复合型压缩天然气加气站供应模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩天然气(CNG)作为燃气供应的一种有效方式,运营方式灵活,日益成为车用及管网未达区域民用市场共同的气源,逐渐形成复合型压缩天然气加气站供应系统。本文对该系统的核心环节进行了研究:加气站站型适用性比较研究、影响加气站规模的储气安全性研究、加气站供应规律研究、运输调度的合理优化研究,从而使燃气供应系统更合理、安全,促进国内压缩天然气行业的发展。
     本文主要内容如下:
     从国内压缩天然气行业发展的研究背景出发,以北京市压缩天然气车用、民用两大供应系统为例,对其现状进行了分析,在综合分析国、内外研究目标的基础上,明确了压缩天然气加气站方面的研究重点和存在的问题,确定了复合型压缩天然气供应系统模式的研究思路;针对单一母子站供应系统的弊端,将车用气常规站作为(母子站供应系统)的有效补充;采用模糊综合评价模型对母子站和常规站进行了综合分析,为合理匹配各种站型提供指导;通过建立稳态(静态)、瞬变流状态的数学模型,采用流体稳态、动态仿真计算软件,对加气站周边管网进行了不同工况条件的静、动态模拟分析,对模型参数的确定进行了研究,明确了进行加气站选址需要满足的天然气管网条件。
     运用综合分析方法,结合人工神经网络模型、线性回归模型和ARMA模型的优缺点,引入主成分分析法PCA,参考大量历史数据,建立了复合型加气站的压缩天然气负荷预测模型,实际预测效果良好;通过研究压缩天然气负荷全年各段时间变化规律,在不同时段采用相应的模型预测,包括神经网络、时间序列、线性回归等,使得全年综合预测模型最优化。以北京市为例,对历史数据进行了用气规律分析,得出了加气(母子)站年、月、日、时不均匀系数,为复合型压缩天然气加气站的规划布局、负荷分配提供预测方法和依据。
     以影响加气站供应规模和安全间距的储气设施为典型(分析对象),确定了储气利用率的提高方法和储气瓶组的分配方案;通过对可能引发储气瓶组的泄漏火灾事故的调查,构建了CNG储气瓶组的故障树,对实例进行了危险等级的判断。借鉴管道失效泄漏模型,对储气设施泄漏发生火灾的个人、社会风险进行了分析研究,为衡量加气站的安全措施、建站规模提供了分析方法。
     通过建立加气环节的转运车排队模型、多车场(目标)运输的最小费用模型,对母子加气站供应系统中的CNG转运车的运输问题,进行了全过程的优化研究,应用实例验证了模型的可行性;引入运输风险指数,作为评价CNG转运车的运输道路事故和泄漏事故及后果的指标,构造了多目标路径优化模型。为优化CNG转运车的运输调度系统提供了理论依据和方法。
     以北京市压缩天然气供应系统为例,把加气站作为城市天然气管网的有机组成部分进行研究,利用建立的管网动、静态负荷预测模型、失效泄露模型、运输模型,对影响加气站发展规模的站型模式、管网条件、负荷变化规律、储气规模和危险范围及连接站点的运输方式进行了分析总结;取得的储气设施火灾影响程度、加气站负荷不均匀系数、运输合理调配方案,可为其他城市的相关产业发展提供参考。研究结果表明,加气站对管网瞬态影响、转运车运输过程中的风险评价,涉及到流体分析、自控联网、交通、环境等多方面动态因素,应该与燃气管网的SCADA系统、交通指挥系统等联动控制,统一规划和调度。
Compressed natural gas (CNG), as an effective way of gas supplywith flexible operations is increasingly becoming common gas sourcemarket for vehicle and civil use especially in the regional area lackingpipeline network. CNG gradually composite and form compositecompressed natural gas filling station supply system. The paper studiedthe core part of the system, comparison of the applicability of fillingstation type, gas stations filling scale and safety evaluation, the regulationtechnology of constant flow rate and variable in the load supply stations,optimization of scheduling for Transfer Vehicle transportation, so that ithelps the gas supply system become more reasonable, safe to promotedomestic compressed natural gas industry.(The article reads as follows:)
     Based on the research on the development of domestic compressednatural gas industry, the paper analyzed current status of both vehicle andcivil use of compressed natural gas vehicles in Beijing, didcomprehensive analysis of domestic and foreign research objectives, weidentified research priorities and problems to determine the compositecompressed natural gas supply system. Conventional gas station for thevehicle as mother station supply system is an effective complement torelieve shortcomings of the load supply systems under current mother anddaughter gas supply station condition. The article conducted acomprehensive analysis using Fuzzy comprehensive evaluation modeland conventional mother station as reasonable guidance to match avariety of station types and created steady-state (static), the mathematicalmodel of transient flow state. The network of filling stations around thedifferent working conditions was analyzed by using the fluid state anddynamic simulation software to determine the model parameters anddefined the location of the stations need to meet the natural gas pipelinenetwork conditions.
