is only good for SCOD, but bad for others. Considering these factors, the pH of sludge is adjusted to 9.50, and pretreated by 0.011% peracetic acid. Its biogas production increases by 77%, even taking out the theoretic production created by acetic acid which is introduced by peracetic acid, the value is 17%, and the reduction of organic matter is 42%.
     Though the ultrasonic and heating pretreatment could promote the production of biogas to reclaim energy, they are also energy costing. Taking out the produced energy, in theory,236 kJ/L sludge more energy are needed by the ultrasonic pretreatment, and only 3.2 kJ/L sludge more energy are produced by the heating pretreatment, than the traditional anaerobic digestion system. further more both pretreatments need an extra reaction tank. On the contrary the peracetic acid pretreatment needn't extra energy or extra reaction tank, which could be taken in the concentrating tank, and increases energy production 23kJ/L sludge.
引文
[1]张自杰,排水工程下册[M],北京:中国建筑工业出版社,2000:95
    [2]国家环保总局2007年中国环境状况公报[M],北京:中华人民共和国环境保护部,2008
    [3]赵庆祥,污泥资源化技术[M],北京:化学工业出版社,2002:2
    [4]Low E. W., Chase H. A., Reducing production of excess biomass during wastewater treatment[J], Water Research,1999,33(5):1119-1132
    [5]EPA, Biosolids generation use and disposal in the United States[P], EPA.530-R-99-009, D, C,1999
    [6]SPinosa L., Evolution of sewage regulation in Europe[J], Wat. Sci. Tech,2001, 44:1-8.
    [7]朱开金,马忠亮,污泥处理技术及资源化利用[M],北京:化学工业出版社,2007:2
    [8]国家环保总局,农用污泥中污染物控制标准GB4282-84,1984
    [9]赵由才,朱青山,城市生活垃圾卫生填埋场技术与管理手册[M],北京:化学工业出版社,1999:1-15
    [10]孙旭红,冯岓,李德生,张海燕,宋文华,污泥处置环境影响论述[J],城市环境与城市生态,2003,16(5):56-58
    [11]Flyhammar P., Estimation of Heavy Metal Transformations in Municipal Solid Waste [J], Sci.Total Environ,1997,198(2):123-133.
    [12]中华人民共和国住房和城乡建设部,中华人民共和国环境保护部,中华人民共和国科学技术部,城镇污水处理厂污泥处理处置及污染防治技术政策(试行),2009
    [13]尹军,谭学军,廖国盘,翟佳麟,刘国栋,我国城市污水污泥的特性与处置现状[J],中国给水排水,2003,19(13):21-24
    [14]谷晋川,蒋文举,雍毅,城市污水处理厂污泥处理与资源化[M],北京:化学工业出版社,2008:74-75
    [15]王静,卢宗文,田顺,陶俊杰,国内外污泥研究现状及进展[J],市政技术,2006,24(3):140—142
    [16]薛澄泽,马芸,张增强,高坤瑞,岳晓勤,刘俊华,王梅,污泥制作堆肥及复合有机肥料的研究[J],农业环境保护,1997,16(1):11-15
    [17]林文波,李玉庆,聂有壮,马万里,污水处理厂沼气发电并网运行系统[J],中国给水排水1999(15):39-40
    [18]李维,杨向平,李建军,李德清,宋晓雅,高碑店污水处理厂沼气热电联供情况介绍 [J],给水排水,2003,29:17—20
    [19]张辰,王国华,孙晓,污泥处理处置技术与工程实例[M],北京:化学工业出版社,2006,7:72—73
    [20]Perry L. McCarty, John S. Jeris, William Murdoch, Individual Volatile Acids in Anaerobic Treatment[J], Water Pollution Control Federation,1963,35(12): 1501-1516
    [21]Spyros G. Pavlostathis, James M. Gossett, A Kinetic Model for Anaerobic Digestion of Biological Sludge [J], Biotechnology and Bioengineering,1983,28: 1519-1930
    [22]Li, Y. Y., Noike, T., Upgrading of anaerobic digestion of waste activated Sludge by thermal pretreatment[J], Water Science Technology,1992,26:857-866
    [23]Wang QH, Kuninobu M, Kakimoto K, Ogawa HI, Kato Y, Upgrading of anaerobic digestion of waste activated Sludge by ultrasonic pretreatment[J], Bioresource Technology,1999,68(3):309-313
    [24]杨洁,剩余污泥超声破解对厌氧消化反应的促进作用研究,天津大学硕士学位论文,2005
    [25]Cetin S., Erdincler A., The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges[J], Water Science Technology,2004,50(9):49-56
    [26]顾夏声,废水处理工程[M],北京:清华大学出版社,1985(6):251-255
    [27]P. Camacho, S. Deleris, V. Geaugey, P. Ginestet, E. Paul, A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge[J]. Water Science and Technology,2002,46(10):79-87
    [28]Eastman J. A., Ferguson J. F., Solubilization of particulate organic carbon during the acid phase of anaerobic digestion[J], Water Pollution Control Federation, 1981,Vol.53:352-366
    [29]Haug RT., Sludge processing to optimize digestion and energy Production[J], Water Pollution Control Federation,1997,49:1713-1721
