炼化废液热解与燃烧动力学及结渣形成过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工、冶金、造纸等行业在生产过程中产生大量可生化性低、毒性高、成分复杂的有机废液;如果这些废液未经任何处理而直接排放到环境中,会对生态环境造成严重污染;而采用常规的生化处理手段也很难达到彻底、安全的处理目的。焚烧法作为一种能真正实现资源化、减量化和无害化的处理方式,已经越来越广泛地应用于高浓度含盐工业有机废液的处理中。但是在实际应用中,废液焚烧处理仍面临着一系列的技术和操作难题,这主要体现在:(1)废液成分的复杂性以及各组分含量的波动容易引起焚烧过程的不稳定,从而使得废液中有毒有害物质不能完全分解、降解;同时焚烧过程的波动也容易引起二次污染物(如NOX、SO,)排放的增大,从而再次对环境产生危害。(2)由于生产过程的带入,废液中含有的不可燃无机物质在高温燃烧区释放、转变形成了具有独特物理状态和化学性质的灰形成组分,这些灰形成组分通过高温烟气的夹带进入余热回收通道,从而在受热面(如换热管表面)黏附、累积,形成了能够降低换热效率、引起烟道堵塞甚至停炉的积灰/结渣物,增加了设备运行的非安全因素。
     本文以典型化工废液为研究对象,利用实验分析手段和数值计算方法,对化工废液焚烧过程可能出现的技术和操作问题进行深入研究,主要的研究内容和成果如下:
     (1)利用热分析法研究了典型化工废液的热解和燃烧特性,并建立了相应的反应动力学模型。结果表明,化工废液具有良好的点火性能,提高升温速率能够改善挥发分的综合释放特性;也能够增强化工废液燃烧的稳定性和燃尽性,从而提高综合燃烧性能。无论热解还是燃烧,在挥发分析出阶段,化学反应的进程与化工废液自身的物性参数有关,而与所处的环境气氛关系不大,热解和燃烧反应的动力学参数比较接近,随着升温速率的增大,挥发分析出阶段的反应活化能逐渐降低;而在反应后期,热解和燃烧反应的活化能均随着升温速率的升高而逐渐增大,说明需要通过较高的反应温度激发并维持;在固定碳燃烧阶段,活化能则再次表现出随着升温速率的提高而降低的特性。
     (2)采用XRF、XRD、SEM-EDS、AFT以及STA等实验方法对化工废液焚烧装置典型位置的积灰/结渣物进行了系统分析,获得了灰组分中典型矿物质元素沿烟气流动的沉积分布特征,不同环境下可能出现的矿物质转化和微观形貌改变现象,以及积灰/结渣物在升温过程中的灰熔融特性。结果表明:高温段沉积物总体呈层状结构,沉积粒子的外形由于聚集、烧结的发生而极不规则,主要矿物质相为Na2SO4、NiO和Fe2O3;随着烟气温度的降低,中温段沉积物的微观形貌呈晶枝生长特征,主要矿物质相为低熔点共晶体Na3Fe(SO4)3和Na2Ni(SO4)2·4H2O,并出现了高温腐蚀现象;而在低温段,沉积物呈熔融、熔合特征,主要矿物质为典型的低温腐蚀产物Na3H(SO4)2。灰熔融实验显示:积灰/结渣物的熔融温度沿烟气流动方向呈现了先增长继而逐渐下降的趋势;而根据同步热分析结果,由于中、低温段积灰/结渣物的熔融现象首先发生于含量较多、熔点更低的共晶体矿物质,因此其熔融过程的温度范围在650-710℃之间,比高温段积灰/结渣物的熔融吸热温度范围提前200℃左右。
     (3)在对典型化工废液所完成的热重实验基础上,对1台工业规模化工废液焚烧装置建立了三维数值计算模型,对炉内复杂的物理化学反应过程所涉及的相关模型进行了介绍和讨论,分析了关键参数对炉内湍流流动、燃烧和传质传热过程以及NOx和SOx的形成过程、分布情况的影响。结果表明:无论烟气流动流线还是燃烧粒子运动轨迹,均表现出复杂的湍流反应流特征,能够促进废液粒子与燃烧空气的混合,确保废液中有毒有害物质的充分分解。综合考虑化工废液的燃尽特性和NOx、SOx的排放特征,认为过量空气系数为1.25时为最佳燃烧工况,此时烟气在焚烧炉内的平均驻留时间为5.80s,废液粒子的平均驻留时间为5.51s,与烟气的驻留时间相当;同时焚烧装置出口附近的NOx排放浓度较低,SOx排放浓度也处于可接受范围。
     (4)分别利用热动力平衡模拟软件FactSage和同步热分析法获得了典型化工废液焚烧产生的富(碱)盐飞灰沉积物的熔融曲线,并分析了两个曲线在评价富(碱)盐飞灰粒子黏附过程的合理性。同时建立了余热锅炉二维数学模型,提出了适用于富(碱)盐型飞灰粒子的黏附沉积模型,预测了不同运行工况下飞灰粒子的沉积、分布特性以及飞灰沉积物对余热锅炉换热过程的影响;通过对典型位置的沉积物进行取样和现场测量,验证本文提出的飞灰沉积模型的可靠性,从而为该类型废液焚烧装置的稳定、安全运行提供有益的参考。粒子尺寸是影响沉积分布的主要因素,大粒子在惯性作用下主要沉积于凝渣管排迎风侧,而小粒子由于受到热泳、湍流波动的影响能够沉积于换热管的迎风和背风侧。
Industries, such as petroleum refineries, petrochemical plants, as well as pulp and paper mills are a major anthropogenic source of hazardous industrial wastewater, which can pose serious and wide-ranging effects to the environment and human health. The incineration method is a well established technology which is often used to dispose industrial wastewater with highly toxicity, poor biodegradability, and complex composition. However, in actual applications, wastewater incineration treatment still faces many technical challenges, which include:(1) Owing to the complexity of chemical compositions and fluctuation of contents, wastewater incineration process is usually not stable, and then it can lead to incomplete thermal degradation of hazardous organic substances, even result in an undesirable increase in emissions of secondary pollutants.(2) Release and transformation of incombustible inorganic substances during wastewater incineration form a large number of ash-forming species which can cause some severe operation-related problems, such as fouling and slagging, which lead to low heat transfer and can, in serious cases, even result in unscheduled shutdown.