     The paper established a composite compressed natural gas fillingstations load forecasting model with actual forecast good results throughthe use of comprehensive analysis, with Artificial neural network model,ARMA models of linear regression model and the advantages anddisadvantages. Natural gas load throughout the year by studying the compression of thetime variation of at different times with the corresponding modelprediction, including neural networks, time series, linear regression,making full-year consolidated forecast model optimization. Case Study ofBeijing, the historical data were analyzed using gas laws, obtained gas(mother) station, month, day and time coefficient of uniformity for thecomplex layout of compressed natural gas filling stations, load distributionprovide predictive method and basis.
     The paper determine the appropriate equipment required to use theproduct in terms of safely utilization of gas cylinders and group sharingby analyzing influence factors in the supply stations and the securitydistance scale storage facilities for the typical (of objects). CNG cylindersconstructed fault tree group of instances of dangerous levels of judgmentsthrough fire incident investigation, by the leakage of gas cylinder. Theactual example is used to determine the risk factors. Analysis method wasestablished by studying the leakage model for pipeline failure, leakage ofgas storage facilities, fire personal, social risk to measure the securitystations.
     Gas sectors through the establishment of additional transit vehiclesqueuing model, multi-depot (the target) the minimum transportation costmodel, Of the mother CNG filling stations in the supply system oftransport transit vehicles to carry out a full process of optimization,Application Examples verify the feasibility of the model; the introductionof transportation risk index, as the evaluation of road transport CNGtransit vehicles and the consequences of accidents and leakage indicators,structural optimization model for multi-destination path. CNG transitvehicles for optimizing transportation scheduling system provides atheoretical basis and methods. Compressed natural gas supply system inBeijing, for example, the city gas pipeline network stations as an integralpart of the study, Pipe network built using the static and dynamic loadforecasting model, failure leakage model, transport model, Stations on thescale of development of the station-type model, the network conditions,load variation, storage size and hazardous areas and means oftransportation connecting the site were analyzed and summarized;Storage facilities made of fire impact, filling uneven load factor,transportation and reasonable allocation scheme for the development ofrelated industries in other cities to provide information. The results showthat filling of the pipe network transients, transfer vehicle duringtransport risk assessment, related to the fluid analysis, automationnetworking, transportation, environment, and many other dynamic factors,Gas pipeline network should SCADA systems, traffic control systems, linkage control, unified planning and scheduling.
引文
[1]宋晓琴.国内外CNG加气站的发展趋势[J].油气储运,2003,(8):1-3.
    [2]国际天然气汽车协会(IANGV)网站,http://www.iangv.org
    [3]严銘卿.宓亢琪.黎光华等编著.天然气输配技术.化学工业出版社.2006年5月第1版北京
    [4]韩金丽,杨昭,远郊区县的CNG瓶组供气管理运营模式,天然气工业,2008.08.15,2008.28(8)
    [5]彭世尼,小城镇压缩天然气(CNG)配气系统研究,重庆大学博士论文,2004
    [6]陈叔平,谢高峰,李秋英,等.对LNG、L-CNG、CNG加气站年运行费用的研究。煤气与热力,2006,26(11):38-41.
    [7]周怡沛,周志斌,中国C N G汽车市场发展现状趋势与策略,国际石油经济,200917(10)
    [8] Martin Frick,K.W.Axhausen,Gian Carle,Alexander Wokaun.,Optimization of thedistribution of compressed natural gas (CNG) refueling stations: Swiss casestudies,Transportation Research Part D12(2007):10-22.
