建筑结构对爆破震动响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着爆破技术的不断发展和完善以及城镇建设改革的需要,工程爆破的应用范围发展到今天的城市大型建(构)筑物的拆除、基坑的开挖、大桥和轻轨工程施工、地铁的施工、高速公路和城区道路以及机场的平整建设等,爆破的环境也已由人烟稀少的荒郊野外转移到人口密集的城镇。但是,对爆破震动的理论研究远远落后于工程实践,现有的一些爆破设计方法和安全评估分析大都采用经验和半经验法,时常引发安全事故,阻碍爆破事业发展。
     基于以上问题,本文主要做了以下几个方面内容:
     ①通过对爆破地震波的产生机理、时域和频域分析,并与天然地震波作对比,得出爆破地震波有持时短、幅值大、频率高、衰减快等特点。
     ②应用课题组编制的非线性时程分析程序,对四个分别为2层、7层、12层和16层的框架结构进行时程分析。结构采用空间三维协同力学模型,将空间整体结构离散为多个以刚性楼板相连的平面子结构,以平面分段变刚度单元来模拟钢筋混凝土构件的非线性工作特性,弯曲恢复力模型采用骨架曲线非对称的修正Otani模型,并考虑了由于剪切变形影响而产生的捏拢效应以及节点区域钢筋粘结滑移的影响,选取两条典型爆破地震波,研究爆破地震作用下框架结构的动力特性。
     ③利用SAP2000分析了爆破地震作用下两个分别为12层和24层高层剪力墙、框架-剪力墙结构的动力特性,并与天然地震作用下的结果作对比研究。
     ④采用集总参数模型,即在结构底部施加弹簧和阻尼器的方法考虑土-结构相互作用,用SAP2000对三种框架结构,分别为单层厂房、2层框架和12层框架结构进行时程分析,并与刚性基础假定分析结果对比研究。
     ⑤使用相同的频率和振动峰值,但不同持时的爆破地震波,以及相同持时和振动峰值,但不同频率的爆破地震波,对两个分别为7层和12层框架结构进行时程分析,研究爆破地震波持续时间和频率对结构响应的影响。
With the development of the blasting technology and the need for the urban construction reform, the application of blasting has developed to the extent which include the demolition of urban large building, the foundation fit excavation, light rail project, subway project, highway, urban road and the leveling construction of airport etc, the environment of blasting change to urban which has large population from the environs which has little people. But the study on the theory of blasting vibration gets far behind the application, the current design methods and safety assessment used empirical and semi-empirical method. It often caused accidents and impedes the development of blasting.
     Based on the above issues, in this paper, something has been discussed as the following aspects:
     ①Based on the analysis of blasting wave’s mechanism, time and frequency domain, results show that the blasting seismic waves have the characteristics of a short time, large amplitude, high frequency and rapid decay while compared with natural seismic waves.
     ②In this paper, four R/C frame structures including two-storey, 7-storey, 12-storey and 16-storey were analyzed with the nonlinear time history analysis. The R/C frame structures were both modeled with three-dimensional coordinated system. On the assumption that spatial building structures may be idealized as the assemblage of planar substructures interconnected by infinitely rigid floors, the nonlinear behavior of reinforced concrete elements may be simulated by a modified planar element model with varied stiffness in different regions. A moment-curvature hysteretic model including the pinching effect resulted from shear deformation, which named modified Otani model, is proposed to determine the elastic-plastic flexural stiffness of reinforced concrete elements. The effects of slippage rotations at the ends of reinforced concrete elements due to non-perfect bond of reinforced bars are also considered in the hysteretic models. Two kinds of blasting seismic waves were adopted in the paper.
     ③Two shear-wall and frame shear-wall structures including 12-storey, 24-storey were analyzed under blasting wave by SAP2000, which also compared with the response of the structures under natural seismic.
     ④The soil-structure interaction effect is included in the analysis of structures located on a soil site by adding springs and dashpots to each support. In this part, three R/C frame structures including single-storey factory, two-storey,12-storey were analyzed by SAP2000.
     ⑤To find the relations between the duration and frequency with the response of the structures, the analysis used the same frequency and vibration peak, but different duration of blasting seismic waves and used the same duration and vibration peak, but different frequency of blasting seismic waves. There are two R/C frame structures including 7-storey, 12-storey were analyzed.
引文
[1]张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社,1981.
    [2] H.Y.Fang, R.M.Koerner, H.Sutherland. Instrumentation and Monitoring Criteria to Determine Structural Response from Blasting. Proceedings of the Second Conference on Explosives and Blasting Techniques. 1976, 148-154.