     In the present work, experimental analysis and numerical studies have been performed to investigate such technical difficulties during wastewater incineration process in order to obtain some useful mechanism conclusions, and they are:
     (1) Thermogravimetric analysis has been employed to investigate pyrolysis and combustion characteristics of the typical petrochemical industrial wastewater (PIW) and to establish the kinetic models of reactions. The results indicate that PIW is easy to achieve its ignition, and high heating rate enhances the stability of wastewater pyrolysis and combustion, furthermore improve synthetic combustion performance. The physical properties of wastewater have important role on reaction progress for both pyrolysis and combustion; thus, the kinetic parameters of pyrolysis and combustion are somehow similar. With increasing in heating rate, the activation energy of devolatilization stage decreases gradually, while the activation energy of the second devolatilization stage increases. Furthermore, the activation energy of fixed carbon combustion stage decreases with increasing heating rate.
     (2) Ash deposits characterization has been performed to investigate ash transformation and deposition behavior in a large-scale PIW incineration plant using XRF, SEM-EDS, and XRD for elemental composition, morphology, and mineralogy. The results show that this volatile element has a dominated contribution to form varied ash deposits in a wide temperature range. At high temperature section, ash deposits show a typical layer structure with major minerals of Na2SO4、NiO和Fe2O3. In the intermediate temperature range, eutectic mixtures such as Na3Fe(SO4)3and Na2Ni(SO4)2·4H2O which are temperature-dependent are formed in the molten phase and an "evolving" branched structure which indicates the formation of sintered deposits and high temperature corrosion is detected. Acidic salt sodium sesquisulfate is generated at low temperatures and should be responsible for low temperature corrosion. In addition, ash fusion tests (AFTs) show that ash fusion temperatures increase from sample1to sample2first, and then decrease gradually. Simultaneous thermal analysis (STA) indicates that typical melting process of ash samples collected at intermediate-and low-temperature sections is in a temperature range from650-710℃, which is about200℃lower than that of ash sample collected at high-temperature section. It can be explained by the fact that ash deposits at intermediate-and low-temperature sections have a high level of eutectic mixture whose melting temperature is much lower than each component.
     (3) The characteristics of the flow, combustion, temperature and NOx/SOx emissions in a large-scale PIW incineration plant have been numerically studied using FLUENT6.3.26. The results show that both air streamlines and combusting particle trajectories illustrate very complicated three-dimensional flow characteristics which promote the mixing of the air and combusting particles, and enhance thermal degradation of hazardous organic substances. On the basis of burn out characteristic as well as NOx and SOx emissions, the optimal operating condition is at ER=1.25. The average residence time of combusting particles and combustion air is5.80s and5.51s, respectively. Meanwhile, NOx emissions at the outlet of incineration plant are also relatively low and SOx emissions are at an acceptable level.
     (4) The melting curves of ash particles rich in alkali salts have been obtained by using FactSage thermochemical software and databases as well as XRD coupled with STA. And then numerical simulations of characteristics of ash particle deposition and distribution in an industrial-scale HRSG of the wastewater incinerator have been performed using the proposed numerical deposition model. Field measurements and ash samplings from an industrial-scale HRSG of the wastewater incinerator have been used to validate the model. The predicted results under different operating conditions are in good agreement with the measured data. The results show that ash deposition and distribution have significant particle size and temperature dependence, and high temperature will accelerate ash particle deposition in the furnace.
引文
[1]中华人民共和国环境保护部.2010年中国环境状况公报[EB/OL].(2011-06-03)http://jcs.mep.gov.cn/hjzl/zkgb/.
    [2]中华人民共和国国家统计局.各行业工业废水排放及处理情况(2009年)[EB/OL].http://www.stats.gov.cn/tjsj/qtsj/hjtjzl/index.htm.
    [3]马静颖.含盐高浓度有机废液蒸发结晶及流化床焚烧处理研究[D].杭州:浙江大学,2006.
    [4]邹家庆.工业废水处理技术[M].北京:化学工业出版社,2003.
    [5]王国华,任禾运.工业废水处理工程设计与实例[M].北京:化学工业出版社,2005.
    [6]Svoboda J. A realistic description of the process of high-gradient magnetic separation [J]. Minerals Engineering,2001,14(1):1493-1503.
    [7]姚晔栋,钱学玲,李道棠,等.高梯度磁分离法处理含有废水[J].上海交通大学学报,2003,37(11):1791-1794.