    [9] P. Goyal,Sidhartha,Present scenario of air quality in Delhi: a case study of CNGimplementation,Atmospheric Environment,Volume37, Issue38, December2003:5423-5431
    [10] Cinzia Pastorelloa, Panagiota Dilara, Giorgio Martini,Effect of a changetowards compressed natural gas vehicles on the emissions of the Milan wastecollection fleet, Transport. Res. Part D (2010), doi:10.1016/j.trd.2010.09.002
    [11] Roald A.A. Suurs, Marko P. Hekkerta, Sander Kiebooma, Ruud E.H.M.Smits, Understanding the formative stage of technological innovation systemdevelopment: The case of natural gas as an automotive fuel,Energy Policy,Volume38, Issue1, January2010:419-431
    [12]Ronaldo Balassiano,Experience of compressed natufal gas bus operations in RioDe Janeiro, BRAZIL, Transpn.Res.-D,Vol.2,No.2, pp.147-155,1997
    [13]Erika L. Beronich,Majid Abedinzadegan Abdia, and Kelly A. Hawboldt,Prediction of natural gas behaviour in loading and unloading operations of marineCNG transportation systems,Journal of Natural Gas Science and Engineering,Volume1, Issues1-2, July2009:31-38
    [14]魏远文,城市CNG加气站布局的研究,四川工业学院硕士论文,2002
    [15]黄海波,城市天然气汽车加气站布局规划与评价方法及其应用技术研究,博士论文,2004
    [16]童岱,黄海波,龙其云,城市CNG汽车加气站选址安全性评价方法,天然气工业,2004;24(3):120~123
    [17]童岱,汽车加气站优化选址方法研究,四川大学硕士学位论文,2002.严铭卿.输配工程.中国建筑工业出版社.2005年7月
    [18]苏欣等.城市CNG汽车加气站安全评价模型.天然气工业.2006,26(2):126一128
    [19]黄海波等;城市CNG汽车加气站布点计算机辅助评价方法;天然气工业,2004,24(2):94~97
    [20]柳华,成都创意CNG子母站工程可行性研究,重庆大学硕士论文,2004
    [21]王琢玉,城市LPG加气站规划布局评价方法研究,中国交通技术网,2008
    [22]李宏勋,崔静,加油站布局问题研究,中国石油大学(华东)经济管理学院,2009
    [23]单娴,基于灰色评价的CNG加气站选址决策研究,油气田地面工程,2OO9.3(28):20-22
    [24]杜文焕,李伟峰,基于GIS的CNG加气站选址研究,城市建设,2010,4:256-258
    [25]赵涛,夏雨模拟退火算法在压缩天然气加气站选址中的应用,价值工程,)2010(10)
    [26]周家祥等,国外汽车加气加油站建设情况考察报告二,石油商技,2001,2(19):47-50
    [27]郁永章,高其烈,冯兴全,等.天然气汽车加气站设备与运行[M].北京:中国石化出版社,2006.
    [28]成都创意CNG子母站工程可行性研究报告,2001,4
    [29]上海市石油学会,车用燃气与加气站建设,中国石化出版社,2001
    [30]陈二锋,郁永章,张早校,高秀锋CNG加气站常规站与子站的经济性比较,压缩机技术,2005,1(189):1-5
    [31]城镇燃气设计规范,中国建设工业出版社,2006
    [32]Kichert WJM, Fuzzy Theory on Decision Making:A Critical Review,Leiden:Martinus Nijhoff Social Sciences Division,1978
    [33]王新洲.模糊空间信息处理[M].武汉:武汉大学出版社,2003:130-131
    [34]Kichert WJM, Fuzzy Theory on Decision Making:A Critical Review,Leiden:Martinus Nijhoff Social Sciences Division,1978
    [35]Kichert WJM, Fuzzy Theory on Decision Making:A Critical Review,Leiden:Martinus Nijhoff Social Sciences Division,1978
    [36]Keeney R L,Raiffa H, Decisions with Multiple Objectives:Preferences andValue Tradeoffs,New York:Cambridge University Press,1993
    [37]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社,2004:101-108
    [38]佟春生.系统工程的理论与方法概论[M].北京:国防工业出版社,2000:185-186
    [39]姜启源.数学模型[M].北京:高等教育出版社,2005:225-231
    [40]宁晓秋.模糊数学原理与方法[M].徐州:中国矿业大学出版社,2004:203-208
    [41]朱小雷,吴硕贤.大学校园环境主观质量的多级模糊综合评价[J].城市规划,2002,26(10):57-60
    [42]刘元高,刘耀儒.Mathematica4.0实用教程[M].北京:国防工业出版社,2000:65-68
    [43]谢永红。西宁市CNG站的噪声影响预测及防止措施。青海科技,2001,4.
    [140]
    [44]Shannon.C,Weaver W.The Mathematical Theory of Communication.Urbana:TheUniveristy of Illinois Press,1947
    [45]TANYIMBOH TT, TEMPLEMAN A B. Calculatingmaximum entropy flows innetworks [J]. Journal of theOperational Research Society,1993,44(4):383-396.
    [46] Paul Lamb,Dan Logue,Implementation of a Gas Load At Williams GasPIPeline,2001PIP一eline Simulation Interest Group meeting,Salt LakeCity,Utah,Oetober2001,VOl.l,No.11,PP.12一15.
    [47]王寿喜,曾自强,人然气管网动静态仿真,大然气l一业,1995,Vol.7,No.11,PP.110一114.
    [48]Streeter, VL; Wylie, EB, Fluid mechanics. International9th Revised,McGraw-Hill Higher Education.1998
    [49]李长俊汪玉春,输气管道系统仿真技术发展状况管道技术与设备,1999,5:32-35
    [50]Chen N H. An explicit equation for friction factor in pipe[J]. Eng. Chem. Fund.,1979(15):296-297.
    [51]王宏元,史国栋,人工神经网络技术及其应用,中国石化出版社,2002年10月
    [52]夏昌浩,向学军等.基于MATLAB的神经网络工具箱的电力系统负荷预测报.武汉水利电力大学(宜昌)学报.2000(4):22
    [53]杨昭,刘燕,苗志彬等,人工神经元网络在天然气负荷预测中的应用,《煤气与热力》,Vol.23, No.6, p331-332,2003
    [54]史春朝,BP神经网络算法的改进及其在PID控制中的研究,天津大学硕士论文.2004,10:21
    [55]Zhanshou Yu, Feed-Forward Neural Networks and Their Applications inForecasting, Master Thesis of Department of Computer Science, University ofHouston, December2000.
    [56]闻新,周露等.MATLAB神经网络应用设计[M].科学出版社.2002
    [57]胜骤.概率论与数理统计.高等教育出版社.1989年8月
    [58] L. J. Cao, Francis E. H. Tay.Support Vector Machine With Adaptive Parametersin Financial Time Series Forecasting. IEEE Transactions On Neural Networks,2003,14(6):1506-1518
    [59]Charytoniuk W, Chen M S, Van Olinda P.(1998)Nonparametric RegressionBased Short term Load Forecasting. IEEE Trans on Power Systems13(3) pp.725-730.
    [60]Anton Baugave. A Methodology of Using support Vector Machine for Short-termForecasting. Applied Intelligent Systems Lab,School of Nuclear Engineering, PurdueUniversity,2002
    [61]席德粹,焦文玲等,上海市燃气负荷预测系统的开发与试验运行,《城市燃气》,Vol.353,No.7,p14-16,2004
    [62]谭羽飞,陈家新,焦文玲.基于人工神经网络的城市煤气短期负荷预测.煤气与热力.2001,(3):199~203
    [63]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003
    [64]《现代应用数学手册》编委会.《现代数学手册.概率统计和随机过程卷》.北京:清华大学出版社,2000
    [65]Richard A.Jonnson等.实用多元统计分析.北京:清华大学出版社,2001
    [66]Temraz H.K, Salama M.M.A, Chikhani A.Y. Review of electric load forecastingmethods. Electrical and Computer Engineering.1997,1:25-28
    [67]K. Liu and et al.“Comparison of very short-term load forecasting techniques”,IEEE Trans. On Power Systems,11(2):877-882, May1996.
