氧化亚铁硫杆菌遗传多样性及比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
T.f菌(氧化亚铁硫杆菌)是主要的浸矿细菌之一,为了探讨T.f菌浸矿机理,提高生物浸出的效率,本文从T.f菌的遗传多样性及比较蛋白质组学等方面做了系统的研究。
     本研究采用RAPD分子标记技术对7个不同来源的T.f菌菌株的遗传多样性进行了研究。首先采用正交实验方案对影响RAPD实验的一些影响因素如Mg~(2+)浓度、TAQ酶的用量等进行了优化,从而保证了RAPD反应的稳定性和可重复性。通过T.f菌的RAPD分子标记的研究,发现来源不同的T.f菌菌株之间存在较大的差异性,最大的相关系数是82.93%,最小的相关系数是44.44%。对T.f菌的氧化活性的测定也发现不同的菌株之间存在较大的差异,其中城门山T.f菌菌株活性最强,作为后面的试验菌株。
     通过测定不同培养条件下的T.f菌的生长曲线,揭示了分别在以单质硫、Fe~(2+)及磷酸盐缺失条件下T.f菌菌株的生长规律。使用pH 2.0的9K基本培养基,在30℃条件下置培养箱充气培养,记录不同时间点的活菌数。研究表明,T.f菌和其它细菌培养相似,也有静止期、对数生长期、稳定期和衰老期。在以Fe~(2+)为营养源的培养条件下,氧化亚铁硫杆菌的生长对数期为培养的第10~32hrs,T.f菌的最高浓度可达1×10~(7.5)cells/ml,在对数生长期,T.f菌复制一代所需的时间约为1.59hrs;磷酸盐缺失条件培养的T.f菌的对数期为第20~60hrs间,T.f菌的最高浓度只有约为1×10~(5.5) cells/ml,T.f菌复制一代所需时间
Thiobacillus ferrooxidans is one of the most important leaching bacteria. In order to explore the leaching mechanisms of Thiobacillus ferrooxidans, in this thesis, we have studied Thiobacillus ferrooxidans at the aspects of genetic diversity and comparative Proteomics of Thiobacillus ferrooxidans.We studied the genetic diversity of 7 Thiobacillus ferrooxdians strains from different places by exploring the method of RAPD molecular mark, and the results indicated that there existed obvious diversity. The biggest correlation efficient among different Thiobacillus ferrooxdians strain was 82.93%, and the least was 44.44%. We also experimented the Fe~(2+)-oxidation speed of different strains, the result of which indicated that there also exist difference and activity of the strain from Chenmenshan is the most, which was served as experimental bacteria in the latter experiments.We also explored the growth characteristics of Thiobacillus ferrooxidans for the purpose of performing the comparative proteome analysis of the organism. Being one of the fastidious bacteria, Thiobacillus ferrooxidans was incubated in 9K base medium under aeration. The pH of the medium was controlled at 2.0 and the temperature at 30℃.The viable count was continually measured. We found that the
    growth curves of Thiobacillus ferrooxidans followed the same lag, logarithmic, stationary and aging phase as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for adding Fe2+as energy resource, 20-60 hrs at PO4 " starvation additionally adding Fe as energy resource and 4~12 days for adding elemental sulphur as energy resource. The typical doubling times for Thiobacillus ferrooxidans under such conditions were about 1.59hrs, 3.48 hrs and 11.91 hrs respectively (measured by viable count).We researched the effect of L-methionine and L-cysteine on metal sulphide's bioleaching by Thiobacillus ferrooxidans. By adding suitable amount of the amino acid L-cysteine to acidic solution in contact with sphalerite or pyrite, the activity of Thiobacillus Ferrooxidans is largely enhanced. But, at comparable high concentration of L-cysteine, a deleterious effect in bacterial activity was found, which could be due to the toxic effect of this amino acid at higher concentrations to microbes. The adding of L-met would be greatly inhibition to the bioleaching no matter how much it had applied, which indicate L-met is harmful for bioleaching. The results of were coincidence with previous reports. The quite different effects on bioleaching between L-cysteine and L-met lies in that L-cysteine has a SH group which is helpful in metal sulfide bioleaching by Thiobacillus ferrooxidans.We also studied the effect of Cu2+> Cd2+ on metal sulphide's
    bioleaching by Thiobacillus ferrooxidans. Results indicated that these two kinds of metal ions could inhibit the activity of Thiobacillus ferrooxidans undomesticated at different degrees. On the contrary, the leaching activity of Thiobacillus ferrooxidans domesticated by corresponding metal ion, would not be affected even when certain amount of metal ions (Cu or Cd ) was added. All these research work has given clues and foundation for latter further comparative proteomics research of Thiobacillus ferrooxidans cultivated under different condition.To explore the proteomics' experiments for Thiobacillus ferrooxidans, we firstly optimized 2-dimential electrophoresis, such as focusing time at 8000 voltages, the pH range of prefab dry strips, the amount of protein loaded et ah Results indicated that the separation results would be excellent when adopting pH4-7 prefab dry strips, 5 hrs' focusing at 8000 voltages, more than 400ug protein loaded, and there would be about 540 protein spots. We also compared the methods of gel-staining, and found that the "blue Silver" colloidal Coomassie Blue staining would get good separation effect when the protein loaded was more than 900fxg, and the superority for Coomassie Blue staining was that it had excellent compatibility with latter protein-identification by mass spectrum when compared with silver staining.In this thesis, we studied the proteome response of Thiobacillus ferrooxidans to phosphate starvation. The proteins expressed of