    [8]陈惠超,赵长遂,李永旺,等.化工有机废液循环流化床焚烧NO,排放特性[J].化工学报,2007,58(1):227-232.
    [9]池涌,王波,严建华,等.有机危险废液焚烧处理技术[J].电站系统工程,2006,22(6):8-10.
    [10]Dempsey C R, Oppelt E T. Incineration of hazardous wastes:A critical review update [J]. Journal of the Air & Waste Management Association,1993,43:25-73.
    [11]Lee C C, Huffman G L. Medical waste management/incineration [J]. Journal of Hazardous Materials,1996,48(1-3):1-30.
    [12]Wang L C, Wang I C, Chang J E, et al. Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater [J]. Journal of Hazardous Materials,2007,148(1-2):296-302.
    [13]Saxena S C, Jotshi C K. Management and combustion of hazardous wastes [J]. Progress in Energy and Combustion Science,1996,22(5):401-425.
    [14]Ehrhardt K, Ehret A, Leuckel W. Experimental study on the dependence of burnout on the operation conditions and physical properties in wastewater incineration [J]. Symposium (International) on Combustion,1998,27(1):1293-1299.
    [15]吕宏俊,郭和民.焚烧法处理有机废液的工艺选择[J].中国环保产业,2005,(12):36-38.
    [16]Doolittle C, Woodhull J. Venkatesh M. Managing emissions during hazardous-waste combustion [J]. Chemical Engineering,2002,109(13):50-57.
    [17]徐茂蓉.高浓度有机废液焚烧二次污染物排放特性研究[D].杭州:浙江大学,2005.
    [18]张微.废液焚烧炉燃烧过程及污染物排放模拟[D].大连:大连理工大学,2007.
    [19]耿向东.丙烯腈装置焚烧炉余热回收系统积灰分析[J].石油化工设备技术,2006,27(3):12-15.
    [20]Veranth J M, Silcox G D, Pershing D W. Numerical modeling of the temperature distribution in a commercial hazardous waste slagging rotary kiln [J]. Environmental Science & Technology,1997,31(9),2534-2539.
    [21]Sharifah A S A K, Abidin H Z, Sulaiman M R, et al. Combustion characteristics of Malaysian municipal solid waste and predictions of air flow in a rotary kiln incinerator [J]. Journal of Material Cycles and Waste Management,2008,10 (2):116-123.
    [22]兰泽全.煤和黑液水煤浆玷污结渣机理及灰沉积动态特性研究[D].杭州,浙江大学,2004.
    [23]Bryers R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer due to impurities in steam-raising fuels [J]. Progress in Energy and Combustion Science 1996,22(1): 29-120.
    [24]陈晓平.赵长遂,沈来宏,等.流化床焚烧技术在有机废液无害化处理领域的应用[J].锅炉技术,2001,32(9):25-28.
    [25]李晓东,吕宏俊,徐茂蓉,等.流化床焚烧处理有机浓缩废液的结焦结渣特性[J].化工学报,2005,56(11):2166-2171.
    [26]Bie R, Li S, Zhao Y, et al. Investigation on the control of agglomeration during fluidized-bed incineration of wastewater containing alkali metal salts [J]. Energy Fuels,2009,23 (9): 4304-4310.
    [27]Fang M, Yang L, Chen G, et al. Experimental study on rice husk combustion in a circulating fluidized bed [J]. Fuel Processing Technology,2004,85(11):1273-1282.
    [28]Armesto L. Bahillo A, Veijonen K, et al. Combustion behaviour of rice husk in a bubbling fluidised bed [J]. Biomass and Bioenergy,2002,23(2):171-179.
    [29]金保升,孙志翱,章名耀,等.棉秆在循环流化床中燃烧特性的实验研究[J].中国电机工程学报,2008.28(8):99-104.
    [30]Tarelho L A C, Neves D S F, Matos M A A. Forest biomass waste combustion in a pilot-scale bubbling fluidized bed combustor [J]. Biomass and Bioenergy,2011,35(4):1511-1523.
    [31]Gupta S. Sahajwalla V. Wood J. Simultaneous Combustion of Waste Plastics with Coal for Pulverized Coal Injection Application [J]. Energy Fuels,2006,20 (6):2557-2563.
    [32]孙保民,孙佰仲,王擎,等.油页岩和半焦着火特性实验研究[J].中国电机工程学报,2008,28(26):59-64.
    [33]Khiari B, Marias F, Zagrouba F, et al. Analytical study of the pyrolysis process in a wastewater treatment pilot station [J]. Desalination,2004,167(15):39-47.
    [34]别如山,樊庆锌,梁志华.含稀硝酸己二胺有机废水焚烧时的NOx排放特性[J].化工学报,2002,53(9):989-993.
    [35]别如山,李诗媛,吕响荣.含苯胺有机废液在流化床中焚烧NOx的排放特性[J].哈尔滨工业大学学报,2007.39(1):119-123.
    [36]Font R, Fullana A, Conesa J. Kinetic models for the pyrolysis and combustion of two types of sewage sludge [J]. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):429-438.
    [37]Li X G, Lv Y, Ma B G, et al. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal [J]. Bioresource Technology,2011, 102(20):9783-9787.
    [38]Otero M, Calvo L F, Gil M V. Co-combustion of different sewage sludge and coal:A non-isothermal thermogravimetric kinetic analysis [J]. Bioresource Technology,2008,99(14): 6311-6319.