    [3] Crandle F J .Ground vibration due to blasting and its effect upon structures. Journal of the Boston society of civil engineering, 1949, 36 (2):222-245.
    [4] Longerfors, Westerberg, Kihlstrom. Ground vibration in blasting. Water Power, 1958, 335-421.
    [5]娄建武,龙源,徐全军.普通民房在爆破地震波作用下的振动破坏分析[J].解放军理工大学学报,2001,2(2):21-25.
    [6] Clough,R.W,Benuska,K.L,and Wilson,E.L.,Earthquake Response of Ball Buildings,Proc.of 3rd WCEE,Vol.2,68-84,1965.
    [7] Giberson.M.F. Two Nonlinear Beams with Definitions of Ductility , J.Struct.Div. ASCE, Vol.95 , No.ST2 ,135-157 , 1969.
    [8] Aoyoma,H.,Inelastic Anailysis of R\C Structures, Transaction of the Architectural Institue of Japan,1967.
    [9] Otani,S., Inelastic Analysis of R/C Frame Structures , J.Structures , J.Struct.Div., ASCE, Vol.100, ST7, 1974.
    [10] Soleimani,D., Reinforced Concerete Ductile Frame Under Earthquake Loading With Stiffness Degradation , Ph.D Dissertation, Uniersity of California, Berkeley,1978.
    [11] Takizawa,H., Strong Motional Response of Reinforced Concrete Building, JANACC, Concrete Journal, Japan National Council in Concrete, Vol.II,No.II, 10-21,1973.
    [12] Keshavarzian.M., and Schnobrich,W.C., Inelastic Analysis of RC Coupled Shear Walls, Earthquake Eng.Struct.Dyn.Vol.13,No.4,427-448,1985.
    [13] Mullas,M.G.,and Filippou,F.G.,Analytical Procedures in the Study of Seismic Response of Reinforced Concrete Frames,Eng.Struct .,Vol.12,37-48,1990.
    [14] Takeda.T.,Sozen,M.A.,and Nielse,N.N.,Reinforced Concrete Structures to Simulated Earthquakes, J.Struct.Div, ASCE, Vol.96, ST12, 1970.
    [15]杜修力. RC框架结构弹塑性地震反应的计算机仿真研究[D],国家地震工程局工程力学所博士学位论文,1989.
    [16]孙业扬等.高层建筑杆系-层间模型弹塑性动态分析[J].同济大学学报,1980年第1期.
    [17]李田,吴学敏.高层及复杂结构多维时程弹塑性动态分析[J].建筑结构学报,Vol.13. No.6. 1992.
    [18]李小军.非线性结构动力方程求解的显式差分格式的特性分析[J].工程力学,1993,10(2):38-46.
    [19]李小军.地震工程中动力方程求解的逐步积分法[J].工程力学,1996, 13(2):110-117.
    [20]林鹏,王克成,卓家寿.岩质高边坡爆震特性的试验研究[J].水利水电科技进展,1997,17(4):33~36.
    [21]刘国振,杨军,陈鹏万,吕淑然.某工会大楼爆破拆除地震效应监测分析[J].安全与环境学报,2004,4(增):153~155.
    [22]林大超.施惠基等.爆炸地震效应的时频分析[J].爆炸与冲击,2003,23(1):31~36.
    [23]郭学彬,肖正学,张志呈等.爆破地震波的频谱特性研究[J].化工矿物与加工,1999,(7):18~25.
    [24]林秀英,张志呈.爆破地震波的频谱分析[J].中国矿业,2000,9(6):79~80.
    [25]何秋会,李国平.基于频谱分析的天文望远镜跟踪实验系统故障诊断[J].振动与冲击2005,24(1):41~42.
    [26]郭玉荣.钢筋混凝土房屋结构空间协同非线性地震反应分析[D].湖南大学硕士论文,1995.
    [27]戴湖升.复杂体型建筑结构空间地震反应分析程序及可视化研究[D].重庆大学硕士学位论文,2007.
    [28]冯世平.钢筋混凝土框架结构屈曲后性能的研究[D].清华大学工学博士学位论文,1985.
    [29]孙涣纯等.在两向地震波同时作用下,任意形状空间建筑结构扭转型弹塑性地震反应分析[J].大连工学院学报,1982年第4期.
    [30] Wolf J P. Dynamic soil-structure interaction. Pretice-Hall: Englewood Cliffs Inc, 1985.
