电纺微/纳米纤维修饰电极在电化学传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维微/纳米材料具有大的比表面积和长径比,将其修饰在电极表面可以大大提高电极面积,并有利于电子传输,因此利用各种方法制备一维微/纳米材料修饰电极一直备受关注。通过静电纺丝技术直接将一维微/纳米纤维修饰在电极表面是一种有效的制备一维材料修饰电极的方法。本文通过静电纺丝技术制备了基于过渡金属氧化物微米纤维修饰电极的非酶葡萄糖传感器和基于多金属氧酸盐(POM)复合纳米纤维修饰电极的亚硝酸盐传感器。主要的工作如下:
     1、掺杂氟的二氧化锡(FTO)电极作为纤维接收屏,电纺包含高含量的硝酸铜的无机盐/高聚物混合前驱溶液,经过煅烧后,制得由CuO纳米粒子组成的CuO微米纤维修饰电极并将其应用于非酶葡萄糖传感器的研究。扫描电镜结果表明,CuO纳米颗粒的大小取决于前驱物中硝酸铜的含量。随着硝酸铜含量的增加,纳米尺寸的CuO粒子逐步取代大尺寸的CuO颗粒来组成CuO微米纤维。这些纳米尺寸的CuO粒子大大提高了电极面积和催化反应活性点,从而增强了其修饰电极对葡萄糖的电催化性能。
     2、通过静电纺丝和煅烧技术制得NiO微米纤维修饰FTO电极并将其应用于非酶葡萄糖传感器的研究。伏安法和安培分析法研究结果表明,煅烧温度对NiO微米纤维修饰电极的电催化性能有影响,其电催化性能随着煅烧温度的增加而降低。通过300℃煅烧所获得的NiO微米纤维修饰电极对葡萄糖表现出最好的电催化性能。这是因为随着煅烧温度的增加制得的NiO材料的导电性降低,从而使得低温煅烧得到的NiO微米纤维修饰电极的电催化性能最好。
     3、通过静电纺丝和煅烧技术制得CuO掺杂-NiO复合微米纤维修饰FTO电极并将其应用于非酶葡萄糖传感器的研究。伏安法和安培分析法研究结果表明,CuO掺杂-NiO复合微米纤维修饰电极的电催化性能较单纯的NiO微米纤维修饰电极有了大幅度的提高。基于CuO掺杂-NiO复合微米纤维修饰电极的葡萄糖传感器具有极高的灵敏度。这主要是因为CuO的掺杂不仅提高了NiO微米纤维的导电性也增加了NiO对葡萄糖催化时的反应活性点。基于CuO掺杂-NiO复合微米纤维修饰电极的传感器被实际应用于检测人体血样中的葡萄糖浓度,其结果与自动生化分析仪的检测结果吻合。
     4、氧化铟-氧化锡(ITO)电极作为纤维接收屏,电纺聚乙烯醇(PVA)和α-K6[P_2W_(18)O_(62)]14H2O (P_2W_(18))混合前驱溶液,制得PVA/P_2W_(18)复合纳米纤维修饰电极。经过热交联处理后,PVA/P2W18复合纳米纤维不再溶于水,从而将PVA/P_2W_(18)复合纳米纤维修饰电极应用于亚硝酸盐传感器的研究。伏安法和安培分析法研究结果表明, PVA/P2W18复合纳米纤维修饰电极对亚硝酸盐表现出非常好的电催化还原性能。同时,电极具有很好的长期稳定性和可重现性。
Due to their high surface-to-volume ratio and high aspect ratio, one dimensional (1D)micro/nanomaterials have been widely applied in many fields, especially in the field ofchemically modified electrode because1D micro/nanomaterials can significantly increaseelectrode surface area and help the electron transfer. Therefore, the preparations of1Dmicro/nanomaterials modified electrode using various techniques have attracted great interest.Electrospinning technique is an efficient method for preparing1D micro/nanofibers modifiedelectrode. In this thesis, transition metal oxides microfibers modified electrodes fornonenzymatic glucose sensors and polyoxometalate (POM) hybrid nanofibers modifiedelectrode for nitrite sensor fabricated by electrospinning technique were investigated. Themain achievements are summarized as follows:
     1. Fluorine tin oxide (FTO) electrode modified by CuO microfibers composed ofnumerous interconnected CuO nanoparticles for nonenzymatic glucose sensor was preparedby electrospinning precursor containing high percentage content of copper nitrate withsubsequent calcination. The results of scanning electron microscope (SEM) showed the sizeof CuO particles composing CuO microfibers depended on the percentage content of coppernitrate in precursor solution. With increasing the percentage content of copper nitrate, theinterconnected CuO nanoparticles would gradually replace the large-size CuO particles toaccumulate the CuO microfibers, which have the potential to provide larger surface area andmore reaction sites for electrocatalytic performance toward glucose.
     2. NiO microfibers were directly immobilized onto the surface of FTO electrode byelectrospinning and calcination for nonenzymatic glucose sensor. The results of cyclicvoltammetry and amperometry proved that calcination temperature has an influence on theelectrocatalytic performance toward the oxidation of glucose at the NiO microfibers modifiedelectrode. The electrocatalytic performance of the NiO microfibers modified electrodedecrease gradually with increasing the calcination temperature. The NiO microfibers modifiedelectrode prepared at low calcination temperature (300℃) presented remarkableelectrocatalytic performance toward the oxidation of glucose. This is because the decrease ofthe conductivity of NiO with the increase of calcination temperature.
     3. An improved nonenzymatic glucose sensor based on CuO-doped NiO compositemicrofibers modified FTO electrode was prepared by electrospinning and calcinationtechnique. The results of cyclic voltammetry and amperometry demonstrated that theCuO-doped NiO composite microfibers modified electrode displayed much higherelectrocatalytic performance than the NiO microfibers modified electrode, which can be mainly attributed to the resulting increase in conductive and reaction sites at NiO microfibersinduced by doping CuO. Additionally, its application for detecting glucose concentration ofhuman serum sample showed good agreement with the results obtained from automaticbiochemical analyzer.