    [39]Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals:A thermogravimetric analysis [J]. Applied Energy,2010,87(1):141-148
    [40]Aboyade A O, Hugo T J, Carrier M, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere [J]. Thermochimica Acta, 2011,517(1-2):81-89.
    [41]Mendez A, Fidalgo J M, Guerrero F. Characterization and pyrolysis behaviour of different paper mill waste materials [J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):66-73.
    [42]Liao Y, Ma, X. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge [J]. Applied Energy,2010,87(11):3526-3532.
    [43]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72-76
    [44]周俊虎,平传娟,杨卫娟,等.混煤燃烧反应动力学参数的热重研究[J].动力工程,2005,25(2):207-210.
    [45]闵凡飞,张明旭.热分析在煤燃烧和热解及气化动力学研究中的应用[J].煤炭转化,2004,27(1):9-12.
    [46]姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究[J].中国电机工程学报,2000,20(6):71-74.
    [47]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,31(4):311-316.
    [48]赵增立,李海滨,吴创之,等.蔗渣的热解与燃烧动力学特性研究[J].燃料化学学报,2005,33(03):314-319.
    [49]李社锋,方梦祥,舒立福,等.利用分布活化能模型研究木材的热解和燃烧机理[J].燃烧科学与技术,2006,12(6):535-539.
    [50]杨海平.油棕废弃物热解的实验及机理研究[D].武汉:华中科技大学.2005.
    [51]李理,阴秀丽,吴创之,等.生物油热解及燃烧特性分析[J].太阳能学报,2008,29(6):733-737.
    [52]姚伯元,窦智峰,黄广民,等.椰壳、椰壳渣与脱灰椰壳渣热解及热解动力学[J].化工学报,2007,58(5):1210-1214.
    [53]廖艳芬,马晓莤.城市污水污泥燃烧特性和动力学特性分析[J].燃料化学学报,2009,37(3):296-301.
    [54]何必繁,王里奥,黄川.重庆城市污泥燃烧及动力学特性分析[J].中国电机工程学报,2010,30(35):32-37.
    [55]李春雨,蒋旭光,费振伟,等.热重-红外联用分析制革污泥的燃烧特性[J].化工学报,2010,61(5):1301-1306.
    [56]李春雨,蒋旭光,安春国,等.农药生产废渣燃烧/热解特性研究[J].中国电机工程学报,2009,29(23):45-50.
    [57]王兴润,金宜英,等.应用TGA-FTIR研究不同来源污泥的燃烧和热解特性[J].燃料化学学报.2007,35(1):27-31.
    [58]Tian L, Ahmadi G. Particle deposition in turbulent duct flows-comparisons of different model predictions [J]. Aerosol Science,2007,38(2007):377-397.
    [59]倪建军.气流床气化炉及其辐射废锅内的多相流动、传热与熔渣行为研究[D].上海:华东理工大学.2010.
    [60]Yang Y B, Yamauchi H, Nasserzadeh V. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed [J]. Fuel,2003, 82(18):2205-2221.
    [61]Yang Y B, Sharifi V N, Swithenbank J. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds [J]. Fuel,2004, 83(11-12):1553-1562.
    [62]马晓莤,刘国辉,余昭胜.基于CFD的城市生活垃圾焚烧炉燃烧优化[J].华南理工大学学报(自然科学版),2008,36(2):101-106.
    [63]林海,马晓茜,余昭胜.大型城市生活垃圾焚烧炉的数值模拟[J].动力工程学报,2010,30(2):128-132.
    [64]阎常峰.陈勇,李海滨,等.废木料焚烧炉燃烧过程的数值模拟[J].燃料化学学报,2004,32(6):705-710.
    [65]Yang Y, Reuter M A. Hartman D T M. CFD Modelling for control of hazardous waste incinerator [J]. Control Engineering Practice,2003,11(1):93-101.
    [66]Yang Y, Pijnenborg M J A, Reuter M A. Analysis of transport phenomena in a rotary-kiln hazardous waste incinerator [J]. Progress in Computational Fluid Dynamics,2007,7(1):25-39.
    [67]Fenimore C P. Formation of nitric oxide in premixed hydrocarbon flames [J]. Symposium (International) on Combustion,1971,13(1):373-380.
    [68]Choi C R, Kim C N. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler [J]. Fuel,2009,88(9): 1720-1731.
    [69]Chigier N A, Beer J M, Grecov D, et al. Jet flames in rotating flow fields [J]. Combustion and Flame,1970,14(2):171-179.
    [70]Mereb J B, Wendt J O L. Air staging and reburning mechanisms for NO* abatement in a laboratory coal combustor [J]. Fuel,1994,73(7):1020-1026.
    [71]Glass J W, Wendt J O L. Mechanisms governing the destruction of nitrogeneous species during the fuel rich combustion of pulverized coal [J]. Symposium (International) on Combustion, 1982,19(1):1243-1251.
    [72]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion [J]. Progress in Energy and Combustion Science,1989,15(4):287-338.
    [73]Winter F, Wartha C, Loffler G, et al. The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions [J]. Symposium (International) on Combustion,1996,26(2):3325-3334.
    [74]Winter F, Wartha C, Hofbauer H. NO and N2O formation during the combustion of wood, straw, malt waste and peat [J]. Bioresource Technology,1999,70(1):39-49.
    [75]郭永红,孙保民,刘彤,等.褐煤的超细粉再燃中NOx的生成与还原的数值模拟[J].中国电机工程学报,2005,25(9):94-98.
    [76]方庆艳,汪华剑,陈刚,等.超超临界锅炉磨煤机组合运行方式优化数值模拟[J].中国电机工程学报,2011,31(5):1-6.
    [77]徐璋.超细粉再燃降低NOx排放的热态试验研究与数值模拟[D].杭州:浙江大学,2003.
    [78]楼波,罗玉和,马晓茜,等.回转窑内生物质高温空气燃烧NO,生成模型与验证[J].中国电机工程学报,2007,27(29):68-73.
    [79]刘承运,陆强,孙书生,等.稻壳生物油的燃烧及污染物排放特性研究[J].燃料化学学报,2008,36(5):577-582.
    [80]郝吉明,马广大,王书肖.大气污染控制工程[M].北京:高等教育出版社,2010年.
    [81]Christensen K A, Stenholm M, Livbjerg H. The formation of submicron aerosol particles, HC1 and SO2 in straw-fired boilers [J]. Journal of Aerosol Science,1998,29(4):421-444.
    [82]Sippula O, Hokkinen J, Puustinen H, et al. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers [J]. Atmospheric Environment,2009,43 (32):4855-4864.
    [83]Dayton D C, Jenkins B M, Turn S Q, et al. Release of inorganic constituents from leached biomass during thermal conversion [J]. Energy Fuels,1999,13(4):860-870.
    [84]Knudsen J N, Jensen P A, Dam-Johansen K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass [J]. Energy Fuels,2004,18(5):1385-1399.
    [85]兰泽全,曹欣玉,周俊虎,等.两种模糊数学方法在锅炉结渣特性判别上的应用[J].电站系统工程,2003,19(2):7-10.
    [86]米铁,陈汉平,吴正舜,等.生物质灰化学特性的研究[J].太阳能学报,2004,25(2):236-241.
    [87]牛艳青,谭厚章,王学斌,等.辣椒秆灰熔融特性分析[J].中国电机工程学报,2010,30(11):69-72.
    [88]Wall T F. Mineral matter transformations and ash deposition in pulverised coal combustion [J]. Symposium (International) on Combustion,1992,24(1):1119-1126
    [89]Hansen L A, Frandsen F J, Dam-Johansen K, et al. Quantification of fusion in ashes from solid fuel combustion [J]. Thermochimica Acta,1999,326 (1-2):105-117
    [90]Tomeczek J, Palugniok H. Kinetics of mineral matter transformation during coal combustion [J]. Fuel,2002,81(10):1251-1258.
    [91]Theis M, Mueller C, Skrifvars B-J, et al. Deposition behaviour of model biofuel ash in mixtures with quartz sand. Part 1:Experimental data [J]. Fuel,2006,85(14-15):1970-1978.
    [92]Mueller C, Selenius M, Theis M, et al. Deposition behaviour of molten alkali-rich fly ashes-development of a submodel for CFD applications [J]. Proceedings of the Combustion Institute,2005, 30(2):2991-2998.
    [93]饶甦.曹欣玉,兰泽全,等.煤灰矿物质在炉内的迁徙分布规律及其对沾污结渣的影响[J].燃料化学学报2004,32(04)395-399.
    [94]Kupka T, Mancini M, Irmer M, et al. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel [J]. Fuel,2008.87(12):2824-2837
    [95]Mikkanen P, Kauppinen E I, Pyykonen J, et al. Alkali salt ash formation in four Finnish industrial recovery boilers [J]. Energy Fuels,1999,13 (4):778-795
    [96]Ahn Y C. Lee J K. Physical, chemical, and electrical analysis of aerosol particles generated from industrial plants [J]. Journal of Aerosol Science,2006,37(2):187-202.
    [97]Frederick Jr. W J, Vakkilainen E K. Sintering and structure development in alkali metal salt deposits formed in Kraft recovery boilers [J]. Energy Fuels,2003,17 (6):1501-1509.
    [98]Frederick Jr. W J, Vakkilainen E K, H. N. Tran, et al. The conditions for boiler bank plugging by sub micrometer sodium salt (fume) particles in Kraft recovery boilers [J]. Energy Fuels, 2004,18 (3):795-803.
    [99]Liu H, Tan H, Liu Y, et al. Study of the layered structure of deposit in a biomass-fired boiler (Case study) [J]. Energy Fuels,2011,25 (6):2593-2600.
    [101]Pophali A, Eslamian M, Kaliazine A, et al. Breakup mechanisms of brittle deposits in Kraft recovery boilers-a fundamental study [J]. TAPPI Journal.2009.8 (9):4-9.
    [102]赵光杰,李海滨,赵增立,等.垃圾焚烧飞灰基本特性研究[J].燃料化学学报,2005,33(2):184-188.
    [103]郭玉文,干伟.高兴保,等.垃圾焚烧飞灰颗粒的微观形态特征及能谱研究[J].燃料化学学报,2005,33(6):703-707.
    [104]赵晓辉.基于矿物质赋存形态与转变过程的灰渣沉积研究[D].杭州:浙江大学,2007.
    [105]刘洋,牛艳青,谭厚章,等.生物质锅炉二级过热器结渣恶化机制分析[J].中国电机工程学报,2011,31(14):8-12.
