弥散张量成像数据处理方法的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弥散张量成像(diffusion tensor imaging,DTI)是一种新的磁共振成像技术,具有无损伤的特点。它不但可以在三维空间内定量分析组织内水分子的弥散运动,而且可以利用组织内水分子弥散呈现的各向异性的特征进行成像。近年来,弥散张量成像已初步应用于临床研究,并成为一种对脑白质疾病,脑血管疾病及精神障碍性疾病进行临床诊断的新方法。本论文利用弥散张量成像技术对中颞叶癫痫和社交焦虑障碍这两种疾病进行了初步的影像学研究。
     中颞叶癫痫(Medial temporal lobe epilepsy,mTLE)是一种常见的局部性癫痫,发病期间会发放异常电位。为了探测mTLE病人的大脑白质是否存在弥散特性和白质完整性的异常,论文通过基于体素的方法(voxel-based analysis,VBA)对mTLE病人和正常对照组的弥散张量成像产生的弥散参数和白质密度指数进行了分析研究。结果发现mTLE病人的双侧海马的弥散特性出现异常,这与以前的研究结果一致。同时我们还进一步的发现双侧海马的白质完整性的异常,以及双侧海马的参数之间相关性的消失。这些结果表明mTLE病人的海马区域结构连接的异常,这对mTLE病人癫痫发作机制的研究具有重要的参考价值。
     以前的社交焦虑症(Social anxiety disorder,SAD)研究表明,SAD患者存在一些大脑认知功能方面的障碍。结构是功能的载体,为了研究SAD患者是否存在大脑结构连接异常,论文通过弥散张量成像方法对社交焦虑症患者进行了大脑结构网络的研究。首先通过对白质纤维束追踪、标准大脑模板到原始大脑空间的反投、大脑结构网络重建等计算方法进行分析,找出了大脑结构网络分析的算法。然后把算法用于处理SAD患者的数据。研究结果发现SAD患者的左脑的颞叶和角回、颞叶和脑岛、颞叶和海马、额叶和脑岛、额叶和前扣带、楔前叶和海马旁回、楔前叶和顶上叶,以及右脑的颞叶和角回、颞叶和枕叶、额叶和脑岛、中央前回和缘上回这些区域的结构连接比正常被试弱。这些结果与以前脑影像学研究结果基本一致,这表明SAD患者的多个脑区之间的神经纤维连接存在异常,这对研究社交焦虑障碍患者的神经机制具有很重要的参考价值。
Diffusion tensor imaging(DTI) is a new noninvasive magnetic resonance imaging(MRI)technique. DTI not only can provide quantitative analysis of the diffusion of water molecules in a three-dimensional space, but also can use the anisotropic characteristics presented by the diffusion of water molecules to image. In recent years, DTI has been used in clinical research, and become a kind of new methods in clinical diagnosis of the white matter disease, cerebrovascular disease and mental disorder. In this study, DTI was mainly used to investigate the radiological manifestation of bilateral mesial temporal lobe epilepsy and social anxiety disorder.
     Mesial temporal lobe epilepsy (mTLE) is one of the most common focal epilepsy, the patient will grant exception potential during an attack. To investigate changes in fiber integrity along with diffusivity in the bilateral mTLE patients, we study the diffusion parameters and fiber density index (FDI) of DTI by the voxel-based analysis (VBA) method. The results show that there were diffusion abnormalities in the bilateral hippocampus in patients. The results were in line with previous studies. Furthermore, we found the abnormalities of fiber integrity in bilateral hippocampus and lose of the relativity among the parameters. The results demonstrate the abnormality of structural connection in hippocampus in the bilateral mTLE patients, which provides important reference value for the study of the pathogenesis of epilepsy.
     The previous study of social anxiety disorder (SAD) showed that the patients of SAD had cognitive dysfunction. Structure is the carrier of the function, in order to explore whether there are anomalous structural connections in SAD, we studied the structural network of SAD by DTI. Through the study of the methods in white matter fiber tracking, back-projection of the standard brain template to the original space, the reconstruction of the brain structural network, we got the algorithm of the analysis of the structural network. And then we implement the algorithm at DTI data of SAD. The results show that there were reduce of the structural connections among temporal lobe and angular gyrus, temporal lobe and insula, temporal lobe and hippocampus, frontal lobe and insula, frontal lobe and anterior cingulated cortex, precuneus and parahippocampal gyrus, precuneus and superior parietal lobe in the left brain, and among temporal lobe and angular, temporal lobe and occipital lobe, frontal lobe and insula, precentral gyrus and supramarginal gyrus in the right brain. The regions involved in these reduced structural connections are consistent with the results reported in the previous studies about SAD, which indicates that there are abnormal nerve fiber connections among multiple brain regions in patients of SAD. It has important reference value in the study of neural mechanisms of SAD.
引文
[1] Bihan DL, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161: 401-407.
    [2]郝大鹏. MR弥散加权成像的原理及临床应用进展.中国中西医结合影像学杂志, 2003.
    [3]曾洪武,王培军.磁共振扩散加权与弥散张量成像原理分析及比较.中国医学影像技术, 2005, 21(12):1945-1947.
    [4] Eriksson SH, Rugg-Gunn FJ, et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain, 2001, 124 (3): 617–626.
    [5] [5] Chen Q, Lui S, Li CX, et al. MRI-negative refractory partial epilepsy: Role for diffusion tensor imaging in high field MRI. Epilepsy Research, 2008, 80: 83-89.
    [6] Assaf BA, Mohamed FB, Abou-Khaled KJ, et al. Diffusion Tensor Imaging of the Hippocampal Formation in Temporal Lobe Epilepsy. AJNR, 2003, 24: 1857-1862.
    [7]郝以辉,刘哲宁,赵靖平,等.精神分裂症患者全脑白质纤维弥散.张量成像的初步研究☆中国神经精神疾病杂志, 2006, 32(5): 399-402.
    [8] Kim S, Jeong JW, and Manbir S. Estimation of Multiple Fiber Orientations From Diffusion Tensor MRI Using Independent Component Analysis. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52: 1.
    [9] Greicius MD, Supekar K, Menon V, et al. Resting-State Functional Reflects Structural Connectivity Default Mode Network. Cerebral Cortex, 2009, 19(1): 72-78.
    [10] Hagmann P, Kurant M, Gigandet X, et al. Mapping Human Whole-Brain Structural Networks with Diffusion MRI. PLoS ONE, 2007, 2(7): e597. doi:10.1371/journal.pone.0000597.
    [11] Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol, 2008, 6(7): e159. doi:10.1371/journal.pbio. 0060159
    [12] Catani M, Schotten MTD. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 2008, 44(8): 1105-1132.
    [13] Zhou Y, Shu N, Liu Y, et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophrenia Research, 2008, 100: 120-132.
    [14] Zhou Y, Dougherty JH Jr, Hubner KF, et al. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive impairment. Alzheimer’s &Dementia, 2008, 4(4): 265-270.
    [15]白玫,罗述谦.弥散张量磁共振成像的新进展.国外医学生物医学工程分册, 2004, 27(4): 200-201.
    [16] Sotak CH. The role of diffusion tensor imaging in evaluation of ischemic brain injury-a review. NMR Biomed, 2002, 15: 561-569.
    [17] Ciccarelli O, Werring DJ, Barker GJ, et al. A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion evidence of wallerian degeneration. JNeurol, 2003, 250(3): 287-292.
    [18] Neil J, Miller J, Mukherjee P, et al. