复杂目标等离子体涂层的散射特性算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体技术作为一种全新的隐身手段,由于它不涉及飞行器本身的空气动力特性、可隐身性以及实际应用方面的廉价性,尤其是对于现役武器系统的易隐身改造等一系列优点,使得它得到世界很多国家的高度重视。同时,等离子体隐身技术是一项非常有希望但又十分复杂的系统工程,它涉及到等离子体产生技术、电磁理论与工程、雷达原理、机械工程等众多学科,但随着科学技术的飞速发展,隐身兵器必定会开创一片新天地,并在军事领域展示出广阔的前景。
     本文主要从非磁化等离子体电磁散射特性、各向异性磁化等离子体电磁散射特性以及复杂军用目标散射建模三个方面开展了相关研究工作。用交替方向隐式时域有限差分(ADI-FDTD)方法分析非磁化等离子体的电磁散射特性,研究了非磁化等离子体涂敷二维、三维导体目标后其RCS的缩减情况。用电流密度卷积-时域有限差分(JEC-FDTD)方法分析各向异性磁化等离子体的电磁散射特性,研究了各向异性磁化等离子体涂敷二维、三维典型目标及军用复杂目标后其RCS的缩减情况,这些工作在国内都是首创。本文的创造性工作及成果主要体现在以下几个方面:
     针对ADI-FDTD方法色散较大的缺点,提出了高阶ADI-FDTD算法,并对其增长因子相位的分析,巧妙得到数值色散关系。同时基于辅助差分方程给出一种适合于ADI-FDTD方法的完全匹配层—ADE-PML,这种匹配层,不需要在时域分裂场量。
     采用Z变换方法将ADI-FDTD推广应用于色散媒质,得到了二维情况下色散媒质中的迭代公式。同时给出了一种采用无限脉冲响应(IIR)滤波器结构来减少存储量的方法,并与色散媒质中的FDTD结果进行比较,在ADI-FDTD计算时间大量减少的情况下,两者结果符合很好。
     基于分段线性电流密度递归卷积(PLJERC)方法将ADI-FDTD推广应用于非磁化等离子体中,得到了二维情况下非磁化等离子体的迭代差分公式,为了验证该方法的有效性和可靠性,计算了等离子体涂敷导体圆柱的RCS和非均匀等离子体平板的反射系数,数据仿真结果表明,本文给出的算法与传统的FDTD相比,在计算结果吻合的情况下,存储量相当,计算效率更高,时间步长仅仅由计算精度来决定。并将此方法进一步推广到三维情况,研究了三维非磁化等离子体的电磁散射特性。
     提出了一种求解各向异性不均匀等离子体圆柱电磁散射的解析方法,不均匀等离子体圆柱用多层同心圆柱壳来近似模拟,每层圆柱壳的电子密度为常数,此方法简单并便于编程计算。采用此解析方法研究了各向异性分层均匀等离子体圆柱的RCS与等离子体层数、外磁场强度、等离子体碰撞频率以及圆柱轴心电子密度的关系。
     采用Z变换方法和JEC方法把FDTD推广应用到二维各向异性磁化等离子体中,该算法同时解决了电磁波在各向异性和频率色散介质中传播的难题,着重研究了等离子体参数对其RCS的影响,计算结果表明磁化等离子体不仅吸收频带宽,而且吸收性能更好。
     进一步把JEC-FDTD推广到三维各向异性磁化等离子体,这种算法既可以计算三维磁化等离子体的角域散射特性,又可以计算其宽频散射特性。计算了各向异性磁化等离子体涂敷二面角反射器和球锥体等典型三维目标后其RCS的变化情况,分析了电子回旋频率对其RCS的影响。计算结果表明磁化等离子体吸收性能更好。
     分别给出了基于实体模型和面元模型的FDTD自动网格剖分技术,两种方法机理完全相异,分别针对不同的目标模型,剖分平台也不同。其中,基于面元模型的剖分方法更具独立性,利于建模、剖分、计算程序的一体化集成。我们在此基础上研究磁化等离子体涂敷三维复杂军事目标的电磁散射特性,分析磁化等离子体的隐身性能。我们主要给出两个算例:等离子体涂敷导弹模型和等离子体涂敷军用飞机模型。
The stealth technology of plasma has attracted much attention from many countries around the world, due to the potential application of plasma as absorbers of electromagnetic waves. At the same time, the plasma stealth is also a promising and complex system engineering, it involves in many subjects, such as: the plasma generator technique, the theory and engineering of electromagnetic field, radar theory, mechanical and electrical engineering, and so on. But with the development of the science and the technology, the plasma stealth must exhibit expansive future.