    [106]Richards G H, Slater P N, Harb J N. Simulation of ash deposit growth in a pulverized coal-fired pilot scale reactor [J]. Energy Fuels,1993,7(6):774-781.
    [107]Wang H F, Harb J N. Modeling of ash deposition in large-scale combustion facilities burning pulverized coal [J]. Progress in Energy and Combust Science,1997,23(3):267-282.
    [108]Zhou H, Jensen P A, Frandsen F J. Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler[J]. Fuel,2007,86 (10-11):1519-1533.
    [109]Kaer S K. Numerical investigation of ash deposition in straw-fired boilers-Using CFD as the framework for slagging and fouling predictions [D]. Denmark:Aalborg University.2001.
    [110]Kreutzkam B, Wieland C, Spliethoff H. A novel code predicting ash formation during pulverised coal combustion to improve boiler deposition modelling [C]. Impacts of fuel quality on power production and environment, Lapland, Finland,2010.
    [111]Wieland C, Kreutzkam B, Balan G. Evaluation, comparison and validation of deposition criteria for numerical simulation of slagging [J]. Applied Energy,2012,93:184-192.
    [112]Kreutzkam B, Wieland C, Spliethoff H. Improved numerical prediction of ash formation and deposition using a novel developed char fragmentation model [J]. Fuel,2012,93,103-110.
    [113]Huang L Y, Norman J S, Pourkashanian M, et al. Prediction of ash deposition on superheater tubes from pulverized coal combustion [J]. Fuel,1996,75(3):271-279.
    [114]Degereji M U, Ingham D B, Ma L, et al. Prediction of ash slagging propensity in a pulverized coal combustion furnace [J]. Fuel,2011, http://dx.doi.Org/10.1016/j.fuel.2010.12.038.
    [115]Strandstrom K, Mueller C, Hupa M. Development of an ash particle deposition model considering build-up and removal mechanisms [J]. Fuel Processing Technology,2007,88(11-12): 1053-1060.
    [116]Fan J R, Zha X D, Sun P, et al. Simulation of ash deposit in a pulverized coal-fired boiler [J]. Fuel,2001,80(5):645-654.
    [117]Lee F C C, Lockwood F C. Modelling ash deposition in pulverized coal-fired applications [J]. Progress in Energy and Combustion Science,1998,25(2):117-132.
    [118]Costen P G, Lockwood F C, Siddique M M. Mathematical modeling of ash deposition in pulverized fuel-fired combustors [J]. Proceedings of the Combustion Institute,2000,28(2): 2243-2250.
    [119]Jokiniemi J K, Pyykonen J, Mikkanen P, et al. Modeling fume formation and deposition in Kraft recovery boilers [J]. Tappi Journal,1996,79(7):171-181.
    [120]Pyykonen J, Jokiniemi J, Jacobson T. Development of a prediction scheme for pulverised coal-fired boiler slagging [C]//Gupta R, Wall T, Baxter L L. Impact of Mineral Impurities in Solid Fuel Combustion,1999, Kluwer Academic/Plenum Publishers, New York:735-752.
    [121]Lee B E, Fletcher C A J, Shin S H, et al. Computational study of fouling deposit due to surface-coated particles in coal-fired power utility boilers [J]. Fuel,2002,81(15):2001-2008.
    [122]Walsh P M, Sarofim A F, Beer J M. Fouling of convection heat exchangers by lignitic coal ash [J]. Energy Fuels,1992,6 (6):709-715.
    [123]Rushdi A, Gupta R, Sharma A, et al. Mechanistic prediction of ash deposition in a pilot-scale test facility [J]. Fuel,2005,84(10):1246-1258.
    [124]Ma Z, Iman F, Lu P, et al. A comprehensive slagging and fouling prediction tool for coal-fired boilers and its validation/application [J].Fuel Processing Technology,2007,88(11-12): 1035-1043.
    [125]Tomeczek J, Waclawiak K. Two-dimensional modelling of deposits formation on platen superheaters in pulverized coal boilers [J]. Fuel,2009,88(8):1466-1471.
    [126]Mao T, Kuhn D C S, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces [J]. AlChE Journal,1997,43(9):2169-2179.
    [127]Forstner M, Hofmeister G, Joller M, et al. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers [J]. Progress in Computational Fluid Dynamics,2006,6(4-5): 248-261.
    [128]Schulze K, Scharler R, Telian M, et al. Advanced modelling of deposit formation in biomass furnaces-investigation of mechanisms and comparison with deposit measurements in a small-scale pellet boiler [C]. Impacts of fuel quality on power production and environment, Lapland, Finland.2010.
    [129]Thy P, Jenkins B M, Lesher C E. High-temperature melting behavior of urban wood fuel ash [J]. Energy Fuels,1999,13 (4):839-850.
    [130]Garba M U, Ingham D B, Ma L, et al. Prediction of potassium chloride sulfation and its effect on deposition in biomass-fired boilers [J]. Energy Fuels,2012.
    [131]刘亮.污泥混煤燃烧热解特性及其灰渣熔融性实验研究[D].长沙:中南大学,2011.
    [132]胡荣祖,高胜利.赵凤起,等.热分析动力学(第二版)[M].北京:科学出版社,2008.
    [133]Lu Q, Li W-Z, Zhu X-F. Overview of fuel properties of biomass fast pyrolysis oils [J]. Energy Conversion and Management,2009,50(5):1376-1383.
