无碴轨道大跨度预应力混凝土桥梁后期徐变变形和控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无碴轨道因轨道稳定性、刚度均匀性和耐久性好,线路平顺性高,维修工作量显著减少等优点,在国内外高速铁路中的应用日益广泛。但无碴轨道可调量非常有限,对于特大跨度预应力混凝土桥梁,铺轨后,由于混凝土的徐变变形,引起桥梁的上拱或下挠以及轨道的不平顺性。广珠城际轨道交通容桂水道桥是一座(108+2×185+115)m无碴轨道预应力混凝土连续刚构桥,该桥之前国内外还没有在如此大跨度预应力混凝土桥梁上采用无碴轨道。本文以该桥为工程背景,通过徐变变形试验和有限元分析,对高速铁路无碴轨道大跨度预应力混凝土桥梁后期徐变变形和控制问题进行了深入、系统的研究。主要工作和创新性成果如下:
     1.研究了混凝土结构徐变变形计算理论和计算方法,考察了国内外规范和计算软件对于大跨度预应力混凝土桥梁徐变变形计算的适用性,确定了广珠城际轨道交通容桂水道桥后期徐变变形的计算理论和计算方法,完成了后期徐变变形的分析计算。
     2.完成了大量的混凝土徐变性能试验,考察了粉煤灰和矿粉等掺量对C60高性能混凝土徐变性能的影响,提出了广珠城际无碴轨道大跨度预应力混凝土桥梁混凝土配合比,并完成了现场混凝土性能试验验证。
     3.模拟容桂水道桥受力状态,采用现场混凝土原材料和配合比,设计、制作了3根预应力混凝土试验梁,完成了762天的徐变变形试验,研究了预应力混凝土梁徐变变形发展规律、预应力加载龄期、恒加载龄期、环境温度和湿度等因素对预应力混凝土梁后期徐变变形的影响。结果表明,适当延后预应力张拉时间和铺轨时间可有效控制无碴轨道预应力混凝土梁的后期徐变变形。
     4.对比研究了后期徐变变形各种控制方法的控制效果,结合容桂水道桥的实际施工条件,提出了后期徐变变形联合控制措施并应用于实桥。计算结果表明,该法可行,有效,铺轨20年后,边跨后期变形控制在12.8mmm以内,中跨后期变形控制在21.9mm以内,远小于规范规定的无碴轨道桥梁变形限值。
     上述部分研究成果已成功应用于广珠城际容桂水道桥的设计、施工,取得了良好的社会、经济效益。
Ballastless track is applied increasingly widespread in high-speed railway home and abroad for its stability, uniform rigidity, endurance, high smoothness and remarkably less repairment. However, the adjustability of ballastless track is very small. Therefore, as to large span prestressed concrete bridge, creep deformation of concrete will cause hogging or deflection and unsmoothness of track. The Ronggui Bridge on Guangzhou-Zhuhai Inter-city Rail is a ballastless track prestressed concrete continuous rigid frame bridge with spans layout of (108+2×185+115) m. Before this bridge ballastless track has not been applied in such a large span prestressed concrete bridge home and abroad. Taking this bridge as background, through creep deformation tests and FEM analysis, the problems of late creep deformation and its control on high-speed railway ballastless track large span prestressed concrete bridge were deeply and systematically studied. Main work and creative results were listed below.
     1. Calculation theory and method of creep deformation of concrete structures were studied. The applicability of standards and calculation software home and abroad on large span prestressed concrete bridges was investigated. Calculation theory and method of post creep deformation of the Ronggui Bridge on Guangzhou-Zhuhai Inter-city Rail were determined and analytical calculation of post creep deformation was finished.
     2. A number of tests of creep properties of concrete were finished and influences of add contents of fly ash and slag on creep properties of high-performance concrete C60 were investigated. The mix ratio of concrete used on ballastless track large span prestressed concrete bridges was put forward and in-situ tests of performance of concrete were finished.