    [31]李辉,赖明,白绍良.土-结构动力相互作用研究综述(Ⅱ) [J].重庆建筑大学学报,1999,21(5):112.
    [32]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55.
    [33]廖振鹏,黄孔亮,杨柏坡等.暂态波分析的透射边界条件.中国科学A辑,1984,(6):556.
    [34]潘旦光,楼梦麟,董聪.一致输入下土层的地震反应分析[J].计算力学学报,2005,22(5):562.
    [35] Wolf J P, Somaini D R. Approximate dynamic model of embedded foundation in time domain.Earthquake Eng Struct Dyn,1986, 14: 683.
    [36] De Barros F C P, Luco J E. Discrete models for vertical vibrations of surface and embedded foundation.Earthquake Eng Struct Dyn, 1990, 19: 289.
    [37] Jean W Y, Lin T W, Penzien J. System parameter of soil foundation for time domain dynamicanalysis.Earthquake Eng Struct Dyn, 1990, 19: 541.
    [38]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型[J].大连理工大学学报,1996,36(4):477.
    [39] Guowei Ma,Hong Hao,Yingxin Zhou. Assessment of structure damage to blasting induced ground motions. Engineering Structures,22(2000) 1378-1389.
    [40]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998: 149-182.
    [41]陈士海.爆破灾害预测与控制[M].北京:煤炭工业出版社,2006.
    [42]李杰,李国强.地震工程导论[M].地震工程出版社,1992.
    [43]言志信.结构拆除及爆破震动效应研究[D].重庆大学博士学位论文,2002..
    [44]中华人民共和国国家标准.爆破安全规程(GB-6722-2003)[S].北京:中国标准出版社2003.
    [45] G. A.波林格.爆炸振动分析[M].北京:科学出版社,1975.
    [46]宋光明.爆破地震效应与减震方法探讨[J].世界采矿快报,1999年第1期.
    [47]商健.拆除爆破与安全管理[M].北京:兵器工业出版,1993.
    [48]毛晖.建筑物爆破震动的安全控制技术研究[D].中南大学硕士学位论文,2003.
    [49]魏文晖,王勇.爆破地震波作用下框架结构的非线性动力分析[J].华中科技大学学报2004,21(1):10-14.
    [50]钱胜国,陈玲玲等.爆破地震工程结构动力分析[M].北京:中国水利水电出版社,2006.
    [51] Hong Hao, Guo-Wei Ma, Yong Lu. Damage assessment of masonry infilled RC frames subjected to blasting induced ground excitations[J], Engineering Structures, 24(2002) :799–809
    [52] R.P. Dhakal, T.-C. Pan. Response characteristics of structures subjected to blasting induced ground motion[J], International Journal of Impact Engineering, 28 (2003) :813–828
    [53] Chengqing Wu, Hong Hao, Yong Lu, Shangqing Sun. Numerical simulation of structural responses on a sand layer to blast induced ground excitations[J]. Computers and Structures 82 (2004) 799–814
    [54]钱七虎,陈士海.爆破地震效应[J].爆破,2004,21(2):1-5.
    [55]刘军,吴从师.建筑结构爆破震动荷载的时程分析[J].矿业研究与发展,1999,19(增):4-9.
    [56]王小林,吴枫,徐书雷.建筑结构对爆破震动响应的动力学计算方法[J].西安科技学院学报,2002,22(4):411-413.
    [57]魏文晖,王勇.爆破地震波作用下框架结构的非线性动力分析[J].华中科技大学学报,2004,21(1):10-14.
    [58]魏文晖,卢哲安.爆破地震波作用下框架结构与地基共同工作的非线性动力分析[J].世界地震工程,2004,20(2):95-100.
    [59]刘军,吴从师.建筑结构爆破震动响应的时程预测[J].矿冶工程,2000,20(4):20-22.
    [60]陈士海.爆破地震动作用下结构震动响应研究现状与发展[J].爆破,2003,20(增):96-102
    [61]杨军,孙振.爆破振动对周围环境的影响[J].四川建筑,2001,24(3):103-108.
    [62]刘起霞,孙进忠等.青岛地铁工程爆破振动效应分析[J].地震工程与工程振动,1999,19(4):118-123.
    [63]马瑞恒,时党勇.爆破振动信号的时频分析[J].振动与冲击,2005,24(4):92-96.
    [64]许名标,彭德红.某水电站边坡开挖爆破震动动力响应有限元分析[J].岩土工程学报,2006,28(6):770-775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700