早发精神分裂症神经网络连接障碍的磁共振研究以及重性精神疾病DNA拷贝数变异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分早发精神分裂症神经网络连接障碍的磁共振研究
     目的:采用血氧依赖水平的功能磁共振(BOLD—fMRI)磁共振技术,探讨早发精神分裂症静息状态下脑默认网络功能连接情况;采用弥散张量成像(DTI)磁共振技术,探讨早发精神分裂症脑白质完整性情况。
     方法:采用第四版美国精神障碍诊断与统计手册(DSM-Ⅳ)诊断标准和CCMD-3诊断标准的早发性精神分裂症患者和年龄、性别、教育程度匹配的对照组进行静息状态下fMRI检查和DTI检查。共41例患者和42例正常人完成了MRI扫描,排除头动导致的数据质量问题,进入统计分析的fMRI部分早发精神分裂症病人26例(13女13男),健康对照28例(15女13男);DTI部分早发精神分裂症病人33例(16女17男),健康对照组33例(16女17男)分别对fMRI和DTI数据进行分析。采用功能连接分析方法,提取静息状态下默认网络,在病例组和对照组中分别计算默认网络各脑区两两间的功能连接,比较各连接在两组之间的差异。以默认网络为感兴趣区,比较两组间全脑与默认网络间的功能连接的差异。从DTI数据中提取全脑所有体素(voxel)的FA(fractional anisotropy)值,采用基于体素的分析方法(Voxel-based analysis,VBA)对早发精神分裂症组和对照组进行分析。
     结果:1.fMRI研究通过种子点网络分析提取了静息状态下默认网络,默认网络共包含13个脑区:楔前叶/后扣带回、双侧额上回、尾状核、腹侧中内侧前额叶、腹侧中内侧前额叶、双侧外侧项叶、双侧颞下回、左侧海马旁回、小脑扁桃体和右侧下半月小叶。早发精神分裂症组在默认网络存在5条异常连接。其中3条连接表现为连接增强:腹侧中内侧前额叶-右侧颞下回(p=0.0078)、腹侧中内侧前额叶-左侧外侧顶叶(p=0.0091)、腹侧中内侧前额叶-背侧中内侧前额叶(p=0.0163)。2条连接表现为连接减弱:右侧外侧顶叶-小脑扁桃体(p=0.0223)、左侧额上回-右侧下半月小叶(p=0.0294)。默认网络与其他脑区的功能连接分析发现,早发精神分裂症组默认网络与双侧额下回框部功能连接增强。2.DTI早发精神分裂症患者的右侧尾状核、右侧前扣带回、右侧额中回、左侧额上回、左侧顶下小叶、左侧下丘脑/海马区的白质FA值较正常对照组低;未见患者组白质FA值显著高于对照组的区域。
     结论:1.本研究首次报道早发精神分裂症组病人存在默认网络功能的异常。在网络内部,默认网络的连接异常主要为连接增强(与小脑部分的默认网络连接异常表现为连接减弱),网络连接的异常的部位主要涉及中内侧前额叶;网络作为整体与其他脑区直接也存在连接异常,主要表现在与双侧额下回框部的功能连接增强。早发精神分裂症的默认网络连接障碍可能是导致精神分裂症内向性思维、妄想等思维障碍的病理基础之一。
     2.早发精神分裂症存在广泛的脑白质完整性异常,异常脑区主要涉及前额叶和皮层下脑区神经网络相关脑区,以及顶下小叶。说明早发精神分裂症病人存在广泛的解剖连接障碍。
     第二部分重性精神疾病基因组DNA拷贝数变异分析
     目的:了解重性精神疾病基因组DNA拷贝数变异情况,探讨拷贝数变异位点与重性精神疾病的关系
     方法:研究样本为美国Stanley医学中心所提供的重性精神疾病和对照组的脑组织标本,样本包括50个精神分裂症病人,49个双相情感障碍病人,15个重性抑郁和49个对照,常规方法提取DNA。采用Affymetrix 5.0 SNP基因芯片对所有样本进行全基因组DNA拷贝数变异检测。采用Partek软件包对杂交信号进行处理。首先利用对照组样本生成拷贝数变异的参考基线,将所有样本的基因芯片杂交信号根据拷贝数变异参考基线进行标准化,然后采用隐性马尔可夫模型(HMM)检测基因组中的拷贝数变异位点,并规定每个拷贝数变异位点必须包括3个以上连续探针。同时对LOH和等位基因信号比率进行检测,作为拷贝数变异位点的补充信息。
     结果:在163个样本中共检测到2524个CNVs(1246位点),其中常染色体2502个(1226位点),X染色体22个(20位点),人均CNVs15.5个。2524个CNVs中,1148个为杂合拷贝缺失,562个为纯合拷贝缺失,814个为拷贝增加。CNVs长度介于89bp-29Mb之间,长度中位数为31K,在9号染色体处发现3个超长CNVs,长度接近30MBps,其中2个位于精神分裂症病人,一个位于双相情感障碍病人。所有CNVs中906个为孤本(singleton)CNVs,1618个为非孤本(non-singleton)CNVs。与已知CNVs数据库比较,156个CNVs为新CNVs。对频率>5%的43个常见CNVs与疾病进行关联分析,发现CNV-304与精神分裂症存在临界相关(simulation P=0.002,Bonferroni P=0.086)。2524个CNV中有1087个位点对已知基因产生了影响,其中35个基因为病例组所特有,这些病例组特有的基因主要与细胞生长和分化、免疫反应、癌症和生殖疾病相关。
     结论:在精神分裂症病人和双相情感障碍病人的9号染色体区域检测到3个超长CNVs;通过关联分析,我们发现CNV-304与精神分裂症存在临界关联;通过对受CNVs影响基因进行分析,发现35个基因仅在病例组中存在,这些基因可能为重性精神疾病的重要候选基因。此小样本分析中的结果暂不能结论CNV与重性精神疾病的明确相关,得到的候选区域和基因有待大样本研究证实。
PART-ⅠMRI study on brain neuronetwork connections in early onset schizophrenia
     Object The aim of this study was to explore the brain default network function connection and white matter integrity in first-episode early onset schizophrenia(EOS),by blood oxygenation level dependent functional magnetic resonance imaging(BOLD-fMRI) and diffusion tensor imaging(DTI) techniques.
     Methods First-episode adolescences with EOS(early onset schizophrenia) according to the diagnosis criteria of CCMD-Ⅲand DSM-Ⅳ) and age and gender-matched healthy controls were tested in a resting-state fMRI scan and diffusion tensor imaging scan.Functional connectivity analysis was used to reconstruct the default network in patients and healthy volunteers.Differences were examined between two groups.Functional connectivity analysis also was evaluated between the default network and other regions of the brains.Fractional anisotropy(FA) was measured in EOS and healthy volunteers with an automated voxel-based method of analysis.
     Results Forty-one first-episode patients and forty-two controls finished MRI scan.After excluding data from subjects with head movement,26 EOS(13 females and 13 males) and 28 age and gender-matched healthy volunteers were remained for fMRI analysis;35 EOS(17females and 18 males) and 33 age and gender-matched healthy volunteers were analyzed in DTI analysis.1.Default network analysis: the default network included the posterior cingulate/precuneus,left and right Superior Frontal gyrus,Caudate,the dorsal and ventral medial prefrontal cortex(MPFC),left and right angular gyrus,left and right Inferior Temporal Gyrus,left Parahippocampa Gyrus,right Inferior Semi-Lunar Lobule,and Cerebellar Tonsil.By comparing the functional connections within the default network between groups,we found five significantly abnormal connections comparing the patients group with controls.Three increased connections in patients are the connections between:ventral MPFC and right Inferior Temporal Gyrus (p=0.0078),ventral MPFC and left angular gyrus(p=0.0091),ventral MPFC and dorsal MPFC(p=0.0163).Two decreased connections in patients are the connections between:right angular gyrus and right Inferior Semi-Lunar Lobule(p=0.0223),left Superior Frontal gyrus and Cerebellar Tonsil(p=0.0294)。Comparing the connections of the default network and the other regions of the whole brain in two groups,the bilateral orbital middle frontal gyrus showed increased positive correlation with the default network in patients.2.DTI analysis: Comparing with controls,EOS patients exhibited significantly decreased fractional anisotropy(FA) values in right caudate,right anterior cingulate, right middle frontal gyrus,left superior frontal gyrus,left inferior Parietal lobe and left thalamus/hippocampus.There are no regions showing significantly increased FA in EOS patients.
     Conclusions 1.To my knowledge,this is the first study reporting that functional disintegration of the default network in first-episode EOS.Within the default network,the major abnormal connections were correlated to MPFC,and showed increased positive connections in EOS patients.The bilateral orbital inferior frontal gyrus showed increased positive correlation with the default network in patients. The abnormalities could be the source of the abnormal of introspectively oriented mental actives.2.EOS showed decreased fractional anisotropy in prefrontal and sub cortical regions suggested that widespread structural dysconnectivity,including the subcortical region,is already present in their first episode of illness.
     PARTⅡDNA copy number variations in major psychosis
     Object The aim of this study was to identify copy number variations(CNVs) in schizophrenia,bipolar disorder and major depression,and to test correlations between CNVs and these diseases.