     4. POM hybrid nanofibers modified electrode was prepared by electrospinning of amixture of poly (vinyl alcohol)(PVA) and α-K_6[P_2W_(18)O_(62)]14H_2O (P_2W_(18)) onto surface ofindium tin oxide (ITO) electrode. After thermal crosslinking, the P_2W_(18)hybrid nanofibers areinsoluble in aqueous solutions, which ensure that the P2W18hybrid nanofibers modifiedelectrode could be applied as nitrite sensor. The results of cyclic voltammetry andamperometry demonstrated that the P2W18hybrid nanofibers modified ITO electrode exhibitsexcellent electrocatalytic performance toward the reduction of nitrite. Additionally, long-termstability and reproducibility were observed.
引文
[1] Kubo R. Generalized Cumulant Expansion Method[J]. Journal of the Physical Society ofJapan,1962,17(7):1100-1120.
    [2]柳巍.无机功能性纳米材料与高分子纳米纤维的复合[D]:[博士学位论文].长春:吉林大学,2004.
    [3] Savage N, Thomas T A, Duncan J S. Nanotechnology applications and implications researchsupported by the US Environmental Protection Agency STAR grants program[J]. Journal ofEnvironmental Monitoring,2007,9(10):1046-1054.
    [4] Kostoff R N, Stump J A, Johnson D, et al. The structure and infrastructure of the globalnanotechnology literature[J]. Journal of Nano Research,2006,8(3):301-321.
    [5]徐彦红.金属复合氧化物纳米材料的制备及其在电化学传感器中的应用研究[D]:[博士学位论文].上海:上海大学,2011.
    [6] Hulteen J C, Martin C R. A general template-based method for the preparation ofnanomaterials[J]. Journal of Materials Chemistry,1997,7(7):1075-1087.
    [7] Walsh A G, Bacsa W, Vamivakas A N, et al. Spectroscopic properties unique tonano-emitters[J]. Nano Letters,2008,8(12):4330-4334.
    [8] Ko S H, Park I, Pan H, et al. Direct nanoimprinting of metal nanoparticles for nanoscaleelectronics fabrication[J]. Nano Letters,2007,7(7):1869-1877.
    [9] Wang X Y, Li D Y. Mechanical, electrochemical and tribological properties ofnano-crystalline surface of304stainless steel[J]. Wear,2003,255(7-12):836-845.
    [10] Chen H, Hagiwara I, Huang T, et al. Theoretical study on thin-film formation by parallelmolecular dynamics simulation[J]. Synthetic Metals,2005,155(3):652-656.
    [11]刘海峰,彭同江,孙红娟,马国华,段涛.一维纳米功能材料研究新进展[J].化工新型材料,2007,35(4):1-3.
    [12] Ondarcuhu T, Joachim C. Drawing a single nanofibers over hundreds of microns[J].Europhysics Letters,1998,42(2):215–220.
    [13] Liu G J, Ding J F, Qiao L J, et al. Polystyrene-block-poly(2-cinnamoylethylmethacrylate) Nanofibers—Preparation, Characterization, and Liquid CrystallineProperties[J]. Chemistry-A European Journal,1999,5(9):2740–2749.
    [14] Martin C R. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials,1996,8(8):1739–1746.
    [15] Ma P X, Zhang R Y. Synthetic nano-scale fibrous extracellular matrix[J]. Journal ofBiomedical Materials Research Part A,1999,46(1):60–72.
    [16] Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospunpoly(ethylene oxide) fibers[J]. Polymer,2001,42(19):8163–8170.
    [17] Fong H, Reneker D H. Electrospinning and the Formation of Nanofibers[M]. Munich: Hanser,2001.225–246.
    [18]赵一阳.高压静电纺丝技术构筑一维微纳米结构材料[D]:[博士学位论文].长春:吉林大学,2007.
    [19] Formhals A. Process and Apparatus for Preparing Artificial Threads[P]. U.S.Patent,1975504.1934.
    [20] Baumgarten P K. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloidand Interface Science,1971,36(1):71-79.
    [21] Larrando L, Manley R S J. Electrostatic fiber spinning from polymer melts. I.Experimental observations on fiber formation and properties[J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(6):909-1018.
    [22] Larrando L. Manley R S J. Electrostatic fiber spinning from polymer melts. II.Examination of the flow field in an electrically driven jet[J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(6):921-923..
    [23] Larrando L. Manley R S J. Electrostatic fiber spinning from polymer melts. III.Electrostatic deformation of a pendant drop of polymer melt[J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(6):933-940.
    [24] Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced byelectrospinning[J]. Nanotechnology,1996,7(3):216-223.
    [25] Srinivasan G, Reneker D H. Structure and morphology of small diameter electrospunaramid fibers[J]. Polymer International,1995,36(2):195-201.
    [26] Chen Z H, Foster M D, Zhou W S. et al. Structure of Poly(ferrocenyldimethylsilane)in Electrospun Nanofibers[J]. Macromolecules,2001,34(18):6156-6158.
    [27] Kim J S, Reneker D H. Polybenzimidazole nanofiber produced by electrospinning[J].Polymer Engineering&Science,1999,39(5):849-854.
    [28] Matthews J A, Wnek G E, Simpson D G, et al. Electrospinning of collagen nanofibers[J].Biomacromolecules,2002,3(2):232–238.
    [29] Li M, Mondrions M J, Gandi R M, et al. Electrospun protein fibers as matrices for tissueengineering[J]. Biomaterials,2005,26(30):5999–6008.
    [30] Xie J B, Hsieh Y L. Ultra-high surface fibrous membranes from electrospinning of naturalproteins:casein and lipase enzyme[J]. Journal of Materials Science,2003,38(10):2125–2133.
    [31] Wnek G E, Carr M E, Simpson D G, et al. Electrospinning of nanofiber fibrinogenstructures[J]. Nano Letters,2003,3(2):213–216.
    [32] Ogho K, Zhao C H, Kobayashi M, et al. Preparation of non-woven nanofibers of bombyxmori silk, samia cynthia ricini silk and recombinant hybrid silk with electrospinningmethod[J]. Polymer,2003,44(3):841–846.
    [33] Kim S H, Nam Y S, Lee T S, et al. Silk fibroin nanofiber. Electrospinning, properties,and structure[J]. Polymer Journal,2003,35(2):185–190.
    [34] Min B M, Lee S W, Lim J N, et al. Chitin and chitosan nanofibers:electrospinning ofchitin and deacetylation of chitin nanofibers[J]. Polymer,2004,45(21):7137–7142.
    [35] Ohkawa K, Cha D, Kim H, et al. Electrospinning of chitosan[J]. Macromolecular RapidCommunications,2004,25(18):1600–1605.
    [36] Kulpinski P. Cellulose nanofibers prepared by the N-methylmorpholine-N-oxidemethod[J]. Journal of Applied Polymer Science,2005,98(4):1855–1859.
    [37] Liu H Q, Hsieh Y L. Ultrafine fibrous cellulose membranes from electrospinning ofcellulose acetate[J]. Journal of Polymer Science Part B: Polymer Physics,2002,40(18):2119–2129.
    [38] Daga V K, Helgeson M E, Matthew E, et al. Electrospinning of neat and laponite-filledaqueous poly(ethylene oxide)solutions[J]. Journal of Polymer Science Part B: PolymerPhysics,2006,44(11):1608–1617.
    [39] Zhang C X, Yuan X Y, Wu L L, et al. Drug-loaded ultrafine poly(vinyl alcohol)fibremats prepared by electrospinning[J]. e-Polymers,2005, No.72.
    [40] Li L, Hsieh Y L. Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylicacid)[J]. Polymer,2005,46(14):5133–5139.
    [41] Yang Q B, Li Z Y, Hong Y L, et al. Influence of solvents on the formation of ultrathinuniform poly(vinyl pyrrolidone)nanofibers with electrospinning[J]. Journal of PolymerScience Part B: Polymer Physics,2004,42(20):3721–3726.
    [42] Shukla S, Brinley E, Cho H J, et al. Electrospinning of hydroxypropyl cellulose fibersand their application in synthesis of nano and submicron tin oxide fibers[J]. Polymer,2005,46(26):12130–12145.
    [43] Koombhongse S, Liu W X, Reneker D H. Flat polymer ribbons and other shapes byelectrospinning[J]. Journal of Polymer Science Part B: Polymer Physics,2001,39(21):2598-2606.
    [44] Krishnappa R V N, Desai K, Sung C. Morphological study of electrospun polycarbonatesas a function of the solvent and processing voltage[J]. Journal of Materials Science,2003,38(11):2357–2365.
    [45] Bergshoef M M, Vancso G J. Transparent nanocomposites with ultrathin, electrospunnylon-4,6fiber reinforcement[J]. Advanced Materials,1999,11(16):1362–1365.
    [46] Huang C B, Wang S Q, Zhang H A, et al. High strength electrospun polymer nanofibersmade from BPDA–PDA polyimide[J]. European Polymer Journal,2006,42(5):1099-1104.
    [47] Kim J S, Reneker D H. Mechanical properties of composites using ultrafine electrospunfibers[J]. Polymer Composites,1999,20(1):124–131.
    [48] Kim K W, Lee K H, Lee B S, et al. Effects of blend ratio and heat treatment on theproperties of the electrospun poly(ethylene terephthlate) nonwovens[J]. Fibers andPolymers,2005,6(2):121–126.
    [49] Khil M S, Kim H Y, Kim M S, et al. Nanofibrous mats ofpoly(trimethyleneterephthalate)via electrospinning[J]. Polymer,2004,45(1):295–301.
    [50] Demir M M, Yilgor I, Erman B. Electrospinning of polyurethane fibers[J]. Polymer,2002,43(10):3303–3309.
    [51] Kenawy E R, Bowlin G L, Mansfield K, et al. Release of tetracycline hydrochloride fromelectrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend[J]. Journal ofControlled Release,2002,81(1-2):57–64.
    [52] Lee K H, Kim H Y, La Y M, et al. Influence of a mixing solvent with tetrahydrofuranand N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats[J]. Journalof Polymer Science Part B: Polymer Physics,2002,40(19):2259–2268.
    [53] Deitzel J M, Kosik W, Mcknight S H, et al. Electrospinning of polymer nanofibers withspecific surface chemistry[J]. Polymer,2002,43(3):1025–1029.
    [54] Bognitzki M, Becker M, Graeser M, et al. Preparation of sub-micrometer copper fibersvia electrospinning[J]. Advanced Materials,2006,18(18):2384–2386.
    [55] Huang L, Nagapudi K, Apkarian R P, et al. Engineered collagen-PEO nanofibers andfabrics[J]. Journal of Biomaterials Science, Polymer Edition,2001,12(9):979–993.
    [56] Venugopal J, Ma L L, Yong T, et al. In vitro study of smooth muscle cells onpolycaprolactone and collagen nanofibrous matrices[J]. Cell Biology International,2005,29(10):861–867.
    [57] Zhang Y Z, Ouyang H W, Lim C T, et al. Electrospinning of gelatin fibers and gelatin/PCLcomposite fibrous scaffolds[J]. Journal of Biomedical Materials Research Part B: AppliedBiomaterials,2005,72(1):156–165.
    [58] Zeng J, Aigner A, Czubayko F, et al. Poly(vinyl alcohol)nanofibers by electrospinningas a protein delivery system and the retardation of enzyme release by additional polymercoatings[J]. Biomacromolecules,2005,6(3):1484–1488.
    [59] Ko F, Gogotsi Y, Ali A, et al. Electrospinning of Continuous Carbon Nanotube-FilledNanofiber Yarns[J]. Advanced Materials,2003,15(14):1161-1165.
    [60] Ye H H, Lam H, Titchenal N, et al. Reinforcement and rupture behavior of carbonnanotubes–polymer nanofibers[J]. Applied Physics Letters,2004,85(10):1775-1778.
    [61] Dror Y, Salalha W, Khalfin R L, et al. Carbon Nanotubes Embedded in Oriented PolymerNanofibers by Electrospinning[J]. Langmuir,2003,19(17):7012-7020.
    [62] Salalha W, Dror Y, Khalfin R L, et al. Single-Walled Carbon Nanotubes Embedded inOriented Polymeric Nanofibers by Electrospinning[J]. Langmuir,2004,20(22):9852-9855.
    [63] Hou H, Reneker D H. Carbon Nanotubes on Carbon Nanofibers: A Novel Structure Basedon Electrospun Polymer Nanofibers[J]. Advanced Materials,2004,16(1):69-73.
    [64] Lee H K, Jeong E H, Baek C K, et al. One-step preparation of ultrafine poly(acrylonitrile)fibers containing silver nanoparticles[J]. Materials Letters,2005,59(23):2977-2980.
    [65] Jin W J, Lee H K, Jeong E H. Preparation of Polymer Nanofibers Containing SilverNanoparticles by Using Poly(N-vinylpyrrolidone)[J]. Macromolecular Rapid Communications.2005,26(24):1903-1907.