    Thiobacillus ferrooxidans were separated by high resolution two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension (IPG-DALT) combining pH3-10 with pH4-7, and in the 12.5% SDS-PAGE for the second dimensional separation. The separated proteins were identified by using matrix-assited laser desorption/time-of-flight mass spectrometry (MALDI-TOF). We got clear and good reproducibility of two dimensional electrophoresis gel images for phosphate-starvation cultivated Thiobacillus ferrooxidans and its comparison. The resulted Images were quantitatively analyzed using PDQuest 2D analysis software. Image analysis indicated that about 540+15 protein spots were visualized by silver staining each gel. t was also indicated that there existed more than 70 differential-expressed protein spots, among which the amount of 21 proteins expressed was increased at the cultivation condition of phosphate starvation, while 50 protein decreased. 10 Differential-expressed protein spots were excised and subjected to in-gel digestion with trypsin. The resulted peptides were measured by MALDI-TOF, and 6 spots were identified through Mascot searching in genome database. Among the proteins identified, there included NADH Dehydrogenase I chain D, Recombination protein recA, RNA helicase, AP2 domain-containing transcription factor et al. Due to the lackage of the technology of 2-DE, which is unable to separate low molecular proteins especially those of low than lOkDa, we adopted three
    types of SELDI protein chips to study on the low molecular part of Thiobacillus ferrooxidans' proteome response to phosphate starvation. Results indicated that there were 13 distinct differential-expressed proteins, the molecular weights of which are between 6360.18 ~ 15659.5 IDa.We also studied the comparative proteomics of Thiobacillus ferrooxidans grown under different energy resources (Fe2+ and sulphur). The proteins expressed of Thiobacillus ferrooxidans were separated by high resolution two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension (IPG-DALT) combining pH3-10 with pH4-7, and in 12.5% SDS-PAGE for the second dimension. The separated proteins were identified by using matrix-assited laser desorption/time-of-light mass spectrometry (MALDI-TOF) and electrospray ionization mass spectrometry (ESI-MS/MS). The resulted Images were quantitatively analyzed using PDQuest 2D analysis software. Image analysis indicated that about 540+15 protein spots were visualized by silver staining in a gel. It was also indicated that there existed almost 80 differential-expressed protein spots, among which the amount of 45 proteins expressed was increased at the cultivation condition of phosphate absence, while 36 protein decreased. 30 Differential-expressed protein spots were excised and subjected to in-gel digestion with trypsin. The resulted peptides were measured by
    MALDI-TOF/MS, and 20 spots were identified through Mascot search in genome database. Among the proteins identified, there are PcaR protein, Acyl-coA Dehydrogenase, ATP synthase Beta chain, RNA polymerase beta prime subunit, NAP/NADP transhydrogenase alpha subunit Subunit, Enoyl-CoA hydratase/carnithine racemase, Ribose-5-phosphate Isomerase, ATP synthase alpha chain, short chain dehydrogenase, Polyribonucleotide nucletidyltransferase, Cytochrome C, cytochrome oxidase II, ATPase components of ABC transporters with duplicated ATPase domains, long-chain-fatty-acid-CoA ligase (fadD-4), et ah We also adopted three types of SELDI protein chips to study the low molecular part of thiobacillus ferrooxidans' proteome, and there are 35 differential expressed proteins between the range of 5642.43-20887.64 Da.
引文
[1] D.M.Miller and G.S.Hansford, Minerals Eng., 1992, 6:613-629.