     The research works of this dissertation are at the three parts: the scattering of unmagnetized plasma, the scattering of anisotropic magnetized plasma and the scattering modeling method of complex targets. The alternating direction implicit finite difference time domain (ADI-FDTD) method is applied to analyze the scattering of unmagnetized plasma. The RCS reduction for the two dimensional, three dimensional conducting target coated by unmagnetized plasma is studied. Furthermore, the finite difference time domain (FDTD) method is applied to analyze the scattering of anisotropic magnetized plasma. The RCS reduction for the two dimensional, three dimensional conducting target coated by anisotropic magnetized plasma is studied. The main innovations of this paper are as follows:
     The ADI-FDTD method has a larger dispersion error compared with the regular FDTD method. To improve the accuracy of the ADI-FDTD method, we introduce the higher order ADI-FDTD method. The dispersion relation of the higher order ADI-FDTD method can be derived by analyzing the phase. In addition, a new perfectly matched layer based on the auxiliary differential equation is presented for the ADI-FDTD method. The ADE-PML formulations only require two additional auxiliary variables per field component in the PML region without the need of splitting the field in the time domain. Two dimensional numerical examples are included to validate the proposed formulations.
     The ADI-FDTD method is extended to dispersive media based on the Z-transform method. Two-dimensional ADI-FDTD formulations for dispersive media are derived. And the same time, a method based infinite-impulse response digital filter (IIR) is presented to reduce memory requirements. The proposed method is applicable to arbitrary Mth-order dispersive media. Finally, some examples are calculated, the numerical results of ADI-FDTD for dispersive media are in good agreement with the results obtained by conventional FDTD method, but compared with conventional FDTD method, the proposed method is efficient without requiring additional memory.
     The ADI-FDTD method is extended to dispersive media—isotropic plasma based on the PLJERC(Piecewise Linear JE Recursive Convolution) method. Two-dimensional ADI-FDTD formulations for isotropic plasma are derived. Two examples are calculated, the numerical results of the ADI-FDTD method for isotropic plasma are compared to those obtained by the FDTD method to show the efficiency of the proposed method. And this method is applied to study the scatteing characteristics of two dimensional, three dimensional unmagnetized plasma.
     An analytical technique for solving the scattering of an anisotropic nonuniform plasma cylinder is presented. The plasma model chosen for the study is cold, nonuniform, collisional and magnetized. The nonuniform plasma cylinder is represented by a number of concentric cylindrical shells and each has a fixed electron density. The overall density profile follows any prescribed distribution function. The effect of the plasma parameters such as the number of layers, the collision frequency, and the central density on the backscattering cross section is investigated.
     The JE convolution fmite-difference-time-domain (JEC-FDTD) method is extended to the anisotropic magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient solution of the electromagnetic wave propagation in anisotropic magnetized plasmas. Two-dimensional JEC-FDTD formulations for magne-tized plasma are derived. The back scattering radar cross section (RCS) of a perfectly conducting cylinder coated by a layer of magnetized plasmas is calculated.
     The JEC-FDTD method is extended to three dimensional anisotropic dispersive media—magnetized plasma. The problem which incorporates both anisotropy and frequency dispersion at the same time is solved for the electromagnetic wave propagation. The three dimensional JEC-FDTD formulations for anisotropic magnetized plasma are derived. The method is applied to the electromagnetic scattering of dihedral corner reflector and sphere-cone coated with anisotropic magnetized plasma. By simulating the interaction of electromagnetic wave with magnetized plasma, some numerical results are obtained, which indicate that an appropriate plasma coating may efficiently reduce the RCS of a metallic target.
     As a supplement to the FDTD meshing technique based on solid model, which is not easy to combine with the FDTD program, a new meshing technique based on surface model was put forward. Using this technique, we can mesh most of the target models without caring about what file format they use or where they come from. The electromagnetic characteristics of the three dimensional large complex military objects coated by anisotropic mangtized plasma are investigated. Two models are calculated. They are the missile model and the airplane model coated by anisotropic magnetized plasma.
引文
[1]Vidmar,R.J.,On the use of atmospheric pressure plasma as electromagnetic reflectors and absorbers[J].IEEE Trans.On Plasma.Sci.,1990,18(4):733-741.