     3. Three prestressed concrete test beams were constructed by simulating mechanical behavior of Ronggui Bridge and applying raw material and mix ratio of in-situ concrete and creep deformation tests of 762 days were finished. The developing laws of creep deformation of prestressed concrete beams, influences of prestress age, second term dead load age, environmental temperature and humidity on post creep deformation of prestressed concrete beams were studied. The results show that post creep deformation of ballastless track prestressed concrete beams can be effectively controlled by postpone the time of prestressing and laying track appropriately.
     4. Controlling effects of various controlling methods of post creep deformation were comparatively studied. Combined with practical construction conditions of Ronggui Bridge, joint controlling measures of post creep deformation were proposed and applied on this bridge. Calculation results show that the method is feasible and effective. The side-span and middle-span post creep deformations are controlled in 12.8mm and 21.9mm respectively. They are much smaller than the limit of ballastless track bridges in standard.
     Parts of the above-mentioned studying results have been successfully applied in design and construction of Ronggui Bridge. Good social and economic benefits are achieved.
引文
[1]马明.(108+2×185+115)m连续刚构收缩与徐变变形试验研究[J].铁道工程学报,2010,(10):67-72
    [2]刘杰.预应力混凝土结构徐变效应的计算理论及计算方法研究[D]:[硕士学位论文].长沙:中南大学,2009:8-30
    [3]梁景明.客运专线桥梁无碴轨道铺设施工工艺[J].城市建设,2010,(22):413
    [4]童江勇.大跨度预应力混凝土无碴轨道连续梁桥后期徐变变形的研究[D]:[硕士学位论文].长沙:中南大学,2008:6,10-12
    [5]倪峰,王晓琴.客运专线新型无碴轨道技术的研究[J].山西建筑,2009,35(30):281-282
    [6]江成,范佳,王继军.高速铁路无碴轨道设计关键技术[J].中国铁道科学,2004,25(2):42-47
    [7]何华武.我国客运专线应大力发展无碴轨道[J].中国铁路,2005(1):11—15
    [8]何文娟.无碴轨道桥梁的徐变效应分析[D]:[硕士学位论文].重庆:西南交通大学,2008:1-2
    [9]刘家锋,刘春彦.秦沈客运专线桥梁综述及高速铁路桥梁建设的思考[J].RAILWAY STANDARD DESIGN,2004, (7):134-137
    [10]徐鹤寿.秦沈客运专线建造技术[J].中国铁道科学,2003,24(2):1-6
    [11]江迅.呼啸而来的中国高铁[J].决策与信息(上旬刊),2010,(4):36-37
    [12]郑健.中国高速铁路桥梁建设关键技术[J].中国工程科学,2008,10(7):18-27
    [13]赵金刚.无砟轨道大跨度连续刚构桥徐变变形研究[D]:[硕士学位论文].重庆:西南交通大学,2009
    [14]许佑顶.高速铁路无砟轨道扣件设计要点[J].铁道工程学报,2010,27(4):40—43
    [15]辛学忠.德国铁路无碴轨道技术分析及建议[M].北京:铁道标准设计,2005(2)
    [16]中华人民共和国行业标准.新建时速300-350公里客运专线铁路设计暂行规定(铁建设[2007]147号).北京:中国铁道出版社,2007,66-73
    [17]中华人民共和国行业标准.新建时速200—250公里客运专线铁路设计暂行规定(铁建设[2005]140号).北京:中国铁道出版社,2005
    [18]中华人民共和国行业标准.新建时速200公里客货共线铁路设计暂行规定(铁建设[2008]285号).北京:中国铁道出版社,2005
    [19]杨建军.二次预应力混凝土组合梁徐变效应研究[D].[硕士学位论文].长沙:湖南大学,2009:5,9-11