     Methods Postmortem brain tissue from individuals with DSM-IV diagnosed SZ(n = 50),BD(n = 49),major depression(15) and matched controls(n = 49),provided by the Stanley Medical Research Institute Brain-Array and Consortium Collections.DNA was extracted from each specimen and purified.The Affymetrix 5.0 SNP array was hybridized to the genomic DNA sample of each subject.Assays were carried out according to the manufacturer's protocol.Partek software was used to obtain estimates of copy number variations(CNVs).First,copy number baseline was created from pools of all control samples,and the intensity of each sample's data was normalized to the copy number baseline.Then, CNVs were detected using a Hidden Markov Model,with a region defined as consistent variation in at least three adjacent probes.This finds the most likely state at each genomic locus by assigning a hidden state at each locus based on the observed data and the neighboring states. Secondary analyses of the genomic DNA hybridization data were performed,on allele signal ratio and loss of heterozygosity(LOH),which can give support information on CNVs.
     Results 2502 CNVs(from 1226 loci) were detected from autosomes. 22 CNVs(from 20 loci) were detected from X chromosome.The average number of CNVs detected per individual was 15.5.Of 2524 CNVs,1148 CNVs were heterozygous deletions,562 CNVs were homozygous deletions,and 814 CNVs were duplications.The median size of CNVs was 31kb,and the mean size was 189 kb.Three large CNVs on chromosome 9 were detected in schizophrenia and bipolar diseases. We compared the CNVs identified in our analysis to those present in the Database of Genomic Variants(DGV).156 CNVs(96 loci) in our data were novel CNVs.Of 2524 CNVs,906 CNVs are singleton CNVs,and 1618 CNVs were non-singleton CNVs.In tests for association for 43 common CNVs(frequency>5%),CNV-304 has marginal significant P value(p=0.086) after Bonferroni correction.We further investigated genes that were deleted or duplicated exclusively in patients(ie,not observed in controls in our study,and not present in the Database of Genomic Variants).35 genes in CNVs were recorded exclusively in patients with major psychosis:6 in bipolar disorder,8 in major depression and 21 in schizophrenia.
     Conclusions 1.We found three very big CNVs in schizophrenia and bipolar diseases which suggested that these big CNVs may contribute genetic risk to these diseases.2.CNVs-304 is has marginal association with schizophrenia(Simulation P=0.002,Bonferroni P=0.086).3.There are 35 genes exclusively in major psychosis,which suggested these genes are valuable candidate genes for further study.
引文
[1] Cannon M, Jones P, Huttunen MO et al. School performance in Finnish children and later development of schizophrenia: a population-based longitudinal study. Arch Gen Psychiatry, 1999, 56(5):457-463.
    [2] Lay B, Blanz B, Hartmann M, et al. The psychosocial outcome of adolescent-onset schizophrenia: a 12-year followup. Schizophr Bull, 2000, 26(4): 801-816.
    [3] Eggers C, Bunk D. The long-term course of childhood-onset schizophrenia: a 2-year followup. Schizophr Bull, 1997,23(1): 105-117.
    [4] Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry, 2006, 59(10):929-939.
    [5] Volkow ND, Wolf AP, Brodie JD, et al. Brain interactions in chronic schizophrenics under resting and activation conditions. Schizophr Res, 1988, 1(1):47-53.
    [6] Friston KJ. Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand,( Suppl) 1999, 395:68-79.
    [7] Kolomeets NS, Orlovskaya DD, Uranova NA. Decreased numerical density of CA3 hippocampal mossy fiber synapses in schizophrenia. Synapse 2007, 61(8):615-621.
    [8] Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain, 1999,122:593-624.
    [9] Mimics K, Middleton FA, Marquez A, et al. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron, 2000,28(1):53-67.
    [10] Haroutunian V, Davis KL. Introduction to the special section: Myelin and oligodendrocyte abnormalities in schizophrenia. Int J Neuropsychopharmacol,2007,10(4):499-502.
    [11] Mclnnes LA, Lauriat TL. RNA metabolism and dysmyelination in schizophrenia. Neurosci Biobehav Rev, 2006, 30(4):551-561.
    [12] Hakak Y, Walker JR, Li C, et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A, 2001, 98(8):4746-4751.
    [13] Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990, 87(24):9868-9872.
    [14] Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001,412(6843):150-157.
    [15] Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 2006, 4(14):2836-2845.
    [16] Gusnard DA, Akbudak E, Shulman GL, et al. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A, 2001, 98(7):4259-4264.
    [17] Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 2005,102(27):9673-9678.
    [18] Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A, 2001, 98(2):676-682.
    [19] Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995, 34(4):537-541.
    [20] Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998,7(2):119-132.
    [21] Xiong J, Parsons LM, Gao JH, et al. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 1999, 8(2-3):151-156.
    [22] Cordes D, Haughton VM, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol, 2000, 21(9):1636-1644.
    [23] Cordes D, Haughton VM, Arfanakis K, et al. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol, 2001,22(7):1326-1333.
    [24] Binder JR, Frost JA, Hammeke TA, et al.Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci, 1999,
    [25] Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 2003,100(1):253-258.
    [26] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci ,2007, 8(9):700-711.
    [27] Buckner RL, ndrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci ,2008,1124:1-38.
    [28] Gilbert DT, Wilson TD. Prospection: experiencing the future. Science, 2007, 317(5843):1351-1354.
    [29] Mason MF, Norton MI, Van Horn JD, et al. Wandering minds: the default network and stimulus-independent thought. Science, 2007, 315(5810):393-395.
    [30] Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 2005,26(1): 15-29.
    [31) Zhou Y, Liang M, Tian L, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res, 2007,97(1-3): 194-205.
    [32] Bluhm RL, Miller J, Lanius RA, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull, 2007, 33(4):1004-1012.
    [33] Garrity AG, Pearlson GD, McKiernan K, et al. Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatry, 2007, 164(3): 450-457.
    [34) Kubicki M, McCarley R, Westin CF, et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res, 2007, 41 (1-2): 15-30.
    [35] Kanaan RA, Kim JS, Kaufmann WE, et al. Diffusion tensor imaging in schizophrenia. Biol Psychiatry, 2005, 58(12):921-929.
    [36] Kumra S, Ashtari M, McMeniman M, et al. Reduced frontal white matter integrity in early-onset schizophrenia: a preliminary study. Biol Psychiatry, 2004,55(12):1138-1145.
    [37] Kumra S, Ashtari M, Cervellione KL, et al. White matter abnormalities in early-onset schizophrenia: a voxel-based diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry, 2005,44(9):934-941.
    [38] Kyriakopoulos M, Vyas NS, Barker GJ, et al. A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biol Psychiatry, 2008, 63(5):519-523.
    [39] White T, Kendi AT, Lehericy S, et al. Disruption of hippocampal connectivity in children and adolescents with schizophrenia--a voxel-based diffusion tensor imaging study. Schizophr Res, 2007, 90(1-3):302-307.
    [40] Ashtari M, Cottone J, Ardekani BA, et al. Disruption of white matter integrity in the inferior longitudinal fasciculus in adolescents with schizophrenia as revealed by fiber tractography. Arch Gen Psychiatry, 2007, 64(11):1270-1280.
    [41] Kennedy DP, Courchesne E. The intrinsic functional organization of the brain is altered in autism. Neuroimage, 2008, 39(4): 1877-1885.
    [42] Harrison BJ, Yucel M, Pujol J, et al. Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res, 2007, 91(1-3):82-86.
    [43] Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001,2(10):685-694.
    [44] Rose SE, Chalk JB, Janke AL, et al. Evidence of altered prefrontal-thalamic circuitry in schizophrenia: an optimized diffusion MRI study. Neuroimage 2006, 32(1):16-22.
    [45] David G.Lichter, Jeffrey L.Cummings. Frontal-Subcortical Circuits in Psychiatric and Neurological Disease. 2001: 372-400.
    [46] Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res, 2002, 53(2):647-654.
    [47] Andreasen NC, Paradiso S, O'Leary DS. "Cognitive dysmetria" as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull, 1998, 24(2):203-218.
    [48] Buchsbaum MS, Hazlett EA. Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr Bull, 1998, 24(3):343-364.
    [49] Sirigu A, Zalla T, Pillon B, et al. Selective impairments in managerial knowledge following pre-frontal cortex damage. Cortex, 1995, 31(2):301-316.
    [50] Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry, 2002, 51(12):1008-1011.
    [51] Buchsbaum MS, Friedman J, Buchsbaum BR et al. Diffusion tensor imaging in schizophrenia. Biol Psychiatry, 2006, 60(11):1181-1187.
    [52] Rajarethinam R, Upadhyaya A, Tsou P, et al. Caudate volume in offspring of patients with schizophrenia. Br J Psychiatry, 2007,191:258-259.
    [53] Ellison-Wright I, Glahn DC, Laird AR, et al. The Anatomy of First-Episode and Chronic Schizophrenia: An Anatomical Likelihood Estimation Meta-Analysis. Am J Psychiatry, 2008. (Epub ahead of print).
    [54] Clinton SM, Meador-Woodruff JH. Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res, 2004, 69(2-3):237-253.
    [55] Camchong J, Dyckman KA, Chapman CE, et al. Basal ganglia-thalamocortical circuitry disruptions in schizophrenia during delayed response tasks. Biol Psychiatry, 2006, 60(3):235-241.
    [ 56] Greenstein D, Lerch J, Shaw P, et al. Childhood onset schizophrenia: cortical brain abnormalities as young adults. J Child Psychol Psychiatry, 2006, 47(10):1003-1012.
    [57] Torrey EF. Schizophrenia and the inferior parietal lobule. Schizophr Res, 2007, 97(1-3):215-225.
    [58] Petrides M, Pandya DN. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol, 1984,228(1):105-116.
    [59] Chafee MV, Goldman-Rakic PS. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol, 2000, 83(3):1550-1566.
    [60] Seltzer B, Pandya DN. Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res, 1984, 55(2):301-312.
    [61] Cutting J, Dunne F. Subjective experience of schizophrenia. Schizophr Bull, 1989,15(2):217-231.
    [62] Kjaer TW, Nowak M, Lou HC. Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. Neuroimage, 2002, 17(2):1080-1086.
    [63] Konrad A, Winterer G. Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophr Bull, 2008, 34(1):72-92.
    [64] Marner L, Pakkenberg B. Total length of nerve fibers in prefrontal and global white matter of chronic schizophrenics. J Psychiatr Res, 2003, 37(6):539-547.
    [65] Tkachev D, Mimmack ML, Ryan MM, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003, 362(9386):798-805.
    [66] Georgieva L, Moskvina V, Peirce T, et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc Natl Acad Sci U S A, 2006,103(33):12469-12474.
    [67] Jungerius BJ, Hoogendoorn ML, Bakker SC, et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry, 2007.
    [68] Law AJ, Kleinman JE, Weinberger DR, et al. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet, 2007,16(2):129-141.
    [69] Norton N, Moskvina V, Morris DW, et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 2006,141(1):96-101.
    [70] Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry, 2004, 9(1): 14-27.
    [71] Sebat J. Major changes in our DNA lead to major changes in our thinking. Nat Genet, 2007, 39(7 Suppl):S3-S5.
    [72] Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet, 2006, 7(2):85-97.
    [73] Freeman JL, Perry GH, Feuk L, et al. Copy number variation: new insights in genome diversity. Genome Res, 2006,16(8):949-961.
    [74] JACOBS PA, BAIKIE AG, COURT BROWN WM, et al. The somatic chromosomes in mongolism. Lancet, 1959, 1(7075):710.
    [75] JACOBS PA, Matsuura JS, Mayer M, et al. A cytogenetic survey of an institution for the mentally retarded: I. Chromosome abnormalities. Clin Genet,1978,13(1):37-60.
    [76] Giglio S, Broman KW, Matsumoto N, et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet, 2001, 68(4):874-883.
    [77] Estivill X, Armengol L. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet, 2007,3(10):1787-1799.
    [78] Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet, 2007, 39(7 Suppl):S16-S21.
    [79] Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer. Nat Genet, 2005, 37 Suppl:S11-S17.
    [80] Ylstra B, van d, I, Carvalho B, et al. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res, 2006, 34(2):445-450.
    [81] Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature, 2006,444(7118):444-454.
    [82] Flomen RH, Collier DA, Osborne S, et al. Association study of CHRFAM7A copy number and 2 bp deletion polymorphisms with schizophrenia and bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet, 2006,141(6):571-575.
    [83] Saugier-Veber P, Goldenberg A, Drouin-Garraud V, et al. Simple detection of - genomic microdeletions and microduplications using QMPSF in patients with idiopathic mental retardation. Eur J Hum Genet, 2006,14(9): 1009-1017.
    [84] White SJ, Breuning MH, den Dunnen JT. Detecting copy number changes in genomic DNA: MAPH and MLPA. Methods Cell Biol, 2004, 75:751-768.
    [85] Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res, 2002, 30(12):e57.
    [86] Istrail S, Sutton GG, Florea L, et al. Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci U S A, 2004, 101(7):1916-1921.
    [87] Kidd JM, Cooper GM, Donahue WF, et al. Mapping and sequencing of structural variation from eight human genomes. Nature, 2008,453(7191):56-64.
    [88] Conrad DF, Andrews TD, Carter NP, et al. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet, 2006,38(1):75-81.
    [89] An International System for Human Cytogenetic Nomenclature (1985) ISCN 1985. Report of the Standing Committee on Human Cytogenetic Nomenclature.Birth Defects Orig Artie Ser, 1985, 21(1):1-117.
    [90] Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet, 2004, 36(9):949-951.
    [91] Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science, 2004, 305(5683):525-528.
    [92] Carter NP. As normal as normal can be? Nat Genet, 2004, 36(9):931-932.
    [93] Buckley PG, Mantripragada KK, Piotrowski A, et al. Copy-number polymorphisms: mining the tip of an iceberg. Trends Genet, 2005, 21(6):315-317.
    [94] Tuzun E, Sharp AJ, Bailey JA, et al. Fine-scale structural variation of the human genome. Nat Genet, 2005, 37(7):727-732.
    [95] Sharp AJ, Locke DP, McGrath SD, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet, 2005, 77(1):78-88.
    [96] McCarroll SA, Hadnott TN, Perry GH, et al. Common deletion polymorphisms in the human genome. Nat Genet, 2006,38(1):86-92.
    [97] Hinds DA, Kloek AP, Jen M, et al. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet, 2006, 38(1):82-85.
    [98] Wong KK, deLeeuw RJ, Dosanjh NS, et al. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet, 2007, 80(1):91-104.
    [99] Wang K, Li M, Hadley D, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res, 2007,17(11): 1665-1674.