    [2] T.G.Carnahan,黄金提取技术,北京:北京大学出版社,1991。
    [3] N, Ohmura and H.Saiki, Biotechnol. Bioeng., 1994,44:125-131.
    [4] N.Mjoli, C.F.Kulpa, Biohydrometallurgy, Sci.Technol. Lett. (1988):89-102.
    [5] R.W.Smith, M.Misra and J.Dubel, bioprocessing and the future [J]. Minerals Eng., 1991, 4(7-11):1127-1141.
    [6] T.Yamanaka, Y.Fukumori, Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans.FEMS Microbiol.Rev. 1995,17:401-413.
    [7] D.R.Casimiro, A.Toy-Palmer, R.C.Blakell, H.J.Dyson, Gee synthesis, high-level expression, and mutagenesis of Thiobacillus ferrooxidans rusticyanin: His 85 is a ligand to the blue copper center. Biochemistry, 1995, 34:6640-6648.
    [8] J.F.Hall, S.S.Hasnain, W.J.Ingledew, The structural gene for rusticyanin from Thiobacillus ferrooxidans: cloning and sequencing of the rusticyanin gene.FEMS Microbiol.Lett. 1996, 137:85-89.
    [9] A.Bengrine,N.Guiliani,C.Appia-Ayme,E.Jedlicki,D. S.Holmes,M.Chippaux,V.Bo nnefoy, 54A54 Area Tematica: Bioquimica Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC33020 strain[J].Biochim.Biophys.Acta, 1998,1443:99-112.
    [10] Sand W, Gehrke T, Jozsa P-G, Schippers A Biochemistry of bacterial leaching-direct vs indirect bioleaching[J]. Hydrometallurgy. 2001, 59:159-175.
    [11] A.Schippers, P.-G.Jozsa, W.Sand, Sulfur chemistry in bacterial leaching of pyrite. Appl.Environ.Microbiol. 1996, 62:3424-3431.
    [12] J.Rojas, M.Giersig, H.Tributsch, Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation. Arch.Microbiol. 1995, 163:352-356.
    [13] Meyer G, Schneider-Merck T, Bohme S, Sand W A simple method for investigations on the chemotaxis of A. ferrooxidans and D. vulgaris[J]. Acta Biotechnol.2002, 22:391-399.
    [14] W.Sand,T.Gerke,R.Hallmann,A.Schippers, Sulfur chemistry, biofilm, and the (in)direct attack mechanism a critical evaluation of bacterial leaching[J].Appl. Microbiol.Biotechnol. 1995, 43:961-966.
    [15] V.Buonfiglio, M.Polidoro, F. Soyer, P.Valenti, J.Shively, A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans. J.Biotechnol. 1999, 72:85-93.
    [16] K.BHallberg, M.Dopson, E.B.Lindstrom. Reduced sulfur compound oxidation by Thiobacillus caldus.J Bacteriol. 1996,178:6-11.
    [17] J.Rojas, M.Giersig, H.Tributsch, Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation. Arch.Microbiol. 1995, 163:352-356.
    [18] J.C.Oppon, R.J.Sarnovsky, N.L.Craig, D.E.Rawlings, A Tn7-1ike transposon is present in the glmUS region of the obligately chemoautolithotrophic bacterium Thiobacillus ferrooxidans. J.Bacteriol. 1998, 180:3007-3012.
    [19] R.Ca iz, L.Gaete, E.Jedlicki, J.Yates, D.S.Holmes, O.Orellana, Transposition of IST2 in Thiobacillus ferrooxidans. Mol.Micriobiol. 1994, 12:165-170.
    [20] ANETTE HU "BNER, WILLIAM HENDRICKSON.A Fusion Promoter Created by a New Insertion Sequence, IS1490, Activates Transcription of 2,4,5-Trichlorophenoxyacetic Acid Catabolic Genes in Burkholderia cepacia AC1100[J]. JOURNAL OF BACTERIOLOGY, Apr. 1997, p. 2717-2723.
    [21] J.A.Schrader, S.Holmers, Phenotypic switching of Thiobacillus ferrooxidans. J.Bacteriol. 1988, 170:3915-3923.
    [22] Rawling DE, Woods DE. Mobilization of Thiobacillus ferrooxidans plasmids among Escherichia coli strains. Appl Environ Microbiol. 1985, 49(5):1323-1325.
    [23] D.E.Rawlings, T.Kusano, Molecular genetics of Thiobacillus ferrooxidans[J].Microbiol.Rev. 1994, 58:39-55.