    [20]王志民.预应力混凝土徐变问题对大跨度连续梁结构影响的研究与实践[D].[硕士学位论文].天津:天津大学,2003:1-25
    [21]CEB欧洲国际混凝土委员会.1990年CEB-FIP模式规范(混凝土结构).中国建筑科学研究院结构所规范室译.1991
    [22]BS 5400.英国桥梁规范
    [23]ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures (209-82). America Concrete Institute. Detroit,1982
    [24]赵庆新,孙伟,郑克仁等.粉煤灰掺量对高性能混凝土徐变性能的影响及其机理[J].硅酸盐学报,2006,34(4):446-451
    [25]邹小江,寿楠椿,江素华,邹巧鸿.混凝土徐变系数与徐变度的对比分析[J].郑州工业大学学报(自然科学版),2001,22(1)
    [26]秦鸿根,孙伟,潘钢华,李松泉,万珊珊,姜阳.桥用高性能粉煤灰混凝土性能研究[J].粉煤灰综合利用,2000,(5):23-25
    [27]赵庆新.矿物掺合料对高性能混凝土徐变性能的影响及机理[D]:[博士学位论文].南京:东南大学,2007
    [28]中华人民共和国铁道部.铁路混凝土结构耐久性设计暂行规定(铁建设[2005]157号).北京:中国铁道出版社,2005
    [29]邵旭东,邓军,李立峰等.二次预应力超薄梁徐变效应试验研究[J].公路交通科技,2005,22(4):53-56
    [30]胡狄.预应力混凝土桥梁徐变效应分析[D]:[博士学位论文].长沙:中南大学,2007
    [31]Zdenek P. Balant, Liisa Panula. Creep and Shrinkage Characterisation for Analyzing Prestressed Concrete Structures[J].PCI JOURNAL,1980:86-122
    [32]何文娟.无碴轨道桥梁的徐变效应分析[D]:[硕士学位论文].重庆:西南交通大学,2008:1-2
    [33]陈如良,陈建堂,费继飚.徐变计算理论综述[J].黑龙江科技信息,2008,(6):26
    [34]梁志广,李建中,王军文.几种常用混凝土收缩徐变模式中徐变系数计算的比较分析[C].第八届全国结构工程学术会议.昆明,1999.10.22
    [35]CEB-FIP.CEB-FIP Model Code for Concrete Structures.1978
    [36]浦春红,杨德斌,崔立春.掺合料对高性能混凝土收缩徐变性能影响研究[J].中国水运,2007,5(8):58-59
    [37]孙家瑛,黄成华.活性掺合料超代技术对混凝土耐久性能影响研究[J].混凝 土,2003,(3):19-21
    [38]蔡德坤.超细粉煤灰高性能混凝土(UFA—HPC)的徐变性能研究[J].科技资讯,2008,(22):1-2
    [39]欧阳华林,白山云.高性能混凝土收缩徐变性能的试验研究[J].桥梁建设,2006,(2):4-6
    [40]陈雷.C60低徐变混凝土性能研究[D]:[硕士学位论文].长沙:中南大学,2008
    [41]秦鸿根等.掺粉煤灰高性能桥用混凝土变形性能研究[J].东南大学学报(自然科学版),2002,32(5):779-782
    [42]铁道第四勘察设计院.新建铁路广州至珠海(含中山至江门)城际快速轨道交通工程施工图容桂水道特大桥施工图纸.2006
    [43]Fraay A L A, Bijen J M, De Haan Y M. The reaction of fly ash in concrete:a critical examination [J]. Cem Concr Res,1989,19(3):235-246
    [44]Cengiz Duran Atis. Heat evolution of high-volume fly ash concrete[J]. Cement and Concrete Research,2002,32:751-756
    [45]ZDENEK P.BAZAN. Prediction of Concrete Creep Effects Using Age-adjusted Effective Modulus Method[J].Journal of American Concrete Institute,1972:212-217
    [46]Zdenek P. Bazant.Prediction of concrete creep and shrinkage:past, present and future[J]. Nuclear Engineering and Design,2001,203:27-38
    [47]Zdenek P. Bazant and Guang-Hua Li. Unbiased Statistical Comparison of Creep and Shrinkage Prediction Models[J].ACI Materials Journal (TECHNICAL PAPER), 2008:610-621
    [48]GHOSH R S, TIMUSK J. Creep of fly ash concrete[J] J Am Concr Inst,1981, 78 (5):351-357
    [49]DAY R L. Strength, durability and creep of fly-ash concrete part Ⅱ serviceability and durability of construction materials[J]. Proceedings of the First Materials Engineering Congress[C], Denver,1990:864-873