    [30]Roger T. Haug, David C. Stuckey, James M. Gossett, Perry L. McCarty, Effect of thermal Pretreatment on digestibility and dewaterability of organic sludge[J], Water Pollution Control Federation,1978,50:73-85
    [31]Tanaka S., Kamiyama K., Thermocheical pretreatment in the anaerobic digestion of waste activated sludge[J], Water Science and Technology,2002,46(10):173-179
    [32]张洪林,范丽华,曹春艳,李亚焕,蒋林时,邱峰,高温预处理对污泥厌氧消化影响的研究[J],辽宁师范大学学报(自然科学版),2007,30(3):336—338
    [33]M. Hiraoka, N. Takeda, S. Sakai, A. Yasuda, Highly efficient anaerobic digestion with thermal pretreatment[J], Water Science and Technology,1985,17:529-539
    [34]C. Bougrier, H. Carrere, J. P. Delgenes, Solubilisation of waste-activated sludge by ultrasonic treatment[J], Chemical Engineering Journal,2005,106(2): 163-169
    [35]Tiehm A., Nickel K., Neis U., The use of ultrasound to accelerate the anaerobic digestion of sewage sludge[J], Water Science and Technology,1997,36(11):121-128
    [36]Tiehm A., Nickel K., Zellhorn M., Neis U., Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J], Water Research,2001, 35(8):2003-2009
    [37]Antti G. H., Kirsi K., Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion[J], Ultrason Sonochem,2005, 12(1-2):115-120
    [38]JEAN, D. S., CHANG, B. V., LIAO, G. S., TSOU, G. W. and LEE, D. L, Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment. [J], Water Science and Technology,2000,42 (9):97-102.
    [39]王琳,王宝贞,分散式污水处理与回用[M],北京:化学工业出版社,2003:279-289
    [40]H. B. Choi, K. Y. Hwang, Effect of anaerobic digestion of sewage sludge Pretreatment[J], Water Science and Technology,1997,35(10):207-11
    [41]Urs Baier, Peter Schmidheiny, Enhanced anaerobic digestion of mechanically disintegrated sludge[J], Water Science and Technology,1997,36(11):137-143
    [42]Mustapha S., Forster C. F., Examination into the gamma irradiation of activated sludge[J], Enzyme and Microbial Technology,1985,7:179-181
    [43]M. Rocher, G. Goma, A. Pilas Begue, L. Louvel, J. L. Rols, Towards a reduction in excess sludge production in activated sludge processes:biomass physicochemical treatment and biodegradation [J]. Appl Microbiol Biotechnol,1999,51:883-890
    [44]Vlyssides A. G., Klarlis P. K., Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J], Bioresource Technology,2004,91:201-206.
    [45]杨虹,王芬,季民,张元玲,超声与碱耦合作用破解剩余污泥的效能分析[J],环境污染治理技术与设备,2006,7(5):78—81
    [46]CHIU Y.-C, CHANG C.-N, LIN J.-G, HUANG S.-J, Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J], Water Science and Technology,1997,36(11):155-162
    [47]林志高,张守中,废弃活性污泥加碱预处理后厌氧消化的试验研究[J],给水排水,199723(1):10-15
    [48]DEL ERIS S, PAUL E, AUDIC J M, et al. Effect of ozonation on activated sludge solubilization and mineralization [J. Ozone Sci. Eng.,2000,22(5):473-486
    [49]M. Weemaes, H. Grootaerd, F. Simoens, W. Verstrsete, Anaerobic digestion of ozonized biosolids, Water Research,2000,34(8):2330-2336
    [50]Yu Liu, Chemically reduced excess sludge production in the activated sludge process, Chemosphere[J],2003,50:1-7
    [51]S!ebastien Saby, Malik Djafer, Guang-Hao Chen, Feasibility of using a chlorination step to reduce excess sludge in activated sludge process[J], Water Research,2002,36(5):656-666
    [52]NEYNS E, BAEYENS J, WEEMAES M, et al. Pilot-scale per-oxidation (H2O2) of sewage sludge[J], Journal of Hazardous Materials,2003,98 (1/3):91-106
    [53]M. G. C. Baldry, The bactericidal, fungicidal and sporicidal properties of hydrogen and peracetic acid[J], Applied Microbiology,1983,54:417-423
    [54]Mehmet Kitis, Disinfection of wastewater with peracetic acid:a review[J], Environment International,2004,30:47-55
    [55]Fraser JAL, Godfree AF, Jones F., Use of peracetic acid in operational sewage sludge disposal to pasture [J], Water Science Technology,1984,17:451-66
    [56]Fraser JAL, Novel applications of peracetic acid in industrial disinfection, Specialty Chem.1987,7:178-86.
