基于匹配度的流线优化问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在宏观层面的城市及区域经济活动和微观层面的制造、贸易、消费等典型社会经济活动中,仓储、加工、运输、配送、包装、装卸搬运等物流活动的组织与需求方在物品数量、到达时间、物流费用等方面的需求构成了典型的物流供需网络,本论文将由若干特定的点、线和特定的权构成的物流供需网络称为流线网络.
     区别于传统物流网络,流线网络具有嵌套、多层、多级、多维、多准则等典型的超网络结构,它不仅反映了物流服务供给网络和需求网络自身的特征,还表示了物流服务供给网络与需求网络之间的关系.根据各类物流需求的网络特征,对物流的供应网络(能力和服务)进行优化,可以揭示典型物流活动的一般规律与特征,进而优化物流组织方案,满足客户需求,从而实现物流服务的本质,即用恰当的费用,在恰当的时间把恰当数量的恰当物品,经恰当的路线送到恰当的地点.
     首先,分别对制造、贸易、消费、城市及区域经济中存在的典型物流活动的特征、一般流线形式和流线的特点进行分析、归纳和总结,提炼流线网络的一般结构和数学描述,建立了流线网络的结构模型.在此基础上,分析了流线网络的基本结构、退化结构和矩阵描述以及统计特征、属性特征和权值复合等基本特征.
     其次,通过对物流服务供给与需求在时间、数量、费用等特征方面的分析,借鉴广义费用函数将时间、数量和费用统一当量,并给出了流线网络中节点和弧上的供需匹配度定义和数学描述,构建了供需匹配度模型.利用向量函数,将点、弧上的供需匹配向流线网络供需匹配进行了扩展.基于供需匹配度模型,构建了流线评价与选择模型,以配送中心区域设施布置为案例进行了验证.
     再次,建立了一般情形下以供需匹配度为目标函数、以能力和资源限制为约束条件的流线优化模型,以及考虑效益和效率等特殊情形下的流线优化模型.借鉴变分不等式模型与最优化问题的转换关系,分别给出了无约束和有约束两种情形下的变分不等式形式,并证明了解的存在性和唯一性.基于固定步长的Korpelevich投影算法,通过改进步长规则,设计了流线优化模型的求解算法.
     最后,用两个案例分别验证了流线优化模型及求解算法的可行性.案例一针对城市物流节点布局规模优化问题,应用流线网络结构模型描述了物流节点空间布局的流线网络形态,应用流线优化模型与Korpelevich投影算法,求解给出了比经验比较法更优的布局方案;案例二针对钢铁厂内物流运输组织优化问题,应用流线网络结构模型描述了厂内物流运输组织的网络形态,应用流线优化模型建立了厂内物流运输组织优化问题的数学描述,分别应用ILOG CPLEX软件、Korpelevich投影算法和流线优化模型求解算法对模型进行了求解,并对三种方法的优劣进行了比较.
     研究表明,流线网络是一类复杂的超网络,具有多级、多层、多属性的特征;流线网络供需匹配度可以较好地描述物流服务供给与需求的接近程度;流线优化模型是以供需匹配度为目标函数、以资源和能力限制为约束条件的非线性规划模型,其等价变分不等式形式存在唯一解;案例说明流线优化理论与方法可以解决典型物流优化问题.
     本论文提出的流线网络的结构模型为典型物流活动的描述及其优化提供了通用结构和研究平台,为描述和分析典型物流问题提供了一种新方法;建立的供需匹配度模型为理清物流供需网络的复杂关系以及各因素对物流服务供需关系的影响程度提供了一种数学分析方法;基于变分不等式的流线优化模型和求解算法为物流优化领域提供了一种新的优化方法和途径.
     本论文提出的流线优化理论与方法在解决典型物流优化问题的新方法方面进行了初步尝试与探索,有利于物流学科核心理论体系的构建和理论与方法的深入研究,有利于解决区域社会经济活动中的网络分配问题、生产制造活动中的流程优化问题以及贸易和消费活动中的复杂网络配送问题,具有重要的理论和实践指导意义.