    [134]程志声.黑液加热处理一改善非木材纤维黑液的蒸发和燃烧性能[J].中国造纸,1995,14(3):22-26.
    [135]陆昌伟,奚同庚.热分析质谱法[M].上海:上海科学技术文献出版社,2002.
    [136]陈晓平,顾利锋,韩晓强,等.污泥及其与煤混合物的热解特性和灰熔融特性[J].东南大学学报,2008,38(6):1039-1043.
    [137]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature,1964, 201(1):68-69.
    [138]宁寻安,张凝,刘敬勇,等.造纸污泥混煤燃烧特性及动力学研究[J].环境科学学报,2011,31(7):1486-1492.
    [139]Vlaev L T, Markovska I G, Lyubchev L A. Non-isothermal kinetics of pyrolysis of rice husk [J]. Thermochimica Acta,2003,406(1-2):1-7.
    [140]Capart R, Khezami L, Burnham A K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose [J]. Thermochimica Acta,2004,417(1):79-89.
    [141]Cumming J W. Reactivity of coals via a weighted mean activation energy [J]. Fuel.1984, 63(10):1436-1440.
    [142]王爽,姜秀民,王宁,等.海藻生物质灰熔融特性分析[J].中国电机工程学报,2008,28(5):96-101.
    [143]Zbogar A, Frandsen F, Jensen P A, et al. Shedding of ash deposits [J]. Progress in Energy and Combustion Science,2009,35(1):31-56.
    [144]Fernandez M A, Martinez L, Segarra M, et al. Behavior of heavy metals in the combustion gases of urban waste incinerators [J]. Environmental Science& Technology,1992,26(5):1040-1047.
    [145]Phongphiphat A, Ryu C, Finney K N, et al. Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant[J]. Journal of Hazardous Materials,2011,186 (1): 218-226.
    [146]Fleig D, Andersson K, Normann F, et al. SO3 formation under oxyfuel combustion conditions[J]. Industrial & Engineering Chemistry Research,2011,50 (14):8505-8514
    [147]Manzoori A R, Agarwal P K. The fate of organically bound inorganic elements and sodium chloride during fluidized bed combustion of high sodium, high sulphur low rank coals [J]. Fuel,1992, 71(5):513-522.
    [148]Verhulst D, Buekens A, Spencer P J, et al. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces [J]. Environmental Science & Technology, 1995,30(1):50-56.
    [149]Koukouzas N, Hamalainen J, Papanikolaou D, et al. Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends [J]. Fuel,2007,86(14):2186-2193.
    [150]Lim A R. Study on the dynamics of NaHXO4 and Na3H(XO4)2 (X=S,Se) crystals by observation of the H and Na spin-lattice relaxations[J].Journal of Applied Physics,2009,105(4):1-5.
    [151]吴玉新,张建胜,王明敏,等.简化PDF模型对Texaco气化炉的三维数值模拟[J].化工学报,2007,58(9):2369-2374.
    [152]Zeng L, Li Z, Zhao G, et al. Numerical simulation of combustion characteristics and NOx emissions in a 300 MWe utility boiler with different outer secondary-air vane angles [J]. Energy Fuels, 2010,24 (10):5349-5358.
    [153]Jones W P, Whitelaw J H. Calculation methods for reacting turbulent flows:A review [J]. Combustion and Flame,1982,48(1),1-26.
    [154]Sazhin S S, Sazhina E M, Faltsi-Saravelou O, et al. The P-1 model for thermal radiation transfer:advantages and limitations [J]. Fuel,1996,75(3):289-294.
    [155]Guha A. Transport and Deposition of particles in turbulent and laminar flow [J]. Annual Review of Fluid Mechanics,2008,40(10):311-341.
    [156]Field M A. Rate of combustion of size-graded fractions of char from a low rank coal between 1200 K-2000 K [J]. Combustion and Flame,1969,13(2):237-252.
    [157]De Soete G G. Overall reaction rates of NO and N2 formation from fuel nitrogen [J]. Symposium (International) on Combustion,1975,15(1):1093-1102.
    [158]Liu H, Gibbs B M. Modeling of NO and N2O emissions from biomass-fired circulating fluidized bed combustors [J]. Fuel,2002,81(3):271-280.
    [159]Perera S A L, Faltsi-Saravelou O. SOx formation model for turbulent combustion applications [C]. The Third European Combustion Meeting 2007. Chania, Crete, April 11-13,2007.
    [160]Pallares J, Gil A, Cortes C, et al. Numerical study of co-firing coal and Cynara cardunculus in a 350 MWe utility boiler[J]. Fuel Processing Technology,2009,90(10):1207-1213.
    [161]Ryan Blanchard. Measurements and modeling of coal ash deposition in an entrained-flow reactor [D]. U.S.A.:Brigham Young University,2008.
    [162]Healy W M, Hartley J G, Abdelkhalik S 1. Comparison between theoretical-models and experimental-data for the spreading of liquid droplets impacting a solid-surface[J]. International Journal of Heat and Mass Transfer,1996,39(14):3079-3082.
    [163]Yoon S S, DesJardin P E, Presser C, et al. Numerical modeling and experimental measurements of water spray impact and transport over a cylinder [J]. International Journal of Multiphase Flow,2006,32(1):132-157
    [164]Aziz S D, Chandra S. Impact, recoil and splashing of molten metal droplets [J]. International Journal of Heat and Mass Transfer,2000,43(16):2841-2857.