    [24] M.Drolet, P. Zanga, P. C.K.Lau, The mobilization and origin of transfer regions of a Thiobacillus ferrooxidans plasmid: relatedness to plasmids RSF1010 and pSC101. Mol.Microbiol. 1990,4:1381-1391.
    [25] Kusano T, Sugawara K, Inoue C, Takeshima T, Numata M, Shiratori T. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant as the selective marker by electroporation[J]. J Bacteriol. 1992, 174(20):6617-6623.
    [26] D.E.Rawlings, T.Kusano, Molecular genetics of Thiobacillus ferrooxidans [J].Microbiol. Rev. 1994, 58:39-55.
    [27] Peng, JB, Yan WM, Bao XZ. Plasmid and transposon transfer to Thiobacillus ferrooxidans [J]. J Bacteriol.1994, 176(10):2892-2897.
    [28] 刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的运用[J].湖北农业科学,1998,1:33-35.
    [29] 郑敏,罗玉萍.真核生物基因组多态性分析的DNA指纹技术[J].生物技术,1999,9(3):35-38.
    [30] 黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,15(4):19-22.
    [31] 危文亮,赵应忠.分子标记在作物育种中的应用[J].生物技术通报,2000,16(2):12-16
    [32] Zabeau M, Vos P. Selective restriction fragment amplication: A general method for DNA fingerprinting[P]. Europeau Patent Application. No. 0534858 Al, 1993.
    [33] Lander ES. The new genomics: global views of biology [J].Science, 1996, 274(528):536-539.
    [34] Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome [J]. Science, 1998, 280:1077-1082.
    [35] Risch N, Merikangas K. The future of genetic studies of complex human diseases [J].Science, 1996, 273:1516-1517.
    [36] 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001.7-21.
    [37] Zietkiewicz E,Rafalski A,Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification[J]. Genomics, 1994, 20: 176-183.
    [38] Davis,T M. Template mixing: A method of enhancing detection and interpretation of codominant RAPD markers[J]. Theor. Appl.Genet. 1995, 91 (4): 582-588.
    [39] Haymer, D S. Random amplified polymorphic DNAs and microsatellites: what are they, and can they tell us anything we don't already know ?Ann[J]. Entomol. Soc. Am., 1994, 87 (6): 717-722.
    [40] Tsumura Y,Ohba K,Strauss S H. Diversity and inheritance of inter-simple sequence polymorphisms in Douglas-fir (Pseu dotsuga menziesii) and sugi (Cryptomeria japonica) [J]. Theor. Appl. Genet., 1996, 92: 40-45.
    [41] Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers[J]. Theor.Appl. Genet., 1997, 95:408-417.
    [42] Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome [J].Science, 1989, 245:1434-1435.
    [43] F,Laigret F,Bove J M, et al. DNA fingerprinting A useful tool for determination of genetic origin and diversity analysis in citrus[J]. HortScience, 1995, 30: 1063-1067.
    [44] Novy R G, Vorsa N, Patten K. Identifying genotypic heterogenety in'McFarlin'cranberry: A random amplified polymorphic DNAand phenotypic analysis[J]. J. Amer. Soc. Hort. Sci., 1996, 121: 210-215.
    [45] Gogorcena Y,Arulsekar S,Dandekar A M,et al. Molecular markers for grape characterization [J]. Vitis, 1993, 32:183-185.
    [46] Deng Z N,Gentile A,Nicolosi E,et al. Identification of in vivo and in vitro lemon mutants by RAPD markers [J]. J. Hort. Sci., 1995, 70:117-125.
    [47] Patrick J C, Susan K B, Norman F W. Random Amplified Polymorphic DNA-based Genetic Linkage Maps of Three Cultivars[J].J. Amer.Hort. Sci., 1997, 122(3): 350-359.
    [48] 金勇丰,张耀洲,陈大朋,等.桃早熟芽变品种“大观一号”的RAPD分析及其特异片段的克隆[J].果树科学,1998,15(2):103-106.
    [49] Koller B,Lehmann A,Mcpermott J M,et al. Identification of apple cultivars using RAPD markers[J]. Theor. Appl. Genet., 1993,85: 901-904.
    [50] 郑成超,温孚江.DNA分子标记技术与作物品种纯度鉴定[J].山东农业大学学报,1997,28(4):499-504.
    [51] Kahn P. From genome to proteome; looking at a cell's protein[J]. Science, 1995, 270: 369-370.