There exists a typical social economic activity which includes urban and regional economic activities in macroscopic level; manufacture, trade and consumption in microcosmic level. It is called logistics. It includes the process of storage, manufacture, transportation, distribution, package, and assembling and disassembling. The claim of quantity, arriving time and cost of the goods from both the logistics organizer and the demander construct a typical logistics supply and demand network. In this thesis, this supply and demand network is called streamline network (SLN) which consists of some specific node, string and given weight.
     Different from traditional logistics network, SLN has a complex structure, which is nested, multilayer, multi-level, multi-dimension and multi-criteria. It not only reflects the characteristic of logistic supply and demand network in logistics service, but also describes the relationship between the supply and demand network in logistics service. The logistics supply network (of its ability and service) can be optimized according to the network characteristics of varied logistics demands. This optimization can reveal general rules and characteristics of typical logistics activities, optimize logistics organization plan, satisfy the customer's demand, so to realize the essence of logistics service, that is to say taking right quantity of right goods to right place in right time by right route with right cost.
     Firstly, it analyzed the typical logistics activities existed in manufacture, trade, consumption, urban and regional economy summarizes its characteristics, general streamline form and distinguish figures of streamline, so to find out the general structure and mathematical definition of SLN. And then, it analyzed basic structure, degenerate structure, matrix description and the characteristics of statistic, attribute and composite weight.
     Secondly, by analyzing the time, quantity and cost of the logistics supply and demand, it can borrow the general cost function to unify time, quantity and cost, so to give a definition and mathematic description of the matching degree of supply and demand in node and arc among the streamline network. It can establish a model to show matching degree of supply and demand. Through introduced vector function to analyze the node, string and matching between supply and demand in all levels, it extended the calculation formula of supply and demand matching degree from node, arc to the whole network. It can also establish a model of streamline evaluation and selection based on the model of matching degree between supply and demand, and verified it in a case as the regional installation layout in a distribution center.
     Thirdly, this thesis established an optimized streamline model, with the matching degree between supply and demand as the objective function, and capacities and resource as the constraint. In the meantime, the selection and evaluation models as well as the optimized streamline model mainly guided by benefit, weak benefit and efficiency were constructed. The model was converted to a variation inequality with or without constraint by the equivalence relation between variation inequality and optimizing model. It proved that the model has a unique way of solution. According to projection algorithm, the streamline model optimization algorithm is put forward.
     At last, taking the spatial distribution of the logistics nodes in one city as a sample, by using the streamline optimization theory and method to explain the streamline network model of logistics nodes'spatial distribution, it established a streamline optimization model which takes the quantity matching degree as its objective function; also proved the effectiveness and feasibility of the model because found out a better distribution scheme than experience comparative method through mathematic-solving. Another sample was the organization optimization of logistic transportation in one steel factory. Based on the sample, established a streamline optimization no-linear plan model using the matching degree of supply and demand as the objective function, and then changed it into variation inequality. Then ILOG CPLEX software, fixed step iterative algorithms and variable step iterative algorithms was used to solve this model. Comparing those three methods, it can find out their advantages and disadvantages.
     The research shows, streamline is a complex super network. It is multi-level, multi-layer and multi-attribute. The matching degree of supply and demand in streamline network can describe the approaching degree of supply and demand in logistic service better. Streamline optimization model is a no-linear plan model which uses matching degree of supply and demand as objective function, resource and capability limitation as constraint condition. Its equivalent form of variation inequality has only one solution. Improved variable step iterative algorithm can be solved to streamline optimization model in inequality form. This sample proves that this algorithm is better than fixed-step iterative algorithm.
     The structure model and mathematical description of streamline network can offer a general structure and a research platform for typical logistics activities, it helps to reveal the nature and rules of logistics service. The matching degree model of supply and demand provides a mathematical analysis way to reveal the complex relationship between logistics supply and demand network, and factors influence them. The streamline optimization model and algorithm based on variation inequality provide a new optimization method in the area of logistics optimization.