    [68]李瑜仙,许彤,赵燕,周英,北京市城市燃气日负荷与高峰小时流量的关系,天然气与石油,200826(1)
    [69]上海燃气市北销售有限公司,上海燃气市北销售有限公司,上海燃气市北销售有限公司市北天然气燃气负荷预测模型探讨,上海煤气,2006年03期
    [70]K.L. Ho, Y. Y. Hsu, and C. C. Yang. Short Term Load Forecasting Using aMultilayer Neural Network with an Adaptive Learning Algorithm. Power Systems.1992,7(2):141-149.
    [71]李业.预测学.华南工学院出版社.1988:12~14
    [72]焦文玲.城市燃气负荷时序模型及其预测的研究.哈尔滨工业大学博士论文.2001:1~115
    [73]詹姆斯D.汉密尔顿.时间序列分析.北京:中国社会科学出版社,1999
    [74]刘涵,刘丁,郑岗.基于最小二乘支持向量机的预测负荷.化工学报.2004,55(.5):828-831.
    [75]焦文玲,赵林波,秦裕琨,城市燃气负荷平稳时序预测模型的研究,《煤气与热力》,Vol.23, No.8, p451-453,2003
    [76]徐翠薇.计算方法引论.高等教育出版社.1985年1月
    [77]Javier Contreras, Rosario Espínola, Francisco J Nogales. ARIMA Models toPredict Next-Day Electricity Prices. IEEE Transactions on Power Systems,2003,18(3)
    [78]Jung-Hua Wang, Jia-Yann Leu. Stock market trend prediction usingARIMA-based neural network. Neural Networks, IEEE International Conference on.1996,4(3):2160–2165
    [79]焦文玲,金佳宾,廉乐明,严铬卿.时间序列分析在城市短期负荷预测中的应用.哈尔滨建筑大学学报.2001,34(4):79~83
    [80]焦文玲,崔建华,廉乐明,严铭卿.城市燃气短期周期负荷预测的时序模型.工业.2002,(1):92~94
    [81][美]尼克特森姆波勒斯.实用预测方法.上海科学技术文献出版1998
    [82]王勇领..预测计算方法.科学出版社.1986:2~7,163
    [83]田一梅,赵元,赵新华.城市煤气负荷的预测.煤气与热力.1998,18(4):20~23
    [84]严铭卿,廉乐明等.燃气负荷及其预测模型.煤气与热力.2003,23(5):259~266
    [85]Gas Load Forecaster, Energy Evolution Company, www.energy-solutions.com,
    [86]GASDAY, Marquette University, www.gasday.com
    [87]肖文辉,刘亚斌,王思存,燃气小时负荷的模糊神经元网络预测,《煤气与热力》,Vol.22, No.1, p16-18,2002
    [88]T.M.Peng, N.F.Hubele,“An Adaptive Neural Network Approach to One-weekAhead Load Forecasting”, Vol.8, No.3, August1993
    [89]Alireza Khotanzad, Hassan Elragal,“Neutral gas load forecasting withcombination of adaptive networks” P4096,IEEE1999
    [90]Bakirtzis A G, Theocharis J B, Kiartzis S J, et al.(1995) Short Term LoadForecasting Using Fuzzy Neural Networks. IEEE Trans on Power System,10(3),pp.1518-1524.
    [91] Peng T M,Hubele N F. An Adaptive Neural Network Approach to One-weekAhead Load Forecasting. IEEE Transactions on Power Systems.1993,8(3):1195-1203.
    [92] Ling, S.H, Leung, F.H.F, Lam H.K, et all. Short-term electric load forecastingbased on a neural fuzzy network. IEEE Transactions on Industrial Electronics.2003,50(6):1305–1316
    [93]北京建筑工程学院,同济大学,燃气输配.北京,中国建筑工业出版社.1988.7
    [94]刘辉,无锡加气站建设及汽车油改气技术研究,同济大学硕士论文,2007
    [95]刘锡麟,CNG加气站储气瓶组的容量选择和气体利用率的分析,广东燃气,2003,3,13-16
    [96]Jesse S.Doolittle.and Frnacis J.Hale“Thermo dynamics of engineers,1983
    [97]杜清枝、杨继舜.物理化学.重庆.重庆大学出版社,1997
    [98]陈宝贤,数据库应用与程序设计教程,北京:人民邮电出版社
    [99]黄海波,杨建军,李开国,等.CNG加气站设备失效与爆炸燃烧风险评价[J].西华大学学报:自然科学版,2005(4).