    [50]SIVASUNDARAM V, CARETTE G G, MALHOTRA V M. Selected properties of high-volume fly ash concretes[J]. Concr Int:Design Constr,1990,12(10):47-50
    [51]Bertil Persson. Correlating laboratory and fieldtests of creep in high-performance concrete[J].Cement and Concrete Research,2001 (31):389-395
    [52]Li Jianyong, Yao Yan.A study on creep and drying shrinkage of high-performance concrete[J].Cement and Concrete Research,2001 (31):1203- 1206
    [53]Deng Jun, Shao Xudong. Experimental research on th creep behavior of twice prestressed concrete beam[J].Structural Engineering International,2006,16 (1): 53-58
    [54]邵旭东,刘海波,李立峰.二次预应力技术应用于桥梁结构的探索研究[J].公路,2003,(3):89-92
    [55]邵旭东.桥梁工程[M].北京:人民交通出版社,2004
    [56]王士勇.收缩徐变对连续梁梁端缩短影响的研究[J].安徽建筑,2007,14(3):91-92
    [57]安小平.粉煤灰混凝土徐变性能研究[D]:[硕士学位论文].北京:北京交通大学,2009:6-9
    [58]朱伯芳.关于混凝土徐变理论的几个问题[J].力学学报,1979,(2):35-39
    [59]石现峰,王澜,万家.无碴轨道混凝土桥梁的徐变变形研究[J].石家庄铁道学院学报,2007,(3):61-63
    [60]杨风莲,王根会.大跨度混凝土桥梁施工过程中的徐变变形研究[J].兰州铁道学院学报(自然科学版),2003(6):70-72
    [61]胡狄,陈政清.预应力混凝土桥梁收缩与徐变变形试验研究[J].土木工程学报,2003,36(8):79-85
    [62]胡建春.混凝土收缩徐变两种计算方法的比较分析[J].甘肃科技,1994,25(3):123-124
    [63]王继红.大跨连续刚构徐变仿真研究[D]:[硕士学位论文].重庆交通大学,2007
    [64]廖力,张宁.考虑混凝土收缩、徐变的有限元算法[J].兵工学报,2000,21(z1):32-34
    [65]孙宝俊.混凝土徐变理论的有效模量法[J].土木工程学报,1993,Vol.26(3):66-68
    [66]傅木森,曹玉玲.按龄期调整的有效模量法计算混凝土的徐变收缩效应[J].国防交通工程与技术,2004,(4):20-21
    [67]陈明宪,彭建新,颜东煌,陈常松.按龄期调整的有效弹性模量法分析混凝土收缩徐变[J].长沙交通学院学报,2004,(3):16-19
    [68]Thomas E.Malyszko著.苏尚本译.徐变预测法评述[J].国外桥梁,1984
    [69]R.H.EVANS and F.K.KONG著.戴振藩译.预应力混凝土的徐变[J].国外桥梁,1980,2
    [70]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994
    [71]R.H.EVANS and F.K.KONG著.戴振藩译.预应力混凝土的徐变[J].国外桥梁,1980,2
    [72]林波.混凝土收缩徐变及其效应的计算分析和试验研究[D]:[硕士学位论文].南京:东南大学,2006:12-19
    [73]惠荣炎,黄国兴,易冰若.混凝土的徐变[M].北京:中国铁道出版社,1988
    [74]李凤兰,罗俊礼,赵顺波.不同骨料的高强混凝土早期徐变性能研究[J].长江科学院院报,2009,26(2):45-47
    [75]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [76]TOWNSEND B D. Creep and Shrinkage of a High Strength Concrete Mixture[D].USA:Virginia Polytechnic Institute and State University,2003
    [77]BAZANT Z P, BAWEJA S. Justification and Refinements of Model B3 for Concrete Creep and Shrinkage:Statisticsand Sensitivity[J]. Materials and Structures, 1995,28 (181):415-430
    [78]赵金辉.C60高性能混凝土徐变性能研究[D]:[硕士学位论文].长沙:中南大学,2009:4-10
    [79]W.H.Dilger, C.Wang.Creep and shrinkage of high-performance concrete, The Adam Neville Symposium:Creep and Shrinkage-Structural Design Effects, SP-194, American Concrete Institute, Atlanta,2000