     This research is useful for both the construction of core theoretical system in logistics and the further study of theory and method in logistics. It can also help to settle the network distributional problem in regional social economic activities, optimize the process in manufacture activities, and solve the problem concerned with complex network distribution in trade and consumption. It is significant in theoretical and practical guidance.
引文
[1]张锦.物流规划原理与方法[M].成都:西南交通大学出版社.2009年10月.
    [2]流线定义一百度百科.http://baike.baidu.com/view/54922.htm.
    [3]Setti J R, Hutchinson B G. Passenger-terminal simulation model [J]. Journal of Transportaion Engineering.1994,120(4):517-535.
    [4]Takakuwa S, Oyama T. Simulation analysis of international-departure passenger flows in an airport terminal [C]. Winter Simulation Conference Proceedings.2003(2):1627-1634.
    [5]朱兆慷,张庄.铁路旅客车站流线设计和建筑空间组合模式的发展过程与趋势[J].建筑学报,2005(7):74-78.
    [6]Helbing D. Collective phenomena and states in traffic and self-driven many-particle systems [J]. Computational Materials Science.2004,30(1-2):180-187.
    [7]Hoogendoorn S P, Bovy P H L. Gas-kinetic modeling and simulation of pedestrian flows [J]. Transportation Research Record.2000(1710):28-36.
    [8]Hoogendoorn S P, Bovy P H L. Pedestrian route-choice and activity scheduling theory and models [J]. Transportation Research Part B:Methodological.2004,38(2):169-190.
    [9]史建港.大型活动行人交通特性研究[D].北京:北京工业大学,2007.03.
    [10]Lam W H K, Morrall J F, Ho H. Pedestrian flow characteristics in Hong Kong[J]. Transportation Research Record.1995(1487):56-62.
    [11]陈锐.建筑流线研究[J].工程与建设.2008(2):181-183.
    [12]陈锐.建筑流线研究[D].合肥:合肥工业大学,2007.
    [13]陈宇.大型综合超市流线设计研究[D].哈尔滨:哈尔滨工业大学,2006.
    [14]严一丁.体育建筑的流线及标识系统研究[D].上海:同济大学,2008.
    [15]张义平.医疗建筑流线设计创新[J].安徽建筑.2010(4):14-15.
    [16]刘昌祺.物流配送中心设计[M].北京:机械工业出版社,2001.
    [17]钟华.基于EM PLANT医药物流中心的规划及仿真研究[D].武汉:武汉理工大学,2006.
    [18]马全伟.企业仓储中心货位优化方法的研究[D].天津:天津大学,2007.
    [19]赵俊峰.烟草配送中心设备管理系统研究[D].武汉:武汉大学,2008.
    [20]李云清.物流系统规划[M].上海:同济大学出版社,2003.
    [21]宋建新.物流中心规划与仿真应用研究[D].成都:西南交通大学,2007.
    [22]刘晓岚.现代物流中心内部规划与设计研究[D].成都:西南交通大学,2004.
    [23]赵岩,莫蓉.制造资源能力与制造工艺约束的匹配度研究[J].计算机集成制造系统.2009(4):712-718.
    [24]张水潮,任刚,王炜.城市道路网络功能匹配度分析模型[J].系统工程理论与实践.2010(9): 1716-1721.
    [25]蒋忠中,喻海飞,盛莹.电子中介中多数量的多属性商品交易匹配模型与算法[J].系统管理学报.2010(5):593-600.
    [26]朱奕勤.基于供需平衡的公路网评价方法研究[J].公路交通科技.2009(4):118-123.
    [27]李浩,刘桂云.物流系统规划与设计[M].杭州:浙江大学出版社.2009年4月.
    [28]任晓或,杨锡怀,邹家兴等.基于组合相似度的混合多指标信息聚类分析方法[J].东北大学学报(自然科学版).2010(11):1657-1660.
    [29]物流术语国家标准G13/T18354-2001.基本概念术语1-2[Z].