    [100]陈杰,李求进,吴宗之等,100起CNG加气站事故的统计分析及对策研究,中国安全生产科学技术,2009,5(1):72
    [101]郭永红,CNG加气站运行状况分析与探讨,城市燃气,2007,389(7):12-13
    [102]杨云伦,加气站CNG储气装置的安全评价及事故预防与处置技术[J].全国天然气汽车加气站技术讨论会论文集,四川天然气汽车专委会,华油天然气股份有限公司,2002.3:1~7.
    [103]《汽车加油加气站设计与施工规范》宣贯辅导教材,中国计划出版社,2003
    [104]谭金会,何太碧,杨菡,林秀兰,CN G加气站设备安全风险评价的关键问题,天然气工业,11(28),118
    [105]《建筑设计防火规范》GB50016-2008
    [106]Yanjun Wang, William J. Rogers, Harry H. West etc.Algorithmic fault treesynthesis for control loops[J],Journal of Loss Prevention in the Process Industries,16(2003):427–441
    [107]孙安娜,燃气安全管理信息系统下事故模块的研究,哈尔滨工业大学硕士论文,2005
    [108]李鹤林,张平生,路民旭,压力容器与管道失效分析和安全评价,标准分享网www.bzfxw.com
    [109] P. Dennis, P.E. Nolan, Handbook of Fire and Explosion Protection EngineeringPrinciples for Oil, Gas, Chemical, and Related Facilities, Noyes Publication, NewJersey,1996,48.
    [110] Yong-Do Jo, Bum Jong Ahn. A method of quantitative risk assessment fortransmission pipeline carrying natural gas[J]. Journal of Hazardous Material A123(2005)1-12
    [111]Italo H.Fraina,Compressible-flow problems require solving non-linearequations—Critical length helps calculate compressible flow[J], Chemicalengineering,1997,104(2):88-92
    [112]Helena Montiel, Juan A.Vílchez,Joaquim Casal, etc. Mathematical modeling ofaccidental gas release[J], Journal of Hazardous Materials,1998,59(2.3):211-233
    [113] M. John, B. Chris, P. Andrew, T. Charlotte, An Assessment of Measures in Usefor Gas Pipeline to Mitigate against Damage Caused by Third Party Activity, Printedand Published by the Health and Safety Executive, C110/01,2001.
    [114]李岳,李丽,汽车用压缩天然气钢瓶易腐蚀区域的确定,腐蚀科学与防护技术,2002,6(14)
    [115]刘斐,刘茂.城市燃气管线的定量风险分析[J].南开大学学报,2006,39(6):31-35
    [116] Y.-D. Jo, B. J. Ahn. Analysis of hazard areas associated with high-pressurenatural-gas pipelines[J]. Journal of Loss Prevention in the Process Industries,2002,15:179-188
    [117] Yong-Do Jo, Bum Jong Ahn. A method of quantitative risk assessment fortransmission pipeline carrying natural gas[J]. Journal of Hazardous Material A123(2005)1-12
    [118]高文豪.大系统最优化.水利水电出版社,1991
    [119]李漳南,吴荣,随机过程教程,高等教育出版社,1987
    [120]郭耀煌李军车辆优化调度问题的研究现状评述,西南交通大学学报,1995,4(30):376-382
    [121]清华大学,运筹学,2004,37-40
    [123]城市CNG加气站布局的研究,四川工业学院硕士研究生学位论文,2002
    [124]Erhan Erkut,Vedat Verter.A Framework of Hazardous Materials Transport RiskAssessment[J].Risk Analysis,1995,15(5):589-600.
    [125]Paolo Leonelli,Sarah Bonvicini,Gigliola Spadoni.New detailed numericalprocedures for calculating risk measures in hazardous materialstransportation[J].Journal of Loss Prevention in the ProcessIndustries,1999,12(6):507-515.
    [126]任常兴,基于风险分析的危险品道路运输路径优化方法研究,南开大学博士研究生学位论文,2004:73
    [127]师立晨,魏利军,吴宗之,危险品道路运输多目标路径优化方法研究,中国安全生产科学技术,2006,10,5(2):62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700