    [100] Levy S, Sutton G, Ng PC, et al. The diploid genome sequence of an individual human. PLoS Biol 2007, 5(10):e254.
    [101] Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science, 2007, 318(5849):420-426.
    [102] de Smith AJ, Tsalenko A, Sampas N, et al. Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males:implications for association studies of complex diseases. Hum Mol Genet, 2007, 16(23):2783-2794.
    [103] Zogopoulos G, Ha KC, Naqib F et al. Germ-line DNA copy number variation frequencies in a large North American population. Hum Genet, 2007, 122(3-4):345-353.
    [104] Pinto D, Marshall C, Feuk L, et al. Copy-number variation in control population cohorts. Hum Mol Genet, 2007,16 Spec No. 2:R168-R173.
    [105] Butler MG, Meaney FJ, Palmer CG. Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am J Med Genet, 1986, 23(3):793-809.
    [106] Lowery MC, Morris CA, Ewart A, et al. Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: evaluation of 235 patients. Am J Hum Genet, 1995, 57(l):49-53.
    [107] Ewart AK, Morris CA, Atkinson D, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet, 1993, 5(1):11-16.
    [108] Hollox EJ, Huffmeier U, Zeeuwen PL, et al. Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet, 2008,40(1):23-25.
    [109] Yang Y, Chung EK, Wu YL, et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet, 2007, 80(6): 1037-1054.
    [110] Aitman TJ, Dong R, Vyse TJ, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature, 2006, 439(7078):851-855.
    [111] Park J, Chen L, Ratnashinge L, et al. Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men. Cancer Epidemiol Biomarkers Prev, 2006,15(8):1473-1478.
    [112] Fellermann K, Stange DE, Schaeffeler E, et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet, 2006, 79(3):439-448.
    [113] Gonzalez E, Kulkarni H, Bolivar H, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science,2005, 307(5714): 1434-1440.
    [114] Maclntyre DJ, Blackwood DH, Porteous DJ, et al. Chromosomal abnormalities and mental illness. Mol Psychiatry, 2003, 8(3):275-287.
    [115] Chubb JE, Bradshaw NJ, Soares DC, et al. The DISC locus in psychiatric illness. Mol Psychiatry, 2008,13(1):36-64.
    [116] Kamnasaran D, Muir WJ, Ferguson-Smith MA, et al. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet, 2003,40(5):325-332.
    [117] Liu H, Abecasis GR, Heath SC, et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci U S A, 2002, 99(26):16859-16864.
    [118] Wilson GM, Flibotte S, Chopra V, Melnyk BL, Honer WG, Holt RA. DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet 2006,15(5):743-749.
    [119] Walsh T, McClellan JM, McCarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 2008, 320(5875):539-543.
    [120] Gross-Bellard M, Oudet P, Chambon P. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem, 1973, 36(1):32-38.
    [121] McCarroll SA, Altshuler DM. Copy-number variation and association studies of human disease. Nat Genet, 2007, 39(7 Suppl):S37-S42.
    [122] Wagenstaller J, Spranger S, Lorenz-Depiereux B, et al. Copy-number variations measured by single-nucleotide-polymorphism oligonucleotide arrays in patients with mental retardation. Am J Hum Gene,t 2007, 81(4):768-779.
    [123] Brunet A, Armengol L, Pelaez T, et al. Failure to detect the 22q11.2 duplication syndrome rearrangement among patients with schizophrenia. Behav Brain Funct, 2008,4(1): 10.
    [124] Sutrala SR, Norton N, Williams NM, et al. Gene copy number variation in schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 2007,96:93-9
    [125] Bruder CE, Piotrowski A, Gijsbers AA, et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 2008, 82(3):763-771.
    [126] Blauw HM, Veldink JH, van Es MA, et al. Copy-number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol 2008, 7(4):319-326.
    [127]Cooper GM, Nickerson DA, Eichler EE. Mutational and selective effects on copy-number variants in the human genome. Nat Genet, 2007, 39(7 Suppl):S22-S29.
    [128] Barber JC. Directly transmitted unbalanced chromosome abnormalities and euchromatic variants. J Med Genet, 2005,42(8):609-629.
    [129] Willatt LR, Barber JC, Clarkson A, et al. Novel deletion variants of 9q13-q21.12 and classical euchromatic variants of 9ql2/qh involve deletion, duplication and triplication of large tracts of segmentally duplicated pericentromeric euchromatin. Eur J Hum Genet, 2007,15(1):45-52.
    [130] Scambler PJ. The 22qll deletion syndromes. Hum Mol Genet, 2000, 9(16):2421-2426.
    [131] Karayiorgou M, Morris MA, Morrow B, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A,1995,92(17):7612-7616.
    [132] Usiskin SI, Nicolson R, Krasnewich DM, et al. Velocardiofacial syndrome in childhood-onset schizophrenia. J Am Acad Child Adolesc Psychiatry, 1999, 38(12):1536-1543.