    [80]杨小兵.混凝土收缩徐变预测模型研究[D].硕士学位论文.武汉:武汉大学,2004
    [81]姚宏旭,陈政清,唐小弟.高性能混凝土徐变试验分析[J].中南林学院学报,2006,26(3).113~116
    [82]M. Buil, P. Acker, Creep of a silica fume concrete [J] Cement and Concrete Research,1985,15 (3):463-466
    [83]A.S.Ngab, A.H. Nilson, F.O. Slate. Shrinkage and creep of high-strength concrete [J]. Journal of the American Concrete Institute,1981,78 (4):255-261
    [84]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001,25-32
    [85]刘旭晨.大掺量粉煤灰高性能混凝土研究及应用[D].硕士学位论文.哈尔滨:哈尔滨工业大学,2003
    [86]Atis CD.Accelerated carbonation and testing of concrete made with fly ash [J].Construction and Building Materials 2002,17:147-52
    [87]Tahir Gonen, Salih Yazicioglu.The influence of mineral admixtures on the short and long-term erformance of concrete[J].Building and Environment,2007,42: 3080-3085
    [88]GE. Troxell, J.M. Raphael, R.E. Davis. Long-term creep and shrinkage tests of plain and reinforced concrete[J].Cement and Concrete, ASTM Proceedings, Los Angeles,1958
    [89]刘建忠,孙伟,缪昌文,刘加平.矿物掺合料对低水胶比混凝土干缩和自收缩的影响[J].2009,39(3):580~584
    [90]Tazawa E.Autogenous shrinkage by self-desiccation in cementitious material. In proceedings of 9th international conference on chemistry of cement, New Delhi,1992
    [91]Tazawa E, Miyazawa.Influence of cement and admixture on autogenous shrinkage of cement paste[J]. cement and concrete research,1995,25(2):281-287
    [92]Jensen, Ole Mejlhede Hansen, Per Freiesleben. Influence of temperature on autogenous deformation and relative humidity change in hardeningcement paste[J].Cement and concrete reseach,1999,29 (4):567-575
    [93]Laurent Barceloa, Micheline Moranvilleb, Bernard Clavaud. Autogenous shrinkage of concrete:a balance between autogenous swelling and self-desiccation [J].Cement and Concrete Research,2005,35:177-183
    [94]Ei-ichi Tazawa, Shingo Miyazawa. EXPERIMENTAL, STUDY ON MECHANISM OF AUTOGENOUS SHRINKAGE OF CONCRETE[J]. Cement and Concrete Research,1995,25 (8):1633-1638
    [95]李建勇,姚燕.利用超细矿渣和硅灰配制高性能砼的研究[C].中国土木工程学会高强高性能混凝土专题讨论会,江西九江,1997.4.1
    [96]秦鸿根,孙伟,潘钢华等.桥用高性能粉煤灰混凝土性能研究[J].粉煤灰综合利用,2002,(5):23-25
    [97]ASTM C 311 Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete
    [98]RILEM Committee on Fracture Mechanics of Concrete-Test Methods. Size-Effect Method for Determining Fracture Energy and Process Zone Size of Concrete. Materials and Structures.1990.23 (138):461-465
    [99]LCPC:NF P18-441-2000, Testing hardened concrete-Part 4:compressive strength-Specification for testing machines.)