    [57]M. JANOSZ-RAJCZYK, E. WISNIOWSKA, Leaching of Organic and Inorganic Micropollutants from Chemically Stabilized Sewage Sludge—OFMSW Mixtures[J], Chem. Pap.2005,59(6b):453-457
    [58]Lewis, R. J. Sax's., Dangerous Properties of Industrial Materials.9th ed. Volumes 1~3.New York, NY:Van Nostrand Reinhold,1996:2611
    [59]黎如尧,吴清平,过氧乙酸稳定方法研究进展[J],广东化工,2007,34(3):64—65
    [60]Alasri A, Roques C, Michel G, Cabassud C, Aptel P. Bactericidal properties of peracetic acid and hydrogen peroxide, alone and in combination, and chlorine and formaldehyde against bacterial water strains, Canadian Journal of Microbiology, 1992,38:635-42.
    [61]孙宝国,徐立新,过醋酸在造纸工业中的应用[J],造纸科学与技术,2004(2):37-41
    [62]Vineyard M K, Moison R L, Budde F E, Continuous process for on-site and on-demand production of aqueous peracetic acid[P], US Patent 7012154,2006
    [63]Saha M S, Nishiki Y, Furuta T, A new method for the preparation of peroxyacetic acid using solid superacid catalysts[J], Tetrahedron Letters,2003,44:5535-5537
    [64]Musante R L, Grau R J, Baltanas M A, Kinetic of liquid-phase reactions catalyzed by acidic resins:the formation of peracetic acid for vegetable oil epoxidation[J], Applied Catalysis A:General,2000,197(1):165-173
    [65]Tennakoon, C L K, McKenzie K S, Will M, Electrochemical method for preparing peroxy acids[P], US Patent 6949178,2005
    [66]Gehr R, Cochrane D, French M., Peracetic acid as a disinfectant for municipal wastewaters:encouraging performance results from physicochemical as well as biological effluents, Proc of the US water environment federation disinfection conference,2002
    [67]Yuan Z, Ni Y, van Heiningen ARP. Kinetics of peracetic acid decomposition:Part Ⅰ. Spontaneous decomposition at typical pulp bleaching conditions [J], Can J Chem. Eng.,1997,75:37-41
    [68]Monarca S, Feretti D, Zerbini I, Zani C, Alberti A, Richardson SD, Studies on mutagenicity and disinfection by-products in river drinking water disinfected with peracetic acid or sodium hypochlorite[J], Proc of IWA world conference, Berlin, Germany,2001
    [69]Monarca S, Richardson SD, Feretti D, Grottolo M, Thruston AD, Zani C, Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. Environ. Toxicol. Chem.2002,21:309-18
    [70]Meylan W. M., Howard P.H., Computer estimation of the Atmospheric gas-phase reation rate of organic compounds with hydroxyl radicals and ozone Chemosphere, 1993,26,:2293-2299
    [71]钱永,危险化学品过氧乙酸的使用及其废弃物处置[J],环境保护,2004,2:22—24
    [72]薛广波,灭菌·消毒·防腐·保藏[M],北京:人民卫生出版社,1993
    [73]Baldry MGC., Fraser JAL., Disinfection with peroxygens, In:Payne KR, editor, Industrial biocides. New York, NY, USA:Wiley; 1988:91-116.
    [74]Leaper S. Synergistic, killing of spores of Bacillus subtilis by peracetic acid and alcohol[J], Food Technol.,1984,19,3:55-60.