    [66] Li Z Y, Huang H M, Shang T C, et al. Facile synthesis of single-crystal and controllablesized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres[J].Nanotechology,2006,17(3):917-921.
    [67] Hong K H, Park J L, Sul I H, et al. Preparation of antimicrobial poly(vinyl alcohol)nanofibers containing silver nanoparticles[J]. Journal of Polymer Science Part B: PolymerPhysics,2006,44(17):2468-2474.
    [68] Son W K, Youk J H, Park W H. Antimicrobial cellulose acetate nanofibers containingsilver nanoparticles[J]. Carbohydrate Polymers,2006,65(4):430-434.
    [69] Wang Y Z, Li Y X, Yang S T, et al. A convenient route to polyvinyl pyrrolidone/silvernanocomposite by electrospinning[J]. Nanotechnology,2006,17(13):3304-3308.
    [70] Xu X Y, Yang Q B, Wang Y Z, et al. Biodegradable electrospun poly(l-lactide) fiberscontaining antibacterial silver nanoparticles[J]. European Polymer Journal,2006,42(9):2081-2087.
    [71] Shang T C, Yang F, Zheng W, et al. Fabrication of Electrically Bistable Nanofibers[J].Small,2006,2(8-9):1007-1009.
    [72] Kim G M, Wutzler A, Radusch H J, et al. One-Dimensional Arrangement of GoldNanoparticles by Electrospinning[J]. Chemistry Materials,2005,17(20):4949-4957.
    [73] Bai J, Li Y X, Yang S T, et al. A simple and effective route for the preparation ofpoly(vinylalcohol)(PVA) nanofibers containing gold nanoparticles by electrospinningmethod[J]. Solid State Communications,2007,141(5):292-295.
    [74] Demir M M, Gulgun M A, Menceloglu Y Z, et al. Palladium Nanoparticles by Electrospinningfrom Poly(acrylonitrile-co-acrylic acid) PdCl2Solutions. Relations between PreparationConditions, Particle Size, and Catalytic Activity[J]. Macromolecules,2004,37(5):1787-1792.
    [75] Pinto N J, Carrion P, Quinones J X. Electroless deposition of nickel on electrospunfibers of2-acrylamido-2-methyl-1-propanesulfonic acid doped polyaniline[J]. MaterialsScience and Engineering: A,2004,366(1):1-5.
    [76] Li Z Y, Huang H M, Wang C. Electrostatic Forces Induce Poly(vinyl alcohol)-ProtectedCopper Nanoparticles to Form Copper/Poly(vinyl alcohol) Nanocables via Electrospinning[J].Macromolecular Rapid Communications,2006,27(2):152-155.
    [77] Lu X F, Zhao Q D, Liu X C, et al. Preparation and Characterization of Polypyrrole/TiO2Coaxial Nanocables[J]. Macromolecular Rapid Communications,2006,27(6):430-434.
    [78] Lu X F, Zhao Y Y, Wang C, et al. Fabrication of CdS Nanorods in PVP Fiber Matricesby Electrospinning[J]. Macromolecular Rapid Communications,2005,26(16):1325-1329.
    [79] Wang H Y, Lu X F, Zhao Y Y, et al. Preparation and characterization of ZnS:Cu/PVAcomposite nanofibers via electrospinning[J]. Materials Letters,2006,60(20):2480-2484.
    [80] Lu X F, Li L L, Zhang W J, et al. Preparation and characterization of Ag2S nanoparticlesembedded in polymer fibre matrices by electrospinning[J]. Nanotechnology,2005,16(10):2233-2238.
    [81] Lu X F, Liu X C, Wang L F. Fabrication of luminescent hybrid fibres based on theencapsulation of polyoxometalate into polymer matrices[J]. Nanotechnology,2006,17(12):3048-3054.
    [82] Yang G, Pan Y, Gong J, et al. A novel photochromic PVA fiber aggregates containedH4SiW12O40[J]. Materials Letters,2005,59(4):450-455.
    [83] Gong J, Gao F, Pan Y, et al. Photochromic nanofiber aggregates of PVA/H3PMo12O40hybrid[J].Materials Research Society Symposium Proceedings,2004,818,355-360.
    [84] Yang G, Gong J, Pan Y, et al. Preparation and photochromic properties of ultra-fineH3PW11Mo40/PVA fibre mats[J]. Journal of Physics D: Applied Physics,2004,37(14):1987-1992.
    [85] Gong J, Shao C, Pan Y, et al. Preparation, characterization and swelling behavior ofH3PW12O40/poly(vinyl alcohol) fiber aggregates produced by an electrospinning method[J].Materials Chemistry and Physics,2004,86(1):156-160.
    [86] Gong J, Shao C, Yang G, et al. Preparation of PVA/H3PW12O40fiber mats[J]. Chinese ChemicalLerrers,2004,15(3):330-332.
    [87] Shao C L, Kim H, Gong J, et al. A novel method for making silica nanofibres by usingelectrospun fibres of polyvinylalcohol/silica composite as precursor[J]. Nanotechnology,2002,13(5):635-637.
    [88] Dai H, Gong J, Kim H, et al. A novel method for preparing ultra-fine alumina-borateoxide fibres via an electrospinning technique[J]. Nanotechnology,2002,13(5):674-677.
    [89] Ding B, Kim H, Kim C, et al. Morphology and crystalline phase study of electrospunTiO2–SiO2nanofibres[J]. Nanotechnology,2003,14(5):532-537.
    [90] Shao C, Kim H, Gong J, et al. Fiber mats of poly(vinyl alcohol)/silica composite viaelectrospinning[J]. Materials Letters,2003,57(9-10):1579-1584.
    [91] Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Preparation and morphology of niobiumoxide fibres by electrospinning[J]. Chemical Physics Letters,2003,374(1-2):79-84.
    [92] Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Vanadium pentoxide nanofibers byelectrospinningOriginal[J]. Scripta Materialia,2003,49(6):577-581.
    [93] Dharmaraj N, Park H C, Lee B M, et al. Preparation and morphology of magnesium titanatenanofibres via electrospinning[J]. Inorganic Chemistry Communications,2004,7(3):431-433.
    [94] Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Preparation and morphology of palladiumoxide fibers via electrospinning[J]. Materials Letters,2004,58(26):3368-3372.
    [95] Viswanathamurthi P, Bhattarai N, Kim H Y, et al. GeO2fibers: Preparation, morphologyand photoluminescence property[J]. Journal of Chemical Physics,2004,121(1):441-445.
    [96] Viswanathamurthi P, Bhattarai N, Kim H Y, et al. The photoluminescence properties ofzinc oxide nanofibres prepared by electrospinning[J]. Nanotechnology,2004,15(3):320-323.
    [97] Dharmaraj N, Park H C, Kim C K, et al. Nickel titanate nanofibers by electrospinning[J].Materials Chemistry and Physics,2004,87(1):5-9.
    [98] Guan H, Shao C, Chen B, et al. A novel method for making CuO superfine fibres via anelectrospinning technique[J]. Inorganic Chemistry Communications,2003,6(11):1409-1411.
    [99] Guan H, Shao C, Wen S, et al. Preparation and characterization of NiO nanofibres viaan electrospinning technique[J]. Inorganic Chemistry Communications,2003,6(10):1302-1303.
    [100] Guan H, Shao C, Wen S, et al. A novel method for preparing Co3O4nanofibers by usingelectrospun PVA/cobalt acetate composite fibers as precursor[J]. Materials Chemistry andPhysics,2003,82(3):1002-1006.
    [101] Yang X, Shao C, Guan H, et al. Preparation and characterization of ZnO nanofibersby using electrospun PVA/zinc acetate composite fiber as precursor[J]. Inorganic ChemistryCommunications,2004,7(2):176-178.
    [102] Shao C, Guan H, Liu Y, et al. A novel method for making ZrO2nanofibres via anelectrospinning technique[J]. Journal of Crystal Growth,2004,267(1-2):380-384.
    [103] Shao C, Yang X, Guan H, et al. Electrospun nanofibers of NiO/ZnO composite[J].Inorganic Chemistry Communications,2004,7(5):625-627.
    [104] Shao C, Guan H, Liu Y, et al. Preparation of Mn2O3and Mn3O4nanofibers via anelectrospinning technique[J]. Journal of Solid State Chemistry,2004,177(7):2628-2631.
    [105] Yang X, Shao C, Liu Y, et al. Nanofibers of CeO2via an electrospinning technique[J].Thin Solid Films,2005,478(1-2):228-231.
    [106] Yu N, Shao C, Liu Y, et al. Nanofibers of LiMn2O4by electrospinning[J]. Journal ofColloid and Interface Science,2005,285(1):163-166.
    [107] Clark Jr L C, Lyons C. Electrode systems for continuous monitoring in cardiovascularsurgery[J]. Annals of the New York Academy of Sciences,1962,102(1):29-45.
    [108] Watkins B F, Behling J R, Kariv E, et al. Chiral electrode[J]. Journal of The AmericanChemical society,1975,97(12):3549-3550
    [109] Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode[J]. AnalyticalChemistry,1975,47(12):1882-1886.
    [110]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社,2003.
    [111] Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules. I. Reactantsconnected to electrodes through olefinic substituents[J]. The Journal of Physical Chemistry,1973,77(11):1401-1410.
    [112] Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules. II. Influence ofcharged chemisorbed molecules on the electrode reactions of platinum complexes[J]. TheJournal of Physical Chemistry,1973,77(11):1411-1421.
    [113] Herrero E, Buller L J, Abruna H D. Underpotential deposition at single crystal surfacesof Au, Pt, Ag and other materials[J]. Chemical Reviews,2001,101(7):897-1930.
    [114]叶淑玉,郭渡,陆天虹,等. LB膜修饰电极[J].分析化学,1991,19(5):612-617.
    [115] Sagiv J. Organized monolayers by adsorption.1. Formation and structure of oleophobicmixed monolayers on solid surfaces[J]. Journal of The American Chemical society,1980,102(1):92-98.
    [116] Imisides M D, John R, Riley P J, et al. The use of electropolymerization to producenew sensing surfaces: a review emphasizing electrode position of heteroaromaticcompounds[J]. Electroanalysis,1991,3(9):879-889.
    [117] Kalcher K. Chemically modified carbon paste electrodes in voltammetric analysis[J].Electoranalysis,1990,2(6):419-433.
    [118] Keita B, Bouaziz D, Nadjo L, et al. Surface functionalization with oxometallatesentrapped in polymeric matrices:substituted pyrrole-based ion-exchange polymers[J].Journal of Electroanalytical Chemistry,1990,279(1-2):187-203.
    [119] Kuhn A, Anson F C. Adsorption of monolayers of P2Mo18O626-and deposition of multiplelayers of Os(bpy)32+-P2Mo18O626-on electrode surfaces[J]. Langmuir,1996,12(22):5481-5488.
    [120] Liu M J, Dong S J. Electrochemical behavior of molibdosilicic heteropoly complex withdysprosium and its doped polypyrrole film modified electrode[J]. Electrochim Acta,1995,40(2):197-200.
    [121] Liu S J, Tang Z, Wang E K, et al. Fabrication and characterization of heteropolyanionLangmuir-Blodgett films[J]. Thin Solid Films,1999,339(1-2):277-283.
    [122] Liu S Q, Kurth D G, Bredenktter B, et al. The structure of self-assembled multilayerswith polyoxometalate nanoclusters[J]. Journal of The American Chemical society,2002,124(41):12279-12287.
    [123] Xu L, Zhang H Y, Wang E B, et al. Photoluminescent multilayer films based onpolyoxometalates[J]. Journal of Materials Chemistry,2002,12(3):654-657.
    [124] Yang G, Gong J, Yang R, et al. Modification of electrode surface throughelectrospinning followed by self-assembly multilayer film of polyoxometalate and itsphotochromic[J]. Electrochemistry Communications,2006,8(5):790-796.
    [125] Shan Y, Yang G, Gong J, et al. ITO electrode modified by self-assembling multilayerfilm of polyoxometallate on poly(vinyl alcohol) nanofibers and its electrocatalyticbehavior[J]. Electrochimica Acta,2007,53(2):569-574.
    [126]单玉萍.基于纤维修饰ITO电极上自组装膜及其电催化性质的研究[D]:[硕士学位论文].长春:东北师范大学化学学院,2008.
    [127] Ding Y, Wang Y, Li B, et al. Electrospun hemoglobin microbelts based biosensor forsensitive detection of hydrogen peroxide and nitrite[J]. Biosensors and Bioelectronics,2010,25(9):2009-2015.
    [128] Guo F, Xu X, Sun Z, et al. A novel amperometric hydrogen peroxide biosensor basedon electrospun Hb–collagen composite[J]. Colloids and Surfaces B: Biointerfaces,2011,86(1):140-145.