    [30]Chiou S W. A fast polynomial time algorithm for logistics network flows [J]. Applied Mathematics and Computation.2008,199(1):162-170.
    [31]Ackermann J, Muller E. Modelling, planning and designing of logistics structures of regional competence-cell-based networks with structure types [J]. Robotics and Computer-Integrated Manufactureing.2007,23(6):601-607.
    [32]王之泰.现代物流管理[M].中国工人出版社.2001年
    [33]朱道立,龚国华著.物流和供应链管理[M].上海:复旦出版社.2001.
    [34]鞠颂东,徐杰,卞文良等.物流网络理论的提出与探索[J].北京交通大学学报(社会科学版).2009,8(2):16-20.
    [35]徐青青,缪立新.基于产业链演化的物流网络资源配置策略[J].工业工程与管理.2006(05):43-48.
    [36]Robbie T. Nakatsu. Designing business logistics networks using model-based reasoning and heuristic-based searching[J]. Expert Systems with Applications.2005,29(4):735-745.
    [37]Dantzig G. B., Ramser J. H. The truck dispatching problem[J]. Management Science.1959,6(1): 80-91.
    [38]Fulkerson D. R., David B. Weinberger. Blocking pairs of polyhedral arising from network flows[J]. Journal of Combinatorial Theory, Series B.1975,18(3):265-283.
    [39]Pedro M. Reyes. Logistics networks:A game theory application for solving the transshipment problem[J]. Applied Mathematics and Computation.2005,168(2):1419-1431.
    [40]Neto J, Ruwaard J, Van J. Designing and evaluating sustainable logisticsnetworks[J]. International Journal of Production Economics.2008,111(2):195-208.
    [41]李兆磊,张雅琪.区域物流系统适应性评价指标体系研究[J].物流技术.2007,26(07):9-11.
    [42]郎丰平.区域物流网络系统规划研究[D].哈尔滨工业大学,2006.
    [43]阎利军,杨忠振,刘冲等.城市物流网络中中间节点分布与规模优化研究[J].大连理工大学学报.2007,47(03):414-418.
    [44]Lee D H, Meng D. Dynamic network design for reverse logistics operations under uncertainty [J]. Transportation Research Part E:Logistics and Transportation Review.2009,45(1):61-71.
    [45]马祖军,代颖,刘飞.再制造物流网络的稳健优化设计[J].系统工程.2005,23(01):74-78.
    [46]张锦.物流流线的组织与优化[J].学术动态.2008(2):18-22.
    [47]Erdos P, Renyi A. On random graphs, I[J]. Publicationes Mathematicae (Debrecen), Vol.6 (1959), pp.290-297.
    [48]Barabasi A L. Linked:The new science of networks[M]. Massachusetts:Persus Publishing, 2002.
    [49]Watts D J. The new science of networks[J]. annual Review of Sociology.2004(30):243-270.
    [50]Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature.1998, 393(6684):440-442.
    [51]Newman M E J, Watts D J. Renormalization group analysis of the small-world model[J]. Physics Letters A.1999,263(4-6):341-346.
    [52]Dorogovtsev S N, Mendes J F. Evolution of networks[J]. Advances in physics.2002(51): 1079-1187.
    [53]Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science.1999,286(5439): 509-512.
    [54]Barabasi A L, Ravasz E, Vicsek T. Deterministic scale-free networks[J]. Physica A:Statistical Mechanics and its Applications.2001(299):559-564.
    [55]Francesc C, Michael S. Deterministic small-world networks[J]. Physica A:Statistical Mechanics and its Applications.2002(309):231-235.
    [56]Fan Z P, Chen G R. Evolving networks from topology to dynamics[J]. Journal of Control Theory and Application.2004(2):60-64.
    [57]Li X, Chen G R. A local-world evolving network model[J]. Physica A:Statistical Mechanics and its Applications.2003(328):274-286.
    [58]Chen Q H, Shi D H. The modeling of scale-free networks[J]. Physica A:Statistical Mechanics and its Applications.2004(335):240-248.
    [59]陈禹,宗骁,郝杰等.BA模型的三种扩展[J].系统工程学报.2005,20(2):120-127.
    [60]章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程.2005,23(2):1-5.
    [61]Li Ch G, Chen G R. A comprehensive weighted evolving networks[J]. Physica A:Statistical Mechanics and its Applications.2004(343):288-294.
    [62]Cao Y J, Wang G Z, Jiang Q Y. A neighborhood evolving network model[J]. Physics Letters A. 2006(349):462-466.
    [63]Zhang Zh Zh, Rong L L, Guo Ch H. A deterministic small-world network created by edge iterations[J]. Physica A:Statistical Mechanics and its Applications.2006(363):567-572.
    [64]Bassett D S, Bullmore E. Small-world brain networks[J]. Neuroscientist.2006(12):512-523.
    [65]Wang Q Y, Lu Q S, Chen G. Subthreshold stimulusaided temporal order and synchronization in a square lattice noisy neuronal network[J]. Europhysics Letters.2007,77(1):10004(1-6).
    [66]Massad E, Ma S, Chen M. Scale-free network of a dengue epidemic[J]. Applied Mathematic Computer.2008(195):376-381.
    [67]Shi H J, Duan Z S, Chen G. An SIS model with infective medium on complex networks[J]. Physica A:Statistical Mechanics and its Applications.2008,387(8-9):2133-2144.
    [68]Palla G, Barabasi A L, Vicsek T. Quantifying social group evolution[J]. Nature.2007(446): 664-667.
    [69]Tatem A J, Hay S I. Climatic similarity and biological exchange in the worldwide airline transportation network[J]. Proceeding of Royal Society.2007(274):1489-1496.
    [70]Xia Y, Hill D J. Attack vulneralibility of complex communication networks[J]. IEEE Circuits and Systems II:Express Briefs.2008,55(1):65-69.
    [71]Xiao S, Xiao G, Cheng T H. Tolerance of intentional attacks in complex communication networks[J]. IEEE Communications Magazine.2008,46(1):146-152.
    [72]Shorten R, King C, Wirth F. Modelling TCP congestion control dynamics in drop-tail environments[J]. Automatica.2007(43):441-449.
    [73]Xia C, Shi Y, Li x, Gao W. P2P worm detection based on application identification[J]. Frontiers of Computer Science in China.2007,1(1):114-122.
    [74]Dimakis A G, Sarwate A D, Wainwright M J. Geographic gossip:efficient averaging for sensor networks. IEEE Transportation Signal Processing.2008,56(3):1205-1216.
    [75]Milner S, Desai A. Autonomous reconfiguration in free-space optical sensor networks[J]. IEEE Selected Areas in Communications.2005,23(8):1556-1563.
    [76]Dirk H. Information and material flows in complex networks[J]. Physica A:Statistical Mechanics and its Applications.2006,363(1):11-16.
    [77]Christian K, Dirk H. Scaling laws in urban supply networks[J]. Physica A:Statistical Mechanics and its Applications.2006,363(1):89-95.
    [78]Marco L, Erjen L. Robust optimal control of material flows in demand-driven supply networks[J]. Physica A:Statistical Mechanics and its Applications.2006,363(1):24-31.
    [79]Estrada E, Rodrigues V R. Subgraph centrality in complex networks[J]. Physical Review E. 2005,71(5):1-9.
    [80]Nagurney A, Dong J, Zhang D. A supply chain network equilibrium mode[J]. Transportation Research E.2002,38(5):281-303.
    [81]Nagurney A, Cruz J, Dong J. Supply chain networks, electronic commerce, and supply side and demand side risk[J]. European Journal of Operational Research.2005,164(1):120-142.
    [82]Nagurney A, Dong J, Zhang D. Supply chain network and electronic commerce:A theoretical pedspective[J]. Netnomics.2002,4(2):187-220.
    [83]Nagurney A, Ke K, Gruz J. Dynamics of supply chains:A multilevel (logistical/information/ financial) network perspective[J]. Environment & Planning B.2002,29(6):795-818.