    [52] Nowak R. Entering the postgenome era[J]. Science. 1995,270: 368-369.
    [53] M.R.Wilkins, J.C.Sanchez, A.A.Gooley, R.D.Appel, I.Humphery-Smith, D.F.Hochstrasser, K.L.Williams. Progress with proteome projects: Why all proteins expressed by genome should be identified and how to do it[J]. Bio-techn.Genet.Eng.Rev. 1995, 13:19.
    [54] Stein RC, Zvelebil MJ. The application of 2D gel-based proteomics methods to the study of breast cancer. J Mammary Gland Biol Neoplasia, 2002, 7: 385-393.
    [55] Yanagida M. Function proteomics: current achievement[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 771(1-2):89-106.
    [56] O'Farrell P.H., High-resolution two-dimensional electro-phoresis of proteins[J]. J.Biol.Chem. 1975, 250:4007-4021.
    [57] A.Gorg, W.Postel. S.Gunther, The current state of two-dimensional electrophoresis with immobilized pH gradients [J].Electrophoresis, 1988, 9:531-546.
    [58] L.Anderson, Two dimensional Electrophoresis: Operation of the ISO-DALT System, 1st edn., Large Scale Biology Press, Washington, D.C., 1988.
    [59] Fountoulakis M, Takacs M-F, Takscs B: Enrichment of low-copy-number gene products by hydrophobic interaction chromatography [J]. J Chromatogr A 1999, 833:157-168.
    [60] Chambers G, Lawrie L, Cash P, et al. Proteomics: a new approach to the study of disease[J]. J Pathol, 2000, 192: 280-288.
    [61] M.R.Wilkins, J.C.Sanchez, A.A.Gooley, R.D.Appel, I.Humphery-Smith, D.F. Hochstrasser, K.L.Williams. Progress with proteome projects: Why all proteins expressed by genome should be identified and how to do it[J]. Bio-techn.Genet.Eng.Rev. 1995, 13:19.
    [62] M.R.Wilkins, C.Pasquali, R.D.Appel, K.OumO.Golaz, J.C.Sanchez, J.X.Yan, A.A.Gooley, G.Hughes, I.Humphery-smith, K.L.Williams, D.F. Hochstrasser. From proteins to proteomes: large scale protein identification by two dimensional electrophoresis and amino acid analysis [J]. Bio-techniques, 1996, 14:61.
    [63] S.J.Cordwell, M.R.Wilkins, A.Cerpapoljak, A.A.Gooley, M.Duncan, K.L. Williams, L.Humphery-Smith. Cross-species identification of proteins separated by two-dimensional gel electrophoresis using matrix-assisted laser desorption ionisation/time-of-flight mass spectrometry and amino acid composition[J]. Electro-phoresis. 1995,16:438-443.
    [64] V.C.Wasinger, S.J.Cordwell, A.Cerpa-Poljak, J.X.Yan, A.A.Gooley, M.R.Wilkins,M.W.Duncan, R.Harris, K.L.Williams, I.Humphery-Smith, Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J].Electrophoresis, 1995,16:1090.
    [65] Lay JO. MALDI-TOF mass spectetry of bacteria[J]. Mass Spectram Rev, 2001, 20: 172-194.
    [66] Von Eggeling F, Davies H, Lomas L, et al. Tissue-specific microdissection coupled with proteinchip array technologies: applications in cancer research [J]. Biotechniques, 2000, 29:1066-1070.
    [67] Haab BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions [J].Genome Biot, 2001, 2(2): research 0004. 1-2.
    [68] Tatyana A. Zhukov, Roy A. Johanson, Alan B. Cantor, Robert A. Clark, Melvyn S. Tockman. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry[J]. Lung Cancer, 2003, 40:267-279.
    [69] May M, Heebner G. Laboratory technology trends: the power of proteomics [J]. Science, 2001,292(5515):317-335.
    [70] Harvey DJ. Identification of protein-bound carbohydrates by mass spectrometry [J]. Proteomics, 2001, 1:311-328.
    [71] Graves PR, Haystead TA. Molecular biologist's guide to proteomics[J]. Microbiol Mol Biol Rev, 2002, 66: 39-63.
    [72] Dongre AR, Opiteck G, Cosand WL, et al. Preoteomics in the post-geneome age[J]. Biopolymers, 2001, 60:206-211.
    [73] Yanagida M. Function proteomics: current achievement [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 771(1-2):89-106.
    [74] Kaltschmidt E., Wittnann H.G., Ribosomal proteins Ⅶ: Two dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins[J]. Anal. Biochem. 1970,36:401-412.