    [100]中华人民共和国交通部.JTJ 270-98.水运工程混凝土试验规程[S].北京:人民交通出版社,1999-05-01
    [101]中华人民共和国国家计划委员会.GBJ 82-85.普通混凝土长期性能和耐久性试验方法[S].北京:国家计划委员会基本建设标准定额研究所,1985
    [102]中华人民共和国国家经济贸易委员会.DL/T 5150-2001.水工混凝土试验 规程[S].北京:中国电力出版社,2002.9
    [103]高玉敏,焦建明,陆新.矿粉-粉煤灰复掺技术在预拌混凝土中的应用[J].粉煤灰综合利用,2006,(2):42-43
    [104]杨卫忠,李杰,任晓丹.掺粉煤灰和矿粉的高性能混凝土轴压性能试验研究[J].河南科学,2007,25(2):285~288
    [105]过镇海.混凝土的强度和变形——试验基础和本构关系[M].北京:清华大学出版社,1997
    [106]陈益兰,尤卫玲.矿物掺合料的复合效应对混凝土性能的影响.绿色建材研究与应用[M].北京:中国建筑工业出版社,2004:226-231
    [107]任铁钺.掺合料及细骨料对混凝土的影响[D]:[硕士学位论文].北京:北京工业大学,2008
    [108]李俏,王栋民,候云芳,左彦峰.大掺量粉煤灰水泥的制备与机理研究[J].粉煤灰综合利用.2008,(2)
    [109]王栋民,陈建奎.超细粉掺加量对高性能混凝士(HPC)配合比设计参数和性能的影响[J].中国建材科技,1999.(3):25-29
    [110]Caijun Shi.EARLY MICRO STRUCTURE DEVELOPMENT OF ACTIVATED LIME-FLY ASH PASTES[J]. Cement and Concrete Research,1996,26(9):1351-1359
    [111]En-Hua Yang, Yingzi Yang, Victor C. Li. Use of High Volumes of Fly Ash to Improve ECC Mechanical Properties and Material Greenness[J].ACI MATERIALS JOURNAL (TECHNICAL PAPER),2007:303-311
    [112]Djwantoro Hardjito, Steenie E Wallah, Dody MJ Sumajouw,& B Vijaya Rangan.Fly ash-based geopolymer concrete[J]. Australian Journal of Structural Engineering,2005:1-8
    [113]E.Tazawa, S.Miyazawa. Influence of cement and admixture on autogenous shrinkage of cement paste [J].Cement and Concrete Research,1995,25:281-287
    [114]Tazawa E, Miyazawa S, Kasai T.Influence of cement and admixture on autogenous shrinkage of cement paste [J] Cement and Concrete Research,1995,25 (2):281-287
    [115]Ei-ichi tazawa and Shingo Miyazawa.Influence of cement and admixture on autogenous shrinkage of cement paste[J].Cement and Concrete Research,1995,25 (2):281-287
    [116]赵庆新,孙伟,郑克仁等.水泥、矿粉、粉煤灰颗粒弹性模量的比较[J].硅酸盐学报,2005,33(7):837-841
    [117]林震,陈益民,苏姣华等.外掺磨细矿渣与粉煤灰的水泥基材料的亚微结构研究[J].硅酸盐学报,2000,28:6-10
    [118]LamL, Wong YL, Poon C S. Degree of Hydration and GelPSpace Ratio of High Volume Fly Ash PCement Systems[J].Cement and Concrete Research,2000,30: 747-756
    [119]Shi, C. Qian, J. High performance cementing materials from industrial slags-a review[J].Conservation and Recycling,2000,29 (3):195-207.