    [84]Nagurney A, F Toyasaki. Supply chain supernetworks and environmental criteria[J]. Transportation Research D.2003,8(3):185-213.
    [85]Fraenkel A S, Scheinerman E R. A deletion game on hypergraphs[J]. discrete Applied Mathematics.1991,30(2-3):155-162.
    [86]Boros E. On shift stable hypergraphs[H]. Discrete Mathematics.1991,87(1):81-84.
    [87]黄汝激.超网络的有向k超树分析法[J].电子科学学刊.1987(3):244-255.
    [88]黄汝激.超网络的主子超图分析法[J].中国科学A辑.1988(7):759-767.
    [89]郝忠孝,郭景峰.一种基于超图的最小覆盖集求法[J].计算机研究与发展.1990(10):58-64.
    [90]杨广芬.基于变分不等式的闭环供应链超网络研究[D].大连海事大学,2006.
    [91]杨广芬.由零售商负责回收的闭环供应链超网络优化[J].系统工程.2009,27(06):42-47.
    [92]张福梅.基于变分不等式的退货供应链超网络研究[D].大连海事大学,2008.
    [93]薛雷.逆向物流超网络优化模型研究[D].大连海事大学,2008.
    [94]李晓强.基于变分不等式的电子商务供应链超网络研究[D].大连海事大学,2006.
    [95]杨光华.基于加权超网络的区域物流网络模型及特征分析[J].湖南文理学院学报(自然科学版).2008,20(3):53-57
    [96]席运江.基于加权超网络模型的知识网络鲁棒性分析及应用[J].系统工程理论与实践.2007(04):134-141.
    [97]张石生,朱远国.关于一类随机变分不等式和随机拟变分不等式问题[J].数学研究与评论.1989(3):385-393.
    [98]张从军.关于广义变分不等式与广义拟变分不等式[J].应用数学和力学.1993(4):315-325.
    [99]张从军.非紧集上的变分不等式与拟变分不等式[J].数学研究与评论.1997(2):90-95.
    [100]张从军Gwinner变分不等式和隐变分不等式[J].应用数学.1997(40):131-134.
    [101]张从军.广义双拟变分不等式和广义拟变分不等式解的存在性(英文)[J].应用数学.2003(3):112-117.
    [102]张从军.关于广义双拟变分不等式和拟变分不等式(英文)[J].应用泛函分析学报.2005(2):116-122.
    [103]许岩,戎卫东.广义F-互补问题及其与变分不等式问题的等价性[J].系统科学与数学.2009(2):198-207.
    [104]谭露琳.空间中变分不等式问题解的存在性与例外簇[J].华南师范大学学报(自然科学 版).2009(3):22-24.
    [105]李月鲜,戎卫东,刘海军.广义向量变分不等式和广义对偶模型[J].系统科学与数学.2009(6):18-20.
    [106]张石生,李向荣,陈志坚.不动点问题平衡问题及变分不等式问题的具弱压缩的粘性逼近[J].应用数学与力学.2010(10):1211-1219.
    [107]程支明,钟小毛.一个迭代序列的不动点问题变分不等式问题及平衡问题(英文)[J].西南大学学报(自然科学版).2010(2):123-128.
    [108]彭再云,雷鸣等.希尔伯特空间中的广义松弛余强制变分不等式体系及带误差的三步投影算法[J].四川师范大学学报.2009(3):168-171.
    [109]梁远洪.投影算法的广义收敛性分析及在变分不等式中的应用[J].云南民族大学学报.2009(1):20-23.
    [110]唐国吉.求解单调变分不等式的近似邻近点算法的收敛性分析[J].纯粹数学与应用数学.2009(3):183-189.
    [111]孙巍,吴长亮,范江华.极大单调算子的一个投影近似邻近点算法[J].广西师范大学学报(自然科学版).2008,26(02):37-40.
    [112]孙敏.求解结构型单调变分不等式的投影交替方向法[J].安徽大学学报.2009(3):12-14.
    [113]赵晖,高自有.变分不等式的混沌搜索算法[J].北京交通大学学报.2006(12):85-88.