    [75] O'Farrell P.H., High-resolution two-dimensional electro-phoresis of proteins [J].J.Biol.Chem. 1975,250:4007-4021.
    [76] A.Gorg, W. Postel. S.Gunther, The current state of two-dimensional electro-phoresis witimmobilized pH gradients[J].Electrophoresis, 1988, 9:531-546.
    [77] M.R.Wilkins, C.Pasquali, R.D.Appel, K.OumO.Golaz,J.C.Sanchez, J.X.Yan, A.A.Gooley, G.Hughes, I.Humphery-smith, K.L.Williams,D.F. Hochstrasser, From proteins to proteomes: large scale protein identification by twodimensional electrophoresis and amino acid analysis[J].Bio-techniques, 1996,14:61.
    [78] Kiran Kumar Challapalli, Claus Zabel, Johannes Schuchhardt, Angela M. KaindlJoachim Klose Hanspeter Herzel. High reproducibility of large-gel two-dimensional electrophoresis[J]. Electrophoresis 2004, 25, 3040-3047.
    [79] L.Anderson, Two dimensional Electrophoresis: Operation of the ISO-DALT System, 1st edn., Large Scale Biology Press, Washington, D.C., 1988.
    [80] M.F.Lopez, W.F.Patton, Reproducibility of polypeptide spot po-sitions in two-dimensional gels run using carrier ampholytes in the isoelectric focusing dimension [J]. Electrophoresis, 1997, 18:338.
    [81] R.A.VanBogelen, K.Z. A bshire,A. Pertsemlidis, R.L.Clark, P.C.Neidhardt,et al. Eschetichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn., ASM Press, Washington, D.C., 1996,p.2067.
    [82] Gygi S.P., Rochon Y, Franza B.R., Aebersold R., Correlation between protein and mRNA abundance in yeast[J]. Mol. Cell Biol. 1999, 19:1720-1730.
    [83] Lan R., Reeves P. R., Intranspecies variation in bacterial genomes: the need for a species genome concept[J]. Trends Microbiol. 2000, 8:396-401.
    [84] Alm B., A., Trust T. J., Analysis of genetic diversity of Helicobacter pylori: The tale of two genomes[J]. J. Mol. Med.1999, 77:834-846.
    [85] Shirai M., Hirakawa H., Kimoto M., Tabuchi M., Kishi F., Ouchi K., Shiba T., et al. Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWLO29 from USA, Nucl. Acid Res. 2000, 28:2311-2314.
    [86] Jungblut P,R., Schaible U.E., Mollenkopf H.J., Zimny Amdt U., et al. Comparative proteome analysis of Mycoacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens[J]. Mol, Microbiol. 1999, 33:1103-1107.
    [87] Luu Phan-Thanh, Thierry Gormon. Stress proteins in Listeria monocytogenes [J].Electrophoresis, 1997, 18:1464-1471.
    [88] Mannazzu L, Guerra E, Ferretti R, et al. Vanadate and copper induce overlapping oxidative stress responses in the vanadate-tolerant yeast Hansenula polymorpha. Biochimica et Biophysica Acta, 2000, 1475:151-156.
    [89] Guerreiro, N., M. Djordjevic, and B. Rolfe. Proteome analysis of the model microsymbiont Sinorhizobium meliloti: isolation and characterization of novel proteins [J]. Electrophoresis. 1999, 20:818-825.
    [90] Chiosis G, Boneca IC. Selective cleavage of D-Ala-D-lac by small molecules re-sensitizing resistant bacteria to vanconycui[J].Science, 2001, 293(55340): 1487-1489.
    [91] Lebceuf C, Leblanc L, Auffray Y. Characterization of the ccpA Gene of Enterococcus faecalis: Identification of Starvation-Inducible Proteins Regulated by CcpA[J].Jounal of Bacteriology, 2000,182 (20):5799-5806.
    [92] Antelmann H, Scharf C, Hecker M. Phosphate Starvation-Inducible Proteins of Bacillus subtilis: Proteomics and Transcriptional Analysis [J].Journal of Bacteriology, 2000, 182(16):4478-4490.
    [93] M.Ausubel.k.Brent.R.E.Kingston.D.D.Moore, J.G.Seidman, J.A.Smith, K.Struhl, Current Protocols in Molecular Biology, Greene, New York, 1992.