    [120]Hinrichs W, Odler I.Investigation of the Hydration of Portland Blast Furnace Slag Cement:Hydration Kinetics [J]. Adv. Cem. Res,1989,2:9-13
    [121]GHOSH R S, TIMUSK J. Creep of fly ash concrete[J]:Journal of the American Concrete Institute,1981, (05)
    [122]Marsh B K, Day R L.Pozzloanic and cementitious reactions of fly ash in blended cement pastes[J]:Cement and Concrete Research,1988 (02)
    [123]McCarthy MJ, Dhir PK. Towards maximizing the use of fly ash as a binder in concrete[J].CementConcrete Res 1999, (78):121-32.
    [124]STODOLA P A. Performance of fly ash in hardened concrete[J]. Concrete International:Design and Construction,1983 (12)
    [125]E. J. Griesel; M. G. Alexander.Effect of Controlled Environmental Conditions on Durability Index Parameters of Portland Cement Concretes[J]. Cement, Concrete, and Aggregates,2001,23 (1)
    [126]M. SIVASUNDARAM, R.A.L. DREW; W.F. CALEY. MINERALOGICAL ASPECTS OF DEVITRIFIED PULP AND PAPER FLY ASH[J] Canadian Metallurgical Quarterly,2003,42 (1)
    [127]吴彬,张璐明,张美玲等.100Mpa粉煤灰高性能混凝土的研究[J].粉煤灰,2002(3):7-9
    [128]邹建喜,李显金,迟培云.粉煤灰混凝土的变形性能研究[J].混凝土,2003,(6):38~50
    [129]JARDINE D J, WOLHUTER C W. Microsilica and ground granulated blast furnace slag effects on hydration temperatu[J].Cement and Concrete Research,1997, (12)
    [130]Buquan Miao, Jenn-Chuan Chern, Chen-An Yang. INFLUENCES OF FIBER CONTENT ON PROPERTIES OF SELF-COMPACTING STEEL FIBER REINFORCED CONCRETE[J]. Journal of the Chinese Institute of Engineers. Series A,2003,26 (4)
    [131]M.G.Alexander, B.J.Magee. Durability performance of concrete containing condensed silican fume[J]. Cement and Concrete Research,1999,29 (6)
    [132]RIGAN J. Influence of slag dosage in cement on properties of concrete made with river and crushed aggregates[J]. Stavebnichy Casopic (in Slovak),1984, (05)
    [133]Okamura, H.Tsu Ji, Y. and Maruyama. Application of expansion concrete instructural elements[J].Joural of Faculty of Engineering,1978
    [134]Russell, H.G.. Performance of shrinkage-compensating concrete in slabs[J].Researchand Development Belletin, Portlond Cement Association,1978
    [135]P. Ghodousi, M.H. Afshar, H. Ketabchi, E. Rasa. Study of Early-Age Creep and Shrinkage of Concrete Containing Iranian Pozzolans:An Experimental Comparative Study[J]. Scientia Iranica,2009:126-137
    [136]N.J.Gardner, J.w.Zhao.Creep and Shrinkage Revisited[J].ACI Materials Journal,1993:204-211
    [137]沈旦申.粉煤灰混凝土[M].中国铁道出版社,北京,1989,(5):3-20