    [2]M.Laroussi,J.R.Roth.Numerical calculation of the reflection,absorption,and transmission of microwaves by a nonuniform plasma slab[J].IEEE Trans.On Plasma.Sci.,1993,21(4):366-372.
    [3]Koretzky E.and Kuo S.P.,1998.Phys.Plasmas.5,3774.
    [4]D.J.Gregoire,J.Santoru and R.W.Schumacher,Electromagnetic wave propagation in unmagnetized plasmas[R].AD-A25 0710.1992.
    [5]Alexeff,Igor;Kang,Weng Lock;Rader,Mark;Douglass,Clay;Kintner,Delmar;Ogot,Rolando;Norris,Elwood.Plasma stealth antenna for the U.S.Navy[A].IEEE International Conference on Plasma Science Proceedings of the 1998 IEEE International Conference on Plasma Science Jun 1-4 1998 p 277.
    [6]E.L.Murphy,Reduction of electromagnetic back scatter from a plasma clad conducting body[J].Journal of Applied Physics,1965,6.
    [7]Yong Gao,Jiaming Sift,Jiachun Wang,The calculation of back scattering radar cross section of plasma spheres[J].25~(th)International Conference on Infrared and Millimeter Waves,2000,9.
    [8]JiaMing Shi,YongShun Ling,et al.,Scattering cross section of an inhomogeneous plasma cylinder.International Journal of Infrared and Millimeter Waves.Vol 16,No.11,1995.
    [9]王高峰,焦淑卿.电磁波与椭球等离子体的相互作用,武汉大学空间物理系,1985,11.
    [10]A.Helaly,E.A.Soliman,et al.Electromagnetic wave scattering by nonuniform plasma sphere.Can.J.Phys.75;919-932,1997.
    [11]D.E.Hinkel-Lipsker,et al.Concersion of electrostatic and electromagnetic waves in a plasma at the peak of a parabolic density profile.University of California of Los Angeles Department of Physics.1990.11.
    [12]刘明海,胡希伟,等.电磁波在大气层人造等离子体中的衰减特性,物理学报,51(6),2002.
    [13]Wang Ge,Cao Jin-Xiang,Song Fa-Lun.Optimal density profile of the plasma layer shielded by a conducting surface for the absorption of electromagnetic waves,Chin.Phys.Lett.20(10):1785,2003.
    [14]王舸,陈银华,等.电磁波在非均匀等离子体中的吸收.核聚变与等离子体物理,21(3):160,2001.
    [15]孙爱萍,童洪辉,等.磁化碰撞等离子体对雷达波的共振吸收.核聚变与等离子体物理,21(4):224,2001.
    [16]B.J.Hu,S.L.Lai.SMM analysis of reflection absorption and transmission from nonuniform magnetized plasma slab.IEEE Trans.On Plasma Science,27(4):1131-1135,1999.
    [17]刘少斌,莫锦军,袁乃昌.电磁波在不均匀磁化等离子体中的吸收.电子学报,31(3):372-376,2003.
    [18]K.G.Budden.The Propagation of Radio Waves.Cambridge.UK:Cambridge Univ.Press,1985.
    [19]W.W.Destler,J.E.Degrange,Experimental studies of high-power microwave reflection,transmission,and absorption from a plasma covered plane conducting boundary.J.Appl.Phys.69(9),1 May 1991.
    [20]A.B.Petrin.Transmission of Microwaves Through Magnetoactive Plasma[J].IEEE Trans.On Plasma Sci.,2001,29(3):471-478.
    [21]A.B.Petrin.On the Transmission of Microwaves Through Plasma Layer[J].IEEE Trans.On Plasma Sci.,2000,28(3):1000-1008.
    [22]A.B.Petrin.Nonlinear Interaction of Microwave and Plane Magnetoactive Plasma Layer[J].IEEE Trans.On Plasma Sci.,1998,26(2):150-158.
    [23]刘少斌,莫锦军,袁乃昌,不均匀磁等离子体的隐身机理-圆极化电磁波的碰撞吸收[J].电波科学学报,2002,17(3):258-263.
    [24]唐德礼,孙爱萍,邱孝明.均匀磁化等离子体与雷达波相互作用的数值分析.物理学报,2002,51(8),1724-1728.
    [25]黄兴中,吕善伟 有等离子体层的导体圆柱空间散射特性的分析.北京航空航天大学,1998,24f3),260-262.