    [94] Ricardo Amils, Nagore Irazabal, David Moreira, Jose P.Abad, Irma Marin. Genomic organization analysis of acidophilic chemolithotrophic bacteria using pulsed field gel electrophoretic techniques[J]. Biochimie, 1998, 80:911-921.
    [95] Willams J G K, Kublik A R, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nuclear Acids Research, 1990, 18(22):6531-6535.
    [96] 张庆华,陆承平。绿色荧光蛋白标记的嗜水气单胞菌在越冬水体的饥饿存活及复苏[J].水生生物学报,2002,26(5):465-461.
    [97] Vogel,A.I. A textbook of quantitative inorganic analysis [J]. Longman, London, United Kingdom. 1962; p.309-319.
    [98] Usin PA, Sharp JE.Enhancement of bioleaching systems for sulfide ores using nutrient additives[P]. 1994,US Patent No.94-194676.
    [99] Osterberg R. The origins of metals ions occurring in living systems. In: Berthon G, editior. Handbook of Metal ligand Interactions in Biological Fluids[J]. New York: Marcel Dekker, 1995:10-28.
    [100] Tributsch H,Rojas-Chapana JA,Bartels CC,Ennaoui A,Hofmann W.Role of transient iron sulfide films in microbial corrosion of steel[J].Corrosion 1998;54(3):216-27.
    [101] H.trbutsch, J.A.Rojas-Chapana. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity[J].Electrochimica Acta, 2000, 45: 4705-4716.
    [102] Abd El-Halim AM.Alonso-Vante N, Tributsch H.Iron/Sulphur center mediated photoinduced charge transfer at(100) oriented pyrite surfaces[J]. J Electroanal Chem 1995; 399:29-39.
    [103] J.A. Rojas-Chapana, H. Tributsch. Bio-leaching of pyrite accelerated by cysteine[J]. Process Biochemistry, 2000, 35:815-824.
    [104] Zuo X, Speicher DW. Quantitative evaluation of protein recoveries in two-dimendional electrophoresis with immobilized pH gradients [J].Electrophoresis.2000, 21 (14):3035-3047.
    [105] Blum, H., Beier, H., Gross, HJ, Improved Silver Staining of Plant Proteins, RNA and DNA in Polyacrylamide Gels[J], Electrophoresis, 1987,8, 93-99.
    [106] Giovanni, C., Maurizio, B., Luca, M., et al., Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis. 2004,25,1327-1333.
    [107] CORBETT J M, DUNN M J, POSCH A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an inter laboratory comparison[J]. Electrophoresis, 1994, 15: 1205-1211.
    [108] 丁勤学,阕海萍,郭尧君,等。成年和老年小鼠脑蛋白质组双向电泳图谱比较[J]。生物化学与生物物理进展,2001,28,5:683-687.
    [109] PASQUALI C, FIALKA I, HUBER L A. Preparative two-dimensional gel electriphoresis of membrane proteins[J].Electrophoresis, 1997,18,14:2573-2581.
    [110] Jerez, C.A., Seeger, M., Amaro, A.M., Phosphate starvation affects the synthesis of outer membrane proteins in Thiobacillus ferrooxidans[J]. FEMS Microbiol. Lett. 1992, 77, 29-33.
    [111] Guiliani, N., Jerez, C.A., Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans[J]. Appl. Environ. Microbiol. 2000, 66, 2318-2324.
    [112] M. Vera, N. Guiliani, C.A. Jerez. Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans [J].Hydrometallurgy, 2003, 71:125-132.
    [113] Xue GP., An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a) (C/t)CGAC motif[J]. Biochim Biophys Acta. Aug, 2002, 1577(1): 63-72.
    [114] Hutchens, T.W., and Yip,T-T.. New desorption strategies for the mass spectrometric analysis of macromolecules[J]. Rapid Commun Mass Spectrum, 1993, 7:576-580.
    [115] Weinberger SR, Morris TS, Pawlak M. Recent trends in protein biochip technology. Pharmacogenomics[J].2000, 1(4):395-416.
    [116] W einberger SR, Dalmasso EA, Fung ET. Current achievements using proteinChip Array technology[J]. Curr Opin Chem Biol, 2002, 6: 86-91.
    [117] Mansch, R. and Sand, W. (1992) Acid-stable cytochromes in ferrous ion oxidizing cell-free preparations from Thiobacillus ferrooxidans[J]. FEMS Microbiol. Lett. 92, 83-88.
    [118] Blake, R.C. and McGinness, S. Electron transfer proteins of bacteria that respire on iron[J]. In: Biohydrometallurgical Technologies, 1993, Vol. 2 (Torma, A.E., Apel, M.L. and Brierley, C.L., Eds.), pp. 615-628. The Minerals, Metals and Materials Society, Warrendale, PA.