    [129] Wang W, Zhang L, Song W, et al. Three-dimensional network films of electrospun copperoxide nanofibers for glucose determination[J]. Biosensors and Bioelectronics,2009,25(4):708-714.
    [130] Ding Y, Wang Y, Su L, et al. Preparation and characterization of NiO–Ag nanofibers,NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selectivenon-enzymatic glucose sensor[J]. Journal of Materials Chemistry,2010,20(44):9918-9926.
    [131] Ding Y, Wang Y, Su L, et al. Electrospun Co3O4nanofibers for sensitive and selectiveglucose detection[J]. Biosensors and Bioelectronics,2010,26(2):542-548.
    [132] Wang W, Li Z, Zheng W, et al. Electrospun palladium (IV)-doped copper oxide compositenanofibers for non-enzymatic glucose sensors[J]. Electrochemistry Communications,2009,11(9):1811-1814.
    [133] Ding Y, Liu Y, Parisi J, et al. A novel NiO–Au hybrid nanobelts based sensor forsensitive and selective glucose detection[J]. Biosensors and Bioelectronics,2011,28(1):393-398.
    [134]李新.镍基纳米材料的制备及其非酶葡萄糖传感特性研究[D]:[博士学位论文].武汉:华中师范大学物理科学与技术学院,2011.
    [135]岳振峰,彭志英,徐建样,等.壳聚糖固定α-葡萄糖营酶的研究[J].食品与发酵工业,2001,27(4):20-24.
    [136]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    [137] Cass A E C, Davis G, Francis G D, et al. Ferroeene-mediatede enzyme electrode foramperometrie determination of glueose[J]. Analytical Chemistry,1984,56(4):667-671.
    [138] Sho ji E, Freund M S. Potentiometric Sensors Based on the Inductive Effect on thepKaof Poly(aniline): A Nonenzymatic Glucose Sensor[J]. Journal of The American Chemicalsociety,2001,123(14):3383-3384.
    [139] Sho ji E, Freund M S. Potentiometric Saccharide Detection Based on the pKaChangesof Poly(aniline boronic acid)[J]. Journal of The American Chemical society,2002,124(42):12486-12493.
    [140] Choi S J, Choi B G, Park S M. Electrochemical Sensor for Electrochemically Inactiveβ-D(+)-Glucose Using α-Cyclodextrin Template Molecules[J]. Analytical Chemistry,2002,74(9):1998-2002.
    [141] Arimori S, Ushiroda S, Peter L M, et al. A modular electrochemical sensor forsaccharides[J]. Chemical Communications,2002(20):2368-2369.
    [142] Park S, Chung T D, Kim H C. Nonenzymatic Glucose Detection Using Mesoporous Platinum[J].Analytical Chemistry,2003,75(13):3046-3049.
    [143] Chou C H, Chen J C, Tai C C, et al. A Nonenzymatic Glucose Sensor Using NanoporousPlatinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water-InsensitiveZinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid[J]. Electroanalysis,2008,20(7):771-775.
    [144] Cho S, Kang C. Nonenzymatic Glucose Detection with Good Selectivity Against AscorbicAcid on a Highly Porous Gold Electrode Subjected to Amalgamation Treatment[J].Electroanalysis,2007,19(22):2315-2320.
    [145] Yuan J H, Wang K, Xia X H. Highly Ordered Platinum-Nanotubule Arrays for AmperometricGlucose Sensing[J]. Advanced Functional Materials,2005,15(5):803-809.
    [146] Kurniawan F, Tsakova V, Mirsky V M. Gold Nanoparticles in Nonenzymatic ElectrochemicalDetection of Sugars[J]. Electroanalysis,2006,18(19-20):1937-1942.
    [147] Sun Y, Buck H, Mallouk T. Combinatorial Discovery of Alloy Electrocatalysts forAmperometric Glucose Sensors[J]. Analytical Chemistry,2001,73(7):1599-1604.
    [148] Gordijo C R, Koulajian K, Shuhendler A J, et al. Nanotechnology-Enabled Closed LoopInsulin Delivery Device: In Vitro and In Vivo Evaluation of Glucose-Regulated InsulinRelease for Diabetes Control[J]. Advanced Functional Materials,2011,21(1):73-82.
    [149] Reach G, Wilson G. Can continuous glucose monitoring be used for the treatment ofdiabetes?[J]. Analytical Chemistry,199264(6):381A-386A.
    [150] Wang J. Electrochemical Glucose Biosensors[J]. Chemical Reviews,2008,108(2):814-825.
    [151] Li C, Su Y, Zhang S, et al. An improved sensitivity nonenzymatic glucose biosensorbased on a CuxO modified electrode[J]. Biosensors and Bioelectronics,2010,26(2):903-907.
    [152] Motta N, Guadalupe A. Activated carbon paste electrodes for biosensors[J]. AnalyticalChemistry,1994,66(4):566-571.
    [153] Luo W, Zhu C, Su S, et al. Self-Catalyzed, Self-Limiting Growth of GlucoseOxidase-Mimicking Gold Nanoparticles[J]. ACS Nano,2010,4(12):7451-7458.
    [154] Katakis I, Dominguez E. Characterization and stabilization of enzyme biosensors[J].TrAC Trends in Analytical Chemistry,1995,14(7):310-319.
    [155] Wilson R, Turner A P F. Glucose oxidase: an ideal enzyme[J]. Biosensors andBioelectronics,1992,7(3):165-185.
    [156] Liu Y, Teng, H, Hou, H, et al. Nonenzymatic glucose sensor based on renewableelectrospun Ni nanoparticle-loaded carbon nanofiber paste electrode[J]. Biosensors andBioelectronics,2009,24(11):3329-3334.
    [157] Berchmans S, Gomathi H, Prabhakara Rao. Electrooxidation of alcohols and sugarscatalysed on a nickel oxide modified glassy carbon electrode[J]. Journal ofElectroanalytical Chemistry,1995,394(1-2):267-270.
    [158] Chen Q, Wang J, Rayson G, et al. Sensor array for carbohydrates and amino acids basedon electrocatalytic modified electrodes[J]. Analytical Chemistry,1993,65(3):251-254.
    [159] Chen J, Zhang W D, Ye J S. Nonenzymatic electrochemical glucose sensor based onMnO2/MWNTs nanocomposite[J]. Electrochemistry Communications,2008,10(9):1268-1271.