    [26]高本庆,刘波 电磁场时域数值技术新进展.北京理工大学学报,2002,22(4):401-406.
    [27]王长清,祝西里 著.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994.
    [28]高本庆著.时域有限差分法.北京:国防工业出版社,1995.
    [29]葛德彪,闫玉波著.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.
    [30]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media.IEEE Trans.AP,1966,14(3):302-307.
    [31]A.Taflove,K.R.Umashankar.Review of FDTD numerical modeling of electromagnetic wave scattering and radar cross section.Proc.IEEE,1989,66(5):682-699.
    [32]K.L.Shlager and J.B.Schneider.A selective survey of the finite-difference time-domain literature.IEEE Trans.AP,1995,37(4):39-56.
    [33]K.S.Kunz and R.J.Luebbers.Finite Difference Time Domain Method for Electromagnetics.Boca Raton,FL:CRC Press,1993.
    [34]A.Taflove ed.Computational Electrodynamics:The Finite-Difference Time-Domain Method.Boston,MA:Artech House,1995.
    [35]A.Taflove ed.Computational Electrodynamics:The Finite-Difference Time-Domain Method(2 ed.).Boston,MA:Artech House,2000.
    [36]D.M.Sullivan.Electromagnetic Simulation Using the FDTD Method.New York:IEEE Press,2000.
    [37]Namiki T.A new FDTD algorithm based on alternating-direction implicit method.IEEE Trans.Microwave Theory Tech.,1999,47(10):2003-2007.
    [38]Namiki T.3-D ADI-FDTD method -- unconditionally stable time-domain algorithm for solving full vector Maxwell's equations.IEEE Trans.Microwave Theory Tech.,2000,48(10):1743-1748.
    [39]F.H.Zheng,Z.Z.Chen,and J.Z.Zhang,"Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans.Microwave Theory Tech[J].,2000,48(9):1550-1558.
    [40]G.D.Kondylis,F.De Flaviis,G.J.Pottie et al..A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell's equations[J].IEEE Trans.Microwave Theory Tech.,2001,49(7):1310-1320.
    [41]J.L.Young,D.Gaitonde,et al.Toward of the construction of a four-order difference scheme for transient EM wave simulation:Staggered grid approach.IEEE Trans.AP,1997,45(11):1573-1580.
    [42]S.V.Georgakopouls,R.A.Renaut,et al.A hybrid four-order utilizing a second-order FDTD subgrid.IEEE Microwave and Wireless Components Letters,2001,11(11):462-464.
    [43]T.Hirono,W.Liu and Y.Yoshikuni,A three dimensional four-order finite-difference time-domain scheme using asymplectic integrator propagator.IEEE Trans.MTT,2001,49(9):1640-1647.
    [44]R.Holland,V.P.Cable and L.C.Wilson.Finite-volume time-domain technique (FVTD)for EM scattering.IEEE Trans.AP,1991,39(4):281-294.
    [45]K.S.Yee,J.S.Chen.The finite-difference tima domain(FDTD)and finite-volume time-domain(FVTD)methods in solving Maxwell's equations.IEEE Trans.MTT,1997,45(3):354-363.
    [46]M.Yang,Y.Chen,R.Mittra.Hybrid finite-difference/finite-volume time-domain analysis on microwave integrated circuits with curved PEC surfaces using a non-uniform rectangular grid.IEEE Trans.MTT,2000,48(6):969-975.
    [47]Z.Chen,J.Xu.The generalized TLM-based FDTD-Summary of recent progress.IEEE Microwave and Guided Wave Letters,1997,7(11):12-14.
    [48]J.F.Lee,et al.A finite element time domain approach for solving Maxwell's equations.IEEE Microwave and Guided Wave Letters,1993,4(1):1680-1683.
    [49]S.M.Rao,T.K.Sarker,Numerical solution of time domain integral equations for arbitrarily shaped conductor/dielectric composite bodied.IEEE Trans.AP,2002,50(4):1831-1837.
    [50]Q.H.Liu.The pseudospectral time domain(PSTD)method:A new algorithm for solution of Maxwell's equations.Proc.IEEE Antennas and Propag.Soc.Int.Symp.,1997,(1):122-125.
    [51]M.Krumpholz,L.P.B.Katehi.MRTD:New time-domain schemes based on multiresolution analysis[J]IEEE Trans.Microwave Theory Tech.,1996,44:555-571.