    [133] Murphy KC, Jones LA, Owen MJ. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry, 1999, 56(10):940-945.
    [134] Williams NM, Norton N, Williams H, et al. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am J Hum Genet, 2003, 73(6):1355-1367.
    [135] Pulver AE, Mulle J, Nestadt G, et al. Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol Psychiatry, 2000, 5(6):650-653.
    [136] Sun J, Kuo PH, Riley BP, et al. Candidate genes for schizophrenia: A survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet, 2008. (Epub ahead of print).
    [137] Blouin JL, Dombroski BA, Nath SK, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet, 1998,20(1):70-73.
    [138] Lencz T, Morgan TV, Athanasiou M, et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry,2007, 12(6):572-580.
    [1]Borecki IB,Province MA.Linkage and association:basic concepts.Adv Genet,2008,60:51-74.
    [2] Kruglyak L. The road to genome-wide association studies. Nat Rev Genet, 2008, 9(4):314-318.
    [3] Feingold E. Methods for linkage analysis of quantitative trait loci in humans. Theor Popul Biol, 2001, 60(3): 167-180.
    [4] Rice JP, Saccone NL, Corbett J. The lod score method. Adv Genet, 2001, 42:99-113.
    [5] Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature, 2001, 409(6822):853-855.
    [6] Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet, 2001,17(9):502-510.
    [7] Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet, 2001, 69(1):124-137.
    [8] Altmuller J, Palmer LJ, Fischer G, et al. Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet, 2001, 69(5):936-950.
    [9] Nordborg M, Tavare S. Linkage disequilibrium: what history has to tell us. Trends Genet, 2002,18(2):83-90.
    [10]Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet, 2001, 69(1): 1-14.
    [11]Couzin J, Kaiser J. Genome-wide association. Closing the net on common disease genes. Science, 2007, 316(5826):820-822.
    [12]Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet, 2005, 6(2):95-108.
    [13] Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry, 2004,9(1): 14-27.
    [14]Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet, 2003,123(1):48-58.
    [15] Gupta AR, State MW. Recent advances in the genetics of autism. Biol Psychiatry, 2007, 61(4):429-437.
    [16]Banerjee TD, Middleton F, Faraone SV. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr, 2007, 96(9):1269-1274.
    [17]Hamet P, Tremblay J. Genetics and genomics of depression. Metabolism, 2005, 54(Suppl1):10-15.
    [18] Graham AJ, Macdonald AM, Hawkes CH. British motor neuron disease twin study. J Neurol Neurosurg Psychiatry, 1997,62(6):562-569.
    [19]Gatz M, Reynolds CA, Fratiglioni L et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry, 2006, 63(2): 168-174.
    [20] Iles MM. What can genome-wide association studies tell us about the genetics of common disease. PLoS Genet, 2008,4(2):e33.
    [21]Hirschhorn JN. Genetic approaches to studying common diseases and complex traits. Pediatr Res, 2003, 57:74R-77R.
    [22] Wang WY, Barratt BJ, Clayton DG, et al. Genome-wide association studies:theoretical and practical concerns. Nat Rev Genet, 2005,6(2): 109-118.
    [23]Cagnin A, Zambon A, Zarantonello G et al. Serum lipoprotein profile and APOE genotype in Alzheimer's disease. J Neural Transm, Suppl 2007,(72):175-179.
    [24] De Ferrari GV, Papassotiropoulos A, Biechele T et al. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. Proc Natl Acad Sci U S A, 2007, 104(22):9434-9439.
    [25]Farrer LA, Cupples LA, Haines JL et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium.JAMA, 1997,278(16):1349-1356.
    [26]Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281):1516-1517.
    [27]Farrall M, Morris AP. Gearing up for genome-wide gene-association studies. Hum Mol Genet, 2005,2:R157-R162.
    [28]Human genome projects, work in progress. Nature, 2000,405(6790):981.
    [29] Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science, 2001, 291(5507):1304-1351.
    [30]Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007,449(7164):851-861.
    [31] A haplotype map of the human genome. Nature, 2005,437(7063):1299-1320.
    [32]Thorisson GA, Smith AV, Krishnan L, et al. The International HapMap Project Web site. Genome Res, 2005,15(11):1592-1593.
    [33]Craddock N, O'Donovan MC, Owen MJ. Genome-wide association studies in psychiatry: lessons from early studies of non-psychiatric and psychiatric phenotypes. Mol Psychiatry, 2008. (Epub ahead of print)
    [34] Grant SF, Hakonarson H. Microarray Technology and Applications in the Arena of Genome-Wide Association. Clin Chem, 2008. (Epub ahead of print)
    [35]Estivill X, Armengol L. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet, 2007, 3(10):1787-1799.
    [36]Maraganore DM, de AM, Lesnick TG et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet, 2005, 77(5):685-693.