    [75]韦多,涂瀛,施同舟,张桂香,李爱莲,过氧乙酸对枯草杆菌黑色变种芽胞杀灭机理的研究[J],消毒与灭菌,1986,3(1):1-4
    [76]Colgan S, Gehr R., Disinfection[J], Water Environ Technol.,2001,13:29-33
    [77]顾平,过氧乙酸消毒二级出水[J],中国给水排水,1992,8:46-48
    [78]Lazarova V, Janex ML, Fiksdal L, Oberg C, Barcina I, Pommepuy M., Advanced wastewater disinfection technologies:short and long term efficiency[J], Water Sci Technol 1998;38:109-17
    [79]Sanchez-Ruiz C, Martinez-Royano S, Tejero-Monzon I, An evaluation of the efficiency and impact of raw wastewater disinfection with peracetic acid prior to ocean discharge. [J], Water Sci Technol 1995,32:159-66
    [80]I. Z. Shirgaonkar, A. B. Pandit, Degradation of aqueous solution of potassium iodide and sodium cyanide in the presence of carbon tetrachloride[J], Ultrasonics Sonochemistry,1997,4(3):245-253
    [81]杨惠森,卢樱,孟庆华,张栓,张光辉,过氧乙酸的制备及其含量测定[J],青海大学学报(自然科学版),2004,22(1):68-70
    [82]张曼平,水质分析[M],北京:北京大学出版社,1990:272-275
    [83]《水和废水监测分析方法指南》编委会,水和废水监测分析方法指南(上册)[M],北京:环境科学出版社,1990:230-235
    [84]北京师范大学,华中师范大学,南京师范大学,无机化学(上册)[M],北京:高等教育出版社,1992.:455-456
    [85]王东升,卓超,吴达俊,过氧乙酸的制备及其在药物合成中的应用[J],合成化学,2000,8(1):22-28.
    [86]Spyros G. Pavlostathis, A. M. ASCE, James M. Gossett, Preliminary Conversion Mechanisms in Anaerobic Digestion of Biological Sludge [J], Journal of Environmental Engineering,1988,114(3):575-592
    [87]C. P. Chu, D. J. Lee, C.S.You, J. H. Tay, "weak" ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids[J], Water Research, 2002,36:2681-2688
    [88]T. Lendormi, C. Prevot, F. Doppenberg, M. Sperandio, H. Debellefontaine, Wet oxidation of domestic sludge and process integration:the Mineralis process[J], Water Science and Technology,2001,44(10):163-169
    [89]J. Barlindhaug, H. Degaard, Thermal hydrolysate as a carbon source for denitrification[J], Water Science and Technology,1996,33(12):99-108
    [90]H. C. Flemming, J. Wingender, Relevance of microbial extracellular polymeric substances (EPSs)-part1:Structural and ecological aspects[J], Water Science and Technology,2001,43(6):1-8
    [91]杨金美,张光明,王伟,超声波强化一次污泥沉降与脱水性能的研究[J],应用声学,2006,25(4):206-211
    [92]Wagner M, Brumelis D, Gehr R, Disinfection of wastewater by hydrogen peroxide or peracetic acid:Development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent[J], Water Environ Res,2002,74:33-50.
    [93]申丘澈,民取真,中国污水污泥处理[M],北京:中国建筑工业出版社,1981.12
    [94]王洪臣,城市污水处理厂运行控制与维护管理[M],北京:科学出版社
    [95]国家环境保护总局,城镇污水处理厂污染物排放标准,2002
    [96]C. P. Chu, Bea-ven Chang, G. S. Liao, D. S. Jean, D. J. Lee, observations on changes in ultrasonically treated waste activated sludge[J], Water Research, 2001,35(4):1038-1046
    [97]周群英,高廷耀,环境工程微生物学(第二版)[M],北京:高等教育出版社,2000
    [98]E. Neyens, J. Baeyens, C. Creemers, Alkaline thermal sludge hydrolysis[J], Hazardous Materials,2003,97(1-3):295-314
    [99]Vallom, J. K., McLoughlin A. J., Lysis as a factor in sludge flocculation[J] Water Research,1984,18(12):1523-1528
    [100]Tanaka S., Kobayashi T., Kamiyama K., Bikdan M. N., Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge[J], Wat. Sci. Tech.,1997,35(8):209-215
    [101]Yu H.-Q., Zheng X.-J., Hu Z.-H., Gu G.-W., High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor[J], Wat. Sci. Tech., 2003,48(4):69-75
    [102]周德庆,微生物教程[M],北京:高等教育出版社,2002
    [103]Gujer W., Zehnder A. J. B, Conversion Processes in Anaerobic Digestion[J], Water Science Technology,1983,15:127-167
    [104]马经国,新能源技术[M],南京:江苏科学技术出版社,1992
    [105]V. Nallathambi Gunaseelan, Anaerobic digestion of biomass for methane production:a review[J], Biomass and Bioenergy,1997,13(1-2):83-114
    [106]赵锐,刘丹,李启彬,黄明星,胡香芳,污泥能源化的前景探讨[J],安徽农业科学,2008,36(14):6004-6007
    [107]魏学锋,刘建平,生物质燃料的利用现状与展望[J],云南环境科学,2005,24(2):16-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700