    [165]DesJardin P E, Presser C, Disimile P J, et al. A droplet impact model for agent transport in engine nacelles. Proceedings of HOTWC-2002 12th Halon Options Technical Working Conference, Albuquerque, New Mexico, U.S.A., April 20-May 2,2002.
    [166]Johnson K L, Kendall K, Roberts A D. Surface energy and the Ccontact of elastic solids [J]. Proceedings of the Royal Society,1971,324(1558):301-313.
    [167]Walsh P M, Sayre A N, Loehden D O, et al. Deposition of bituminous coal ash on an isolated heat exchanger tube:Effects of coal properties on deposit growth [J]. Progress in Energy and Combustion Science,1990,16(4):327-345
    [168]Senior C L, Srinivasacher S. Viscosity of ash particles in combustion systems for prediction of particle sticking [J]. Energy Fuels,1995,9 (2):277-283.
    [169]Ohman M, Nordin A. Summary of recent results obtained from using the controlled fluidised bed agglomeration method [C].//Gupta R, Wall T, Baxter L L. Impact of Mineral Impurities in Solid Fuel Combustion,1999, Kluwer Academic/Plenum Publishers, New York:259-271.
    [170]Yan L, Gupta R P, Wall T F. The implication of mineral coalescence behavior on ash formation and ash deposition during pulverized coal combustion [J]. Fuel,2001,80(9):1333-1340.
    [171]Schulze K, Hofmeisterl G, Joeller M, et al. Development and evaluation of a flexible model for CFD simulation of ash deposit formation in biomass fired boilers[C]. Impacts of fuel quality on power production and environment, Palo Alto, CA, USA.2007.
    [172]Watt J D, Fereday F. Flow properties of slags formed from the ashes of British coals I. Viscosity of homogeneous liquid slags in relation to slag composition [J]. Journal of the Institute of Fuel,1969,42(1):99-103.
    [173]Urbain G, Cambier F, Deletter M, et al. Viscosity of silicate melts [J]. Transactions and Journal of the British Ceramic Society,1981:80(4),139-41.
    [174]Kondratiev A, Jak E. Predicting coal ash slag flow characteristics [J]. Fuel,2001,80(14): 1989-2000.
    [175]Zhang Y, Xu Z, Liu Y. Viscosity of hydrous rhyolitic melts inferred from kinetic experiments, and a new viscosity model [J]. American Mineralogist,2003,88(11-12):1741-1752.
    [176]Browning G J, Bryant G W, Hurst H J, et al. An empirical method for the prediction of coal ash slag viscosity [J]. Energy Fuels,2003,17 (3):731-737.
    [177]Huggins F E, Kosmack D A, Huffman G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams [J]. Fuel,1981,60(7):577-584.
    [178]Huffman G P, Huggins F E, Dunmyre G R. Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres [J]. Fuel,1981,60(7):585-597.
    [179]Conn R E, Austin L G. Studies of sintering of coal ash relevant to pulverized coal utility boilers.1. Examination of the Raask shrinkage-electrical resistance method [J]. Fuel,1984,63(12): 1664-1670.
    [180]Gray V R. Prediction of ash fusion temperature from ash composition for some New Zealand coals [J]. Fuel,1997,66, (9):1230-1239.
    [181]赵永椿,张军营,邵新宇,等.煤中矿物质定量灰熔融热分析方法[J].中国科学,2010,55(8):728-732.
    [182]Sandberg J, Sand U, Fdhila R B, et al. Measurements, theories and simulations of particle deposits on super-heater tubes in a CFB biomass boiler [J]. International Journal of Green Energy, 2006,3(1):43-61.
    [183]Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow [J]. Aerosol Science and Technology,1992,16 (4):209-226.
    [184]He C, Ahmadi G. Particle deposition with thermophoresis in laminar and turbulent duct flows [J]. Aerosol Science and Technology,1998,29 (6):525-546.
    [185]Ai W, Fletcher T H. Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane [C]. Proceedings of ASME Turbo Expo 2009:Power for Land, Sea and Air (GT2009), June 8-12,2009, Orlando, Florida, USA.
    [186]Zbogar A, Frandsen F J, Jensen P A, et al. Heat transfer in ash deposits:A modelling tool-box [J]. Progress in Energy and Combustion Science,2005,31(5-6):371-421.
    [187]Venturini P, Borello D, Hanjali K, et al. Modelling of particles deposition in an environment relevant to solid fuel boilers [J]. Appllied Thermal Engineering,2011, doi:10.1016/j.applthermaleng.2011.08.030.
    [188]Aerts P D J, Ragland K W. Pressurized downdraft combustion of woodchips [J]. The Combustion Institute,1991,23(1):1025-1032.
    [189]Westberg H M, Bystrom M, Leckner B. Distribution of potassium, chlorine, and sulfur between solid and vapor phases during combustion of wood chips and coal [J]. Energy Fuels,2008,17 (1):18-28.
    [190]李德付,赵亮,尹洪超.齐鲁石化丙烯腈厂废水焚烧炉余热锅炉改造方案研究[J].节能,2004,3:22-24.
    [191]张衍国,王亮,蒙爱红,等.垃圾焚烧炉受热面结渣试验研究[J].中国电机工程学报,2010,30(29):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700