    [160] Wang X, Hu C, Liu H, et al. Synthesis of CuO nanostructures and their applicationfor nonenzymatic glucose sensing[J]. Sensors and Actuators B: Chemical,2010,144(1):220-225.
    [161] Zhang X, Gu A, Wang G, et al. Fabrication of CuO nanowalls on Cu substrate for a highperformance enzyme-free glucose sensor[J]. CrystEngComm,2010,12(4):1120-1126.
    [162] Zhang X, Wang G, Liu X, et al. Different CuO Nanostructures: Synthesis,Characterization, and Applications for Glucose Sensors[J]. The Journal of PhysicalChemistry C,2008,112(43):16845-16849.
    [163] Reitz E, Jia W, Gentile M, et al. CuO Nanospheres Based Nonenzymatic Glucose Sensor[J].Electroanalysis,2008,20(22):2482-2486.
    [164] Cherevko S, Chung C H. The porous CuO electrode fabricated by hydrogen bubble evolutionand its application to highly sensitive non-enzymatic glucose detection[J]. Talanta,2010,80(3):1371-1377.
    [165] Ding Y, Liu Y, Zhang L, et al. Sensitive and selective nonenzymatic glucose detectionusing functional NiO–Pt hybrid nanofibers[J]. Electrochimica Acta,2011,58,209-214.
    [166] Wu H, Lin D, Pan W. Fabrication, assembly, and electrical characterization of CuOnanofibers[J]. Applied Physics Letters,2006,89(13):133125(1)-133125(3).
    [167] Wessel C, Ostermann R, Dersch R, et al. Formation of Inorganic Nanofibers fromPreformed TiO2Nanoparticles via Electrospinning[J]. The Journal of Physical Chemistry C,2011,115(2):362-372.
    [168] Farrell S, Breslin C. Oxidation and photo-induced oxidation of glucose at apolyaniline film modified by copper particles[J]. Electrochimica Acta,2004,49(25):4497-4503.
    [169] Xu Q, Zhao Y, Xu J, et al. Preparation of functionalized copper nanoparticles andfabrication of a glucose sensor[J]. Sensors and Actuators B: Chemical,2006,114(1):379-386.
    [170] Kang X, Mai Z, Zou X, et al. A sensitive nonenzymatic glucose sensor in alkaline mediawith a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode[J].Analytical Biochemistry,2007,363(1):143-150.
    [171] You T, Niwa O, Tomita M, et al. Characterization and electrochemical properties ofhighly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon filmsprepared by RF sputtering method[J]. Electrochemistry Communications,2002,4(5):468-471.
    [172] Shan D, Wang S, Xue H, et al. Direct electrochemistry and electrocatalysis ofhemoglobin entrapped in composite matrix based on chitosan and CaCO3nanoparticles[J].Electrochemistry Communications,2007,9(4):529-534.
    [173] Zhang Z, Su X, Yuan H, et al. An improved sensitivity non-enzymatic glucose sensorbased on a CuO nanowire modified Cu electrode[J]. Analyst,2008,133(1):126-132.
    [174] Wei H, Sun J, Guo L, et al. Highly enhanced electrocatalytic oxidation of glucoseand shikimic acid at a disposable electrically heated oxide covered copper electrode[J].Chemical Communications,2009(20):2842-2844.
    [175] Luo M, Baldwin R. Characterization of carbohydrate oxidation at copper electrodes[J].Journal of Electroanalytical Chemistry,1995,387(1-2):87-94.
    [176] Yuan B, Wang C, Li L, et al. Real time observation of the anodic dissolution of copperin NaCl solution with the digital holography[J]. Electrochemistry Communications,2009,11(7):1373-1376.
    [177] Li C, Liu Y, Li L, et al. A novel amperometric biosensor based on NiO hollow nanospheresfor biosensing glucose[J]. Talanta,2008,77(1):455-459.
    [178] Hajjizadeh M, Jabbari A, Heli H, et al. Electrocatalytic oxidation and determinationof deferasirox and deferiprone on a nickel oxyhydroxide-modified electrode[J]. AnalyticalBiochemistry,2008,373(2):337–348.
    [179] Dry M E, Stone F S. Oxidation reactions catalyzed by doped nickel oxide[J]. Discussionsof the Faraday Society,1959,28(0):192-200.
    [180] Adler D, Feinleib J. Electrical and Optical Properties of Narrow-Band Materials[J].Physical Review B,1970,2(8):3112-3134.
    [181] Wang X, Li Y, Wang G, et al. Characterization of NiO thin film grown by two-stepprocesses[J]. Physica B: Condensed Matter,2009,404(8-11):1058-1060.
    [182] Gong J, Li X D, Ding B, et al. Preparation and characterization of H4SiMo12O40/poly(vinylalcohol) fiber mats produced by an electrospinning method[J]. Journal of Applied PolymerScience,2003,89(6):1573-1578.
    [183] Kohmoto O, Nakagawa H, Isagawa Y, et al. Effect of heat treatment on the oxygen contentand resistivity in sputtered NiO films[J]. Journal of Magnetism and Magnetic Materials,226-230(Part2):1629-1630.
    [184] Shamsipur M, Najafi M, Hosseini M R M. Highly improved electrooxidation of glucoseat a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode[J].Bioelectrochemistry,2010,77(2):120-124.
    [185] Cherkashin A E, Goldobin A N, Savtchenko V I, et al. Chemical composition of solidLixNi1xO solutions[J]. Reaction Kinetics and Catalysis Letters,1974,1(4):411-415.
    [186] Turky A M. Electrical surface and catalytic properties of NiO as influenced by dopingwith CuO and Ag2O[J]. Applied Catalysis A: General,2003,247(1):83-93.
    [187] Mu Y, Jia D, He Y, et al. Nano nickel oxide modified non-enzymatic glucose sensorswith enhanced sensitivity through an electrochemical process strategy at high potential[J].Biosensors and Bioelectronics,2011,26(6):2948-2952.
    [188] Reitz T L, Lee P L, Czaplewski K F, et al. Time-Resolved XANES Investigation of CuO/ZnOin the Oxidative Methanol Reforming Reaction[J]. Journal of Catalysis,2001,199(2):193-201.
    [189] Turky A M, Radwan N E, El-Shobaky G. Surface and catalytic properties of CuO dopedwith MgO and Ag2O[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,181(1-3):57-68.