    [52]徐利军,袁乃昌.高阶ADI-FDTD 算法的数值色散分析.电子与信息学报,2005,10:1662-1665.
    [53]Sun G and Trueman C W.Analysis and Numerical Experiments on the Numerical Dispersion of Two-Dimensional ADI-FDTD.IEEE Antennas and Wireless Propagation Lett.,2003,2(7):78-81.
    [54]W.C.Chew and W.H.Weedon,A 3d perfectly matched medium from modified Maxwells equations with stretched coordinates,Microwave Opt.Techno.Lett.,1994,7(13):599-604.
    [55]Q.H.Liu,An FDTD algorithm with perfectly matched layer for conductive media,Microwave Opt.Techno.Lett.,1997,14(2):134-137.
    [56]G.Liu and S.D.Gedney,Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method,IEEE Microwave Guided Wave Lett.,2000,7(10):261-263.
    [57]S.D.Gedney."The perfectly matched layer absorbing medium," in Advances in Computational Electrodynamics:The Finite Difference Time Domain,A.Taflove,Ed.Boston,MA:Artech House,1998.
    [58]K.S.Yee,D.Ingham and K.Shlager.Time-domain extrapolation to the far field based on FDTD calculations.IEEE Trans.AP,1991,39(3):410-423.
    [59]R.J.Lubbers,et el.A finite-difference time-domain near zone to far zone transformation.IEEE Trans.AP,1991,39(4):429-433.
    [60]K.L.Shlager and G.S.Smith.Near-field to far-field transform for use with the FDTD method and its application to pulsed antenna problems.Electronics Letters,1994,30(6):1262-1264.
    [61]K.L.Shlager and G.S.Smith.Comparison of two FDTD near-field to far-field transforms applied to pulsed antenna problems.Electronics Letters,1995,31(12):936-938.
    [62]T.Martin.An improved near- to far-zone transformation for the finite-difference time-domain method.IEEE Trans.AP,1998,46(9):1263-1271.
    [63]O.M.Ramahi.Near- and far-field calculations in FDTD simulations using kirchhoff surface integral representation.IEEE Trans.AP,1997,45(5):753-759.
    [64]张光甫等.基于基尔霍夫积分的近远场变换的改进.电波科学学报,2000,15(3):339-342.
    [65]F.Zheng,Z.Chen and J.Zhang.A finite-difference time-domain method without the Courant stability conditions[J].IEEE Microwave Guided Wave Lett.,1999,9:441-443.
    [66]Dennis M.Sullivan.Z transform theory and the FDTD method[J].IEEE Trans.A.P.,1996,44(1):28-34.
    [67]徐利军,王禹,袁乃昌.色散媒质中采用z变换的ADI-FDTD方法.微波学报,2005,21(4):20-22.
    [68]刘少斌.莫锦军.袁乃昌 等离子体的分段线性电流密度递归卷积FDTD算法[J]物理学报,2004,53(3):778-782.
    [69]Lijun Xu and Naichang Yuan.PLJERC-ADI-FDTD method for isotropic plasma.IEEE Microwave and Wireless Compon.Lett.,2005,15(4):277-279.
    [70]David F.Kelley and Raymond J.Luebbers.Piecewise linear recursive convolution for dispersive media using FDTD[J].IEEE Trans.A.P.,1996,44(6):792-797.
    [71]R.J.Luebbers,F.Hunsberger and K.S.Kunz.A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma[J].IEEE Trans.A.P.,1991,39(1):29-34.
    [72]Vidmar,R.J.Generation and properties of tenuous plasma bodies at atmospheric pressure[R]Annual Report,AFOSR Contract No.F49620-85-K-0013 SRI International,1988.
    [73]Vidmar,R.J.Electromagnetic-wave propagation in unmagnetized plasmas[R].AD-A250710.1992.
    [74]Roth,J.R.Interaction of Electromagnetic Fields with Magnetized Plasmas[R].AD-A285496.1996,204-209.
    [75]A.Igor,K.W.Lock.Plasma stealth antenna for the U.S.Navy[C].IEEE International conference on Plasma Science.1998.
    [76]刘少斌,莫锦军,袁乃昌.不均匀等离子体球的电磁波轨迹及其应用[J],电波科学学报,2002,17(2):134-137.
    [77]莫锦军,刘少斌,袁乃昌.非均匀等离子体覆盖目标隐身研究[J].电波科学学报,2002,17(1):69-73.