    [119] Yamanaka, T. and Fukumori, Y. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 1995, 17:401-413.
    [120] Ingledew, W.J., Cox, J.C. and Halling, P.J. A proposed mechanism for energy conservation during Fe2a oxidation by Thiobacillus ferrooxidans; chemiosmotic coupling to net Ha infux. FEMS Microbiol. Lett. 1977, 2:193-197.
    [121] Blake, R.C. Ⅱ and Shute, E.A. Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron: rusticyanin oxydoreductase [J]. Biochemistry, 1994, 33:9220-9228.
    [122] Giudici-Orticoni, M.-T., Nitschke, W., Cavazza, C. and Bruschi, M. Characterization and functional role of a cytochrome c4 involved in the iron respiratory electron transport chain of Thiobacillus ferrooxidans. In: Biomine, 1997, pp. PB4.1-PB4.10. The Australian Mineral Foundation.Chile.
    [123] 王希成,生物化学[M]。清华大学出版社,2001,p270。
    [124] Valkova-Valchanova, M.B. and Chan, S.H.P. Purification and characterization of two new c-type cytochromes involved in Fe2a oxidation from Thiobacillus ferrooxidans[J]. FEMS Microbiol. Lett. 1994, 121: 61-70.
    [125] Cavazza, C. and Bruschi, M. Iron oxidation by Thiobacillus ferrooxidans: characterization of two electron transfer protein. In: Biohydrometallurgical Processing, Vol. Ⅱ (Jerez, C.A., Vargas, T., Toledo, H. and Wiertz, J., Eds.), 1995, pp. 97-107. University of Chile.
    [126] Elbehti, A., Asso, M., Guigliarelli, B. and Lemesle-Meunier, D. Characterization of the three membrane bound metallo enzymes required to postulate the existence of a bc-type complex in T. ferrooxidans. In: Biomine, 1997,pp. PB2.1-PB2.9.The Australian Mineral Foundation
    [127] Corinne, A. A.., Abderrahmane, B., Characterization and expression of the co-transcribed cycl and cyc2 genes encoding the cytochrome c4(c552) and a high-molecular-mass cytochrome c from Thiobacillus ferrooxidans ATCC 33020. FEMS Microbiology Letters. 1998,167:171-177.
    [128] Murr, L. E., A. E. Torma, and J. A. Brierley. Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, 1978, New York,
    [129] N.Y. Tributsch, H., and J. C. Bennett. 1981. Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metals[J]. J. Chem. Technol. Biotechnol. 31:565-577.
    [130] Sand, W., T. Gehrke, R. Hallmann, and A. Schippers. Sulfur chemistry, biofilm, and the (in) direct attack mechanism-a critical evaluation of bacterial leaching[J]. Appl. Microbiol. Biotechnol. 1995, 43:961-966.
    [131] Savage, D. C., and M. Fletcher. Bacterial adhesion, 1985, p. 349-351. Plenum Press, New York, N.Y.
    [132] Tilman Gehrke, Judit Telegdi, Dominique Thierry, and Wolfgang Sand. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching[J]. Applied and Enviromental Microbiology. 1998, 64(7): 2743-2747.
    [133] Gehrke T, Hallmann R, Kinzler K, Sand WThe EPS of Acidithiobacillus ferrooxidans-a model for structure-function relationships of attached bacteria and their physiology[J]. Water Sci Technol, 2001, 43:159-167.
    [134] Sunil Nathl et.al (2000) Kinetic Modeling of ATP Synthesis by ATP Synthase and Its Mechanistic Implications[J]. Biochemical and Biophysical Research Communications 272,629-633.
    [135] Brown, L.D., Dennehy, M.E. and Rawlings,D.E. The F1 genes of the F1F0 ATP synthase from the acidophilic bacterium Thiobacillus ferrooxidans complement Escherichia coli F1 unc mutants[J].FEMS Microbiol. Lett. 1994,122 (1-2): 19-25.
    [136] Robert K. Nakamoto et. al, Molecular mechanisms of rotational catalysis in the F0F1 ATP synthase[J]. Biochimica et Biophysica Acta, 2000, 1458:289-299.
    [137] Steven B. Vik et.al A model for the structure of subunit a of the Escherichia coli ATP synthase and its role in proton translocation[J]. Biochimica et Biophysica Acta, 2000, 1458:457-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700