    [37]Goris A, Williams-Gray CH, Foltynie T, et al.. No evidence for association with Parkinson disease for 13 single-nucleotide polymorphisms identified by whole-genome association screening. Am J Hum Genet, 2006,78(6):1088-1090.
    [38]Elbaz A, Nelson LM, Payami H et al. Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson's disease: a large-scale international study. Lancet Neurol, 2006; 5(11):917-923.
    [39]Farrer MJ, Haugarvoll K, Ross OA et al. Genomewide association, Parkinson disease, and PARK10. Am J Hum Genet, 2006, 78(6):1084-1088.
    [40]Clarimon J, Scholz S, Fung HC et al. Conflicting results regarding the semaphorin gene (SEMA5A) and the risk for Parkinson disease. Am J Hum Genet, 2006, 78(6): 1082-1084.
    [41]Shifman S, Bhomra A, Smiley S et al. A whole genome association study of neuroticism using DNA pooling. Mol Psychiatry, 2008,13(3):302-312.
    [42] Fung HC, Scholz S, Matarin M et al. Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol, 2006, 5(11):911-916.
    [43]Schymick JC, Scholz SW, Fung HC et al. Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol, 2007, 6(4):322-328.
    [44] van Es MA, Van Vught PW, Blauw HM et al. ITPR2 as a susceptibility genein sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol, 2007, 6(10):869-877.
    [45]Dunckley T, Huentelman MJ, Craig DW et al. Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med, 2007, 357(8):775-788.
    [46]Cronin S, Berger S, Ding J et al. A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet, 2008,17(5):768-774.
    [47] van Es MA, Van Vught PW, Blauw HM et al. Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet, 2008,40(1):29-31.
    [48] Coon KD, Myers AJ, Craig DW et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease. J Clin Psychiatry, 2007,68(4):613-618.
    [49] Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007,447(7145):661-678.
    [50]Baum AE, Akula N, Cabanero M et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry, 2008,13(2):197-207.
    [51]Sklar P, Smoller JW, Fan J et al. Whole-genome association study of bipolar disorder. Mol Psychiatry, 2008,13(6):558-569.
    [52]Mah S, Nelson MR, Delisi LE et al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry,2006,11 (5):471-478.
    [53]Fujii T, Iijima Y, Kondo H et al. Failure to confirm an association between the PLXNA2 gene and schizophrenia in a Japanese population. Prog Neuropsychopharmacol Biol Psychiatry, 2007, 31(4):873-877.
    [54]Takeshita M, Yamada K, Hattori E et al. Genetic examination of the PLXNA2 gene in Japanese and Chinese people with schizophrenia. Schizophr Res, 2008, 99(l-3):359-364.
    [55]Shifman S, Johannesson M, Bronstein M et al. Genome-Wide Association Identifies a Common Variant in the Reelin Gene That Increases the Risk of Schizophrenia Only in Women. PLoS Genet, 2008,4(2):e28.
    [56] Kirov G, Zaharieva I, Georgieva L et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry, 2008, (Epub ahead of print)
    [57] Volpi S, Heaton C, Mack K et al. Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Mol Psychiatry, 2008. (Epub ahead of print)
    [58]Arking DE, Cutler DJ, Brune CW et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet, 2008, 82(1): 160-164.
    [59]Matarin M, Brown WM, Scholz S et al. A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurol, 2007, 6(5):414-420.
    [60] Seng KC, Seng CK. The success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet, 2008,16(5):554-64
    [61]Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat Genet, 2007,39(7):813-815.
    [62]Gershon ES, Liu C, Badner JA. Genome-wide association in bipolar. Mol Psychiatry, 2008, 13(1): 1-2.
    [63]Skol AD, Scott LJ, Abecasis GR, et al. Optimal designs for two-stage genome-wide association studies. Genet Epidemiol, 2007,31(7):776-788.
    [64] van den Oord EJ, Sullivan PF. False discoveries and models for gene discovery. Trends Genet, 2003,19(10):537-542.
    [65] Lowe CE, Cooper JD, Chapman JM et al. Cost-effective analysis of candidate genes using htSNPs: a staged approach. Genes Immun, 2004, 5(4):301-305.
    [66] Sham P, Bader JS, Craig I, et al. DNA Pooling: a tool for large-scale association studies. Nat Rev Genet, 2002, 3(11):862-871.
    [67]Norton N, Williams NM, O'Donovan MC, et al. DNA pooling as a tool for large-scale association studies in complex traits. Ann Med, 2004,36(2):146-152.
    [68]Barratt BJ, Payne F, Ranee HE, et al. Identification of the sources of error in allele frequency estimations from pooled DNA indicates an optimal experimental design. Ann Hum Genet, 2002,66:393-405.
    [69] Barrett JC, Cardon LR. Evaluating coverage of genome-wide association studies. Nat Genet, 2006, 38(6):659-662.
    [70] Li M, Li C, Guan W. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet, 2008,16(5):635-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700