    [78]刘少斌,莫锦军,袁乃昌等.不均匀非磁化等离子体球隐身的研究[A].全国微波毫米波会议[C].2001:830-832.
    [79]Laroussi M,et.al.Absorption and transmission of microwaves by a nonuniform plasma near the electron cyclotron frequency.Proc.9~(th)th APS Topic.Conf.Radio Freq.Power in Plasma,Charleston,SC,1991:37-45.
    [80]Petrin A.B.Transmission of Microwaves Through Magnetoactive Plasma[J].IEEE Transactions on Plas.Sci.2001,29(3):471-478.
    [81]毕德显.电磁场理论[M].北京:电子工业出版社,1985,423-435.
    [82]杨华,时家明,凌永顺.电磁波在磁化等离子体上的反射特性研究[J].电波科学学报,2001,16(2):196-199.
    [83]R.J.Luebbers,F.Hunsberger,and K.S.Kunz,"A frequency-dependent finite-diffemce time-domain formulation for transient propagation in plasma," IEEE Trans.Antennas Propag.,vol.39,no.1,pp.29-34,Jan.1990.
    [84]F.Hunsberger,R.J.Luebbers,and K.S.Kunz,"Finite-differnce time-domain analysis of gyrotropic media-Ⅰ:Magnetized plasma," IEEE Trans.Antennas Propag.,vol.40,no.12,pp.1489-1495,Dec.1992.
    [85]Q.Chen,M.Katsurai,and P.H.Aoyagi,"A FDTD formulation for dispersive media using a current density," IEEE Trans.Antennas Propag.,vol.46,no.11,pp.1739-1746,Nov.1998.
    [86]D.M.Sullivan,"Frequency-dependent FDTD methods using z transforms," IEEE Trans.Antennas Propag.,vol.40,no.10,pp.1223-1230,Oct.1992.
    [87]D.M.Sullivan,"Nonlinear FDTD formulations using z transforms," IEEE Trans.Microw.Theory Tech.,vol.43,no.3,pp.676-682,Mar.1995.
    [88]D.M.Sullivan,"Z-ransform theory and the FDTD method," IEEE Trans.Antennas Propag.,vol.44,no.1,pp.28-34,Jan.1996.
    [89]J.M.Joseph,S.C.Hagness,and A.Taflove,"Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt.Lett.,vol.16,pp.1412-1414,1991.
    [90]L.J.Young,"A full finite difference time domain implementation for radio wave propagation in a plasma," Radio Sci.,vol.29,pp.1513-1522,1994.
    [91]Y.Takayama and W.Klaus,"Reinterpretation of the auxiliary differential equation method for FDTD," IEEE Microw.Wireless Compon.Lett.,vol.12,no.3,pp.102-104,Mar.1994.
    [92]S.A.Cummer,"An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans.Antennas Propag.,vol.45,no.3,pp.392-400,Mar.1997.
    [93]M.I.Yaich,M.Khalladi,I.Zekik,and A.Morente,"Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microw.Wireless Compon.Lett.,vol.12,no.8,pp.293-295,Aug.2002.
    [94]C.Schuster,A.Christ,andW.Fichtner,"Review of FDTD time-steping schemes for efficient simulation of electric conductive media," Microw.Opt.Technol.Lett.,vol.25,pp.16-21,2000.
    [95]R.Holland,"Finite-difference time-domain(FDTD)analysis of magnetic diffusion," IEEE Trans.Electromagn.Compat.,vol.31,no.1,pp.32-39,Feb.1994.
    [96]P.G.Petropoulos,"Analysis of exponential time-differencing for FDTD in lossy dielectrics," IEEE Trans.Antennas Propag.,vol.45,no.6,pp.1054-1057,Jun.1997.
    [97]徐利军,刘少斌,袁乃昌.用FDTD计算各向异性磁化等离子体涂敷二维目标RCS.物理学报,2005,54(10):4789-4793.
    [98]Luebbers R J,Hunsberger F,Kunz K S,et al.A frequency dependent finite-difference time-domain formulation for dispersive material[J].IEEE Trans Electromagn Compat,1990,32:222-227.
    [99]Kashiwa T,Yoshida N Y,Fukai I.Transient analysis of a magnetized plasma in three-dimensional space[J].IEEE Trans Antennas Propagat,1988,36:1096-1105.
    [100]Nickisch L J,Franke P M.Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere[J].IEEE Antennas Propagat Mag,1992,34:33-39.