    [190] Lu L M, Zhang L, Qu F L, et al. A nano-Ni based ultrasensitive nonenzymaticelectrochemical sensor for glucose: Enhancing sensitivity through a nanowire arraystrategy[J]. Biosensors and Bioelectronics,2009,25(1):218-223.
    [191] Wolff I A, Wasserman A E. Nitrates, Nitrites, and Nitrosamines[J]. Science,1972,177(4043):15-19.
    [192] Burden E H W J. The toxicology of nitrates and nitrites with particular referenceto the potability of water supplies. A review[J]. Analyst,1961,86(1024):429-433.
    [193] Ammam M, Easton E B. Selective determination of ascorbic acid with a novel hybridmaterial based1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and the Dawsontype ion [P2Mo18O62]6immobilized on glassy carbon[J]. Electrochimica Acta,2011,56(7):2847-2855.
    [194] Ammam M, Keita B, Nadjo L, et al. pH sensor based on the crown heteropolyanionK28Li5H7P8W48O184·92H2O immobilized using a layer by layer assembly process Sensors andActuators B: Chemical,2009,142(1):347-354.
    [195] Wang P, Wang X, Zhu G. Sol–gel-derived ceramic carbon composite electrode containingisopolymolybdic anions[J]. Electrochimica Acta,2001,46(5):637-641.
    [196] Toth J, Anson F. Electrocatalytic reduction of nitrite and nitric oxide to ammoniawith iron-substituted polyoxotungstates[J]. Journal of The American Chemical Society,1989,111(7):2444-2451.
    [197] Xi X, Wang G, Liu B, et al. Electrochemical behavior of Bis(2:17-arsenotungstate)lanthanates and their electrocatalytic reduction for Nitrite[J]. Electrochimica Acta,1995,40(8):1025-1029.
    [198] Ammam M, Keita B, Nadjo L, et al. Nitrite sensor based on multilayer film of Dawson-typetungstophosphate α-K7[H4PW18O62]·18H2O immobilized on glassy carbon[J]. Talanta,2010,80(5):2132-2140.
    [199] Wang B, Dong S. Electrochemical study of isopoly and heteropoly oxometallate filmmodified microelectrodes: Part5. Preparation and electrochemical behaviour of a2:18-molybdodiphosphate anion monolayer modified electrode[J]. Journal ofElectroanalytical Chemistry,1992,328(1-2):245-257.
    [200] Decher G, Lvov Y, Schmitt J. Proof of multilayer structural organization inself-assembled polycation-polyanion molecular films[J]. Thin Solid Films,1994,244(1-2):772-777.
    [201] Ferreira M, Rubner M F. Molecular-Level Processing of Conjugated Polymers.1.Layer-by-Layer Manipulation of Conjugated Polyions[J]. Macromolecules,1995,28(21):7107-7114.
    [202] Wang P, Wang X, Bi L, et al. Renewable-surface amperometric nitrite sensor based onsol–gel-derived silicomolybdate–methylsilicate–graphite composite material[J].Analyst,2000,125(7):1291-1294.
    [203] Wang X, Wang E, Hu C. Hybrid Inorganic–Organic Material Containing12-Molybdophosphate Bulk-Modified Carbon Paste Electrode[J]. Chemistry Letters,2001,30(10):1030-1031.
    [204] Wang X, Kang Z, Wang E, et al. Inorganic–organic hybrid polyoxometalate nanoparticlemodified wax impregnated graphite electrode: preparation, electrochemistry andelectrocatalysis[J]. Journal of Electroanalytical Chemistry,2002,523(1-2):142-149.
    [205] Wang G, Shen X, Yao J. One-dimensional nanostructures as electrode materials forlithium-ion batteries with improved electrochemical performance[J]. Journal of PowerSources,2009,189(1):543-546.
    [206] Ren G, Xu X, Liu Q, et al. Electrospun poly(vinyl alcohol)/glucose oxidasebiocomposite membranes for biosensor applications[J]. Reactive and Functional Polymers,2006,66(12):1559-1564.
    [207] Aussawasathien D, Dong J H, Dai L. Electrospun polymer nanofiber sensors[J]. SyntheticMetals,2005,154(1-3):37-40.
    [208] Xu B, Xu L, Gao G, et al. Nanosized multilayer films with concurrent photochromismand electrochromism based on Dawson-type polyoxometalate[J]. Applied Surface Science,2007,253(6):3190-3195.
    [209] Yin R, Guan X, Gong J, et al. Evaluation of swelling capacity of poly(vinyl alcohol)fibrous mats dealt with polyoxometalate containing vanadium[J]. Journal of Applied PolymerScience,2007,106(3):1677-1683.
    [210] Sun Y, Shan Y, Cui X, et al. Investigation on fluorescence properties of ultrafinePVA fiber mats-contained polyoxometalate with different molecular structure[J]. Journalof Applied Polymer Science,2009,113(3):1369-1374.
    [211] Yang W P, Shyu S S, Lee E, et al. Effects of PVA content and calcination temperatureon the properties of PVA/boehmite composite film[J]. Materials Chemistry and Physics,1996,45(2):108-113.
    [212] Wang B, Cheng L, Dong S. Construction of a heteropolyanion-modified electrode by atwo-step sol–gel method and its electrocatalytic applications[J]. Journal ofElectroanalytical Chemistry,2001,516(1-2):17-22.
    [213] Xi X, Dong S. Electrocatalytic reduction of nitrite using Dawson-typetungstodiphosphate anions in aqueous solutions, adsorbed on a glassy carbon electrode anddoped in polypyrrole film[J]. Journal of Molecular Catalysis A: Chemical,1996,114(1-3):257-265.
    [214] Ammam M, Keita B, Nadjo L, et al. Encapsulated-polyoxometalates in surfactant/silicagel hybrid films: Electrochemical behavior and main characteristics[J]. ElectrochimicaActa,2010,55(9):3213-3222.
    [215] Shan Y, Yang G, Jia Y, et al. ITO electrode modified with chitosan nanofibers loadingpolyoxometalate by one step self-assembly method and its electrocatalysis[J].Electrochemistry Communications,2007,9(9):2224-2228.
    [216] Jin Y, Xu L, Zhu L, et al. Nanocomposite multilayer films containing Dawson-typepolyoxometalate and cationic phthalocyanine: Fabrication, characterization andbifunctional electrocatalytic properties[J]. Thin Solid Films,2007,515(13):5490-5497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700