    [138]中华人民共和国建设部,国家质量监督检验检疫总局.GB/T 50081-2002.普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003-04-01
    [139]欧阳东,余斌.超高强混凝土基本力学性能的研究[J].重庆建筑大学学报,2003,25(4):38-42
    [140]陈肇元等.高强混凝土及其应用[M].北京:清华大学出版社,1993
    [141]尹健,周士琼.高性能混凝土轴心抗拉强度与劈裂抗拉强度试验研究[J]长沙铁道学院学报,2001,19(2):25-29
    [142]P.Mehta著,祝永年,沈威,陈志源译.混凝土的结构、性能与材料[M].同济大学出版社,1991
    [143]田倩.低水胶比大掺量矿物掺合料水泥基材料的收缩及机理研究[D]:[博士学位论文].南京东南大学,2006
    [144]David W. Pittman, George E. Ramey, Greg Webster, Ashley Carden. LABORATORY EVALUATION OF CONCRETE MIXTURE DESIGNS EMPLOYING TYPE I AND TYPE K CEMENT [J].JOURNAL OF MATERIALS IN CIVIL ENGINEERING,1999:144-150
    [145]梁慧.粉煤灰活性效应研究[D]:[硕士学位论文].长沙:中南大学,2007
    [146]谢友均,刘宝举,龙广成.水泥复合胶凝材料体系密实填充性能研究[J].硅酸盐学报,2001,29(6):512-517
    [147]路青波,杨全兵.影响矿渣潜在活性激发的主要因素研究[J].混凝土与水泥制品,2005,(6):13~14
    [148]邵文.预应力混凝土连续箱梁悬臂灌注施工[J].山西建筑,2009,35(16):136-137
    [149]叶华强.大跨径连续刚构桥梁施工监控与仿真分析[D]:[硕士学位论文].合肥:合肥工业大学,2010
    [150]袁健铮.连续刚构桥仿真分析中挠度影响因素的研究[J].建筑监督检查与造价,2009,2(2):51-58
    [151]何义斌.大跨度无砟轨道连续梁桥后期徐变变形研究[J].铁道学报,2008,30(4):120-123
    [152]张顺义.大跨度客运专线连续刚构桥后期徐变研究[J].山西建筑,2010,36(17):325~326
    [153]李珂,陆光闾.预应力混凝土桥梁长期变形的计算分析[J].上海铁道大学学报,2000,21(8):12-16
    [154]罗许国,钟新谷,戴公连.高性能混凝土梁长期变形性能试验研究[J].铁道科学与工程学报,2005,2(4):45-49
    [155]王巍,薛伟辰.高速客运专线轨道梁徐变变形研究进展[J].铁道科学与工程学报,2005(8):39~44
    [135]Branson D E. Deformation of Concrete Structures.New York:McGraw Hill International Book Company,1997
    [156]J. L. Vitek. Long-term deflections of large prestressed concrete bridges. Progress Report, CEB Bulletin No.235,1997
    [157]Savita Maru, A. K. Nagpal.Neural Network for Creep and Shrinkage Deflections in Reinforced Concrete Frames[J]. JOURNAL OF BRIDGE ENGINEERING,2004:350-359
    [158]张芳,汪浩.徐变计算理论及其在软件开发中的应用[J].西安建筑科技大学学报(自然科学版),2005,37(4):509-513
    [159]朱宇峰.大跨径预应力混凝土连续刚构桥温度效应与收缩徐变效应分析[D]:[硕士学位论文].长沙:湖南大学,2008
    [160]王培金,盛洪飞,赵尚栋.大跨连续刚构桥预应力混凝土箱梁的长期挠度预测探讨[J].公路交通科技,2007,24(1):87~90
    [161]中华人民共和国交通部.JTG D60-2004.公路桥涵设计通用规范[S].北京:人民交通出版社,2004
    [162]叶梅新,钱淼,刘杰.无碴轨道预应力混凝土桥梁徐变变形控制方法研究[J].铁道标准设计,2009,(2):92~94
    [163]薛伟辰,李杰,何池.预应力组合梁长期性能试验研究与时随分析[J].中 国公路学报,2003,16(4):40-43
    [164]Jensen.O.Mejlhede.Thermodynamic limitation of self-desiccation [J].Cement and Concrete Research,1995,25 (1):157-164
    [165]戴玉明,上官兴,钮佳玮.大跨PC连续刚构桥跨中挠度主要影响因素分析[J].山西建筑,2008,34(9):1-2
    [166]杨光.大跨度预应力混凝土连续刚构桥控制长期变形的研究[J].交通科技,2009,(3):8-9
    [167]王法武,石雪飞.大跨径预应力混凝土梁桥长期挠度控制分析[J].上海公路,2006:29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700