    [101]Gandhi O P,Gao B Q,Chen T Y.A frequency-dependent finite-difference time-domain for general dispersive media[J].IEEE Trans Microwave Theory Technol,1993,41:658-664.
    [102]Sullivan D M.Frequency-dependent FDTD methods using Z transforms[J].IEEE Trans Antennas Propagat,1992,40:1223-1230.
    [103]Young J L.Propagation in linear dispersive media:Finite difference time-domain methodologies[J].IEEE Trans Antennas Propagat,1995,43:422-426.
    [104]Young J L.A higher order FDTD method for EM propagation in collisionless cold plasma[J].IEEE Trans Antennas Propagat,1996,44:1283-1289.
    [105]Kelley D F,Luebbers R J.Piecewise linear recursive convolut ion for dispersive media using FDTD[J].IEEE Trans Antennas Propagat,1996,44:792-797.
    [106]莫锦军,刘少斌,袁乃昌.非均匀等离子体覆盖目标隐身研究[J].电波科学学报,2002,17(1):69-73.
    [107]Cummer SA.An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy[J].IEEE Trans Antennas Propagat,1997,45(3):392-400.
    [108]莫锦军 刘少斌 袁乃昌.等离子体隐身机理研究[J].现代雷达,2002,24(3):9-12.
    [109]刘志文 柯有安.雷达反隐身的若干问题与技术途径[J].现代雷达,1992,14(3):1-9.
    [110]何国瑜 王振荣.隐身飞机雷达目标特性初探[J].现代雷达,1992,14(3):10-16.
    [111]刘少斌 莫锦军 袁乃昌.等离子体的分段线性电流密度递归卷积FDTD算法[J].物理学报,2004,50(3):778-782.
    [112]刘少斌 张光甫 袁乃昌.等离子体覆盖立方体目标雷达散射截面的时域有限差分法分析[J].物理学报,2004,50(8):2633-2637.
    [113]刘少斌 莫锦军 袁乃昌.各向异性磁化等离子体JEC-FDTD算法[J].物理学报,2004,50(3):783-787.
    [114]Lijun Xu and Naichang Yuan.JEC-FDTD for 2-D Conducting Cylinder Coated by Anisotropic Magnetized Plasma[J].IEEE Microwave and Wireless Compon.Lett.,2005,15(12):892-894.
    [115]Lijun Xu,Jinjun Mo and Naichang Yuan.FDTD Method for 2-Dimensional Anisotropic Magnetized Plasma[J].IEEE 2005 Asia-Pacific Microwave Conference,Suzhou,China,Vol.3:1727-1729.
    [116]Ercument A and Tapan K.S."Rcs of two dimensional structures consisting of both dielectrics and conductor of arbitrary crosss section"[J],IEEE Trans Antennas Propagat,1989,vol 37,no 5:546-554.
    [117]徐利军 莫锦军 袁乃昌.磁化等离子体覆盖二维导体目标FDTD分析[J].电波科学学报,已录待刊.
    [118]J.R.Wait,"Some boundary value problems involving plasma media," J.Res.NBS,vol.65B,pp.137-150,1961.
    [119]H.C.Chen and D.K.Cheng,"Scattering of electromagneticwaves by an anisotropic plasma-coated conducting cylinder," IEEE Trans.Antennas Propagat.,vol.AP-12,pp.348-353,May 1964.
    [120]K.C.Yeh and C.H.Liu,Theory of Ionosphere Waves.New York:Academic,1972.
    [121]AD-A285496,1996.
    [122]A.B.Petrin,"Transmission of microwave through magnetoactive plasma," IEEE Trans.Plasma Sci.,vol.29,pp.471-478,June 2001.
    [123]R.D.Graglia and P.L.E.Uslenghi,"Electromagnetic scattering from anisotropic material--Part Ⅰ:General theory," IEEE Trans.Antennas Propagat.,vol.AP-32,pp.867-869,Aug.1984.
    [124]X.B.Wu and K.Yasumoto,"Three-dimensional scattering by an infinite homogeneous anisotropic cylinder:an analytical solution," J.AppL Phys.,vol.82,no.1,pp.1996-2003,1997.
    [125]R.D.Graglia,P.L.E.Uslenghi,and R.S.Zich,"Moment method with isoparametric elements for three-dimensional anisotropic scatterers," Proc.IEEE,vol.77,pp.750-760,May 1989.