    [114]D Hammond, P Beullens. Closed-loop supply chain network equilibrium under legislation[J]. European Journal of Operational Research.2007,183(2):895-908.
    [115]王志平,王众托.超网络理论及其应用[M].北京:科学出版社,2008.
    [116]Robeson J F. The logistics handbook[M]. New York:Free Press.1994.
    [117]董千里.高级物流学[M].北京:人民交通出版社,2006.
    [118]靳伟.最新物流讲座[M].北京:中国物资出版社,2004.
    [119]王之泰.新编现代物流学[M].北京:首都经济贸易大学出版社.
    [120]泸州市现代物流发展规划研究报告[M].西南交通大学,2007.
    [121]刘涛,陈忠,陈晓荣.复杂网络理论及其应用研究概述[J].系统工程.2005,23(6):1-7.
    [122]Albert R, Barabasi A L. Statistical mechanics of complex network[J]. Review of Modern Physics.2002(74):47-97.
    [123]高自友,孙会君著.现代物流与交通运输系统—模型与方法[M].北京:人民交通出版社,2005.
    [124]周三元.物流设施布置程序模式浅析[J].物流技术.2009,28(3):56-58.
    [125]Sahni S, Gonzalez T. P-Complete approximation problems[J]. Journal of the Association for Computing Machinery.1976,23(3):555-565.
    [126][美]理查德缪瑟著,柳惠庆、周室屏译.系统布置设计[M].北京:机械工业出版社, 1991.
    [127]刘旺盛,兰培真.系统布置设计-SLP法的改进研究[J].权威论坛.2006(11):90-94.
    [128]Tiziana C, Annalisa M. Optimal three dimensional layout of interconnection networks[J]. Theoretical Computer Science.2001,25(1-2):263-279.
    [129]李诗珍,杜文宏.基于SLP思想的配送中心布置设计研究[J].科技管理研究.2006(10):246-248.
    [130]计三有,钟华.物流中心规划与设计中的问题探讨[J].物流技术.2006(3):94-96.
    [131]魏斌,纪寿文,申金升.配送中心布局及设备配置仿真优化[J].物流技术.2010(2):89-91.
    [132]王敏丽,程国全,王转.基于遗传算法的物流中心区域布置技术[J].2004(10):39-41.
    [133]张亮,王转,程国全.配送中心区域布置及评价方法的研究[J].物流技术.2007,26(10):91-94.
    [134]Hartman P, Stampacchia G. On some non-linear elliptic differential-functional equations[J]. Acta Mathematica.1966,115(1):271-310.
    [135]Noor M A. General variational inequalities[J]. Applied Mathematics Letters.1988,1(2): 119-122.
    [136]张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社.2005.
    [137]张石生.变分不等式及其相关问题[M].重庆:重庆出版社.2008.
    [138]Lions J L. Stampacchia G. Variational inequalities[J]. Communications on Pure and Applied Mathematics.1967,20(3):493-519.
    [139]Korpelevich G M. The extragradient method for finding saddle points and other problems[J]. Matecon.1976,12:747-756.
    [140]Noor M A, Huang Z. Three-step methods for nonexpansive mappings and variational inequalities[J]. Applied Mathematics and Computation.2007,187(2):680-685.
    [141]Andreas K, Andreas D. Facility location models for distribution system design[J]. European Journal of Operational Research.2005,162(1):4-29.
    [142]李双艳,陈治亚,张得志.物流节点系统布局优化控制模型研究[J].武汉理工大学学报(交通科学与工程版).2009,33(6):1060-1063.
    [143]施宏伟,王发年.基于聚类的物流节点模型及其自适应蚁群算法[J].工业工程与管理.2010,15(4):10-14.
    [144]程赐胜,蒲云虎,高慧.基于离散粒子群算法的城市物流节点选址模型[J].长沙理工大学学报(自然科学版).2008,5(02):20-24.
    [145]宜宾市物流发展规划修编(2010-2020)[M].西南交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700