    [126]X.Q.Zhu,Y.L.Geng,and X.B.Wu,"Application of MOM-CGM-FFT method to scattering from three-dimensional anisotropic scatterers"(in in Chinese),Chinese J.Radio Sci.,vol.17,no.3,pp.209-215,2002.
    [127]V.V.Varadan,A.Lakhtakia,and V.K.Varadran,"Scattering by threedimensional anisotropic scatterers," IEEE Trans.Antennas Propagat.,vol.37,pp.800-802,June 1989.
    [128]S.N.Papadakis,N.K.Uzunoglu,and C.N.Capsalis,"Scattering of a plane wave by a general anisotropic dielectric ellipsoid," J.Opt.Soc.Amer.A,vol.7,no.6,pp.991-997,1990.
    [129]W.Ren,"Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Phys.Rev.E,vol.47,pp.664-673,Jan.1993.
    [130]Y.L.Geng,X.B.Wu,and L.W.Li,"Analysis of electromagnetic scattering by a plasma anisotropic sphere," Radio Sci.,vol.38,no.6,p.1104,2003.
    [131]J.C.Monzon,"Three-dimensional field expansion in the most general rotationally symmetric anisotropic material:application to scattering by a sphere," IEEE Trans.Antennas Propagat.,vol.37,pp.728-735,June 1989.
    [132]K.-L.Wong and H.-T.Chen,"Electromagnetic scattering by a uniaxially anisotropic sphere," Inst.Elect.Eng.--Pt.H,vol.139,no.4,pp.314-318,Aug.1992.
    [133]You-lin Geng,Xin-bao Wu and Le-Wei Li," Characterization of Electromagnetic Scattering by a Plasma Anisotropic Spherical Shell," IEEE antennas and wireless propagation letters,vol.3,pp.100-103,2004.
    [134]J Schneider and S Hudson," The finite difference time domain method applied to anisotropic material" IEEE Trans.Antennas Propagat.,vol.41,pp.994-999,July 1993.
    [135]徐利军 莫锦军 袁乃昌.磁化等离子体涂敷三维导体目标宽频散射研究[J].现代雷达,已录待刊.
    [136]徐利军,刘少斌,莫锦军,袁乃昌,各向异性磁化等离子体涂敷三维导体目标FDTD分析.物理学报,2006,第7期.
    [137]闫玉波,石守元,葛德彪.用于FDTD的复杂目标的建模.西安电子科技大学学报,1998,25(3):389-392.
    [138]李明之,刘友健,王长清,徐承和.用CAD技术实现复杂目标FDTD方法几何-电磁建模.电子学报,1999,27(3):131-133.
    [139]薛正辉.电磁场的时域技术及应用-电大尺寸目标电磁特性时域分析与天线时域近场测试.北京:北京理工大学博士学位论文,2002.
    [140]莫锦军.隐身目标低频宽带电磁散射特性研究.长沙:国防科学技术大学博士学位论文,2004.
    [141]唐荣锡,汪嘉业,彭群生 编著.计算机图形学教程.北京:科学出版社,1994.
    [142]周力.城市小区电波传播预测算法研究.长沙:国防科学技术大学博士学位论文,2003.
    [143]J.F.Lee and R.D.Edlinger.Automatic mesh generation using a modified Delaunay tessellation.IEEE Antennas and Propagation Magazine,1997,39(1):34-45.
    [144]Y.Srisukh,J.Nehrbass,F.L.Teixeira,F.F.Lee,and R.Lee.An approach for automatic grid generation in three-dimensional FDTD simulations of complex geometries.IEEE Antennas and Propagation Magazine,2002,44(4):75-80.
    [145] W.Sun and C.A.Balanis. Three-dimensional automatic FDTD mesh generation on a PC. IEEE AP-S, 1993:30-33.
    [146] Jonathan Hill. Efficient Implementation of Mesh Generation and FDTD Simulation of Electromagnetic Fields. A Thesis Submitted to the Faculty of the Worcester Polytechnic Institute, 1996.
    [147] Wenhua Yu and R.Mittra. A conformal FDTD software package for modeling of antennas and microstrip circuit components. IEEE Antenna and Propagation Magazine, 2000,42(5): 28-39.
    [148] Wenhua Yu and R.Mittra. Development of a graphical user interface for the conformal finite-difference-time-domain (CFDTD) software package. IEEE Antennas and Propagation Magazine, 2003,45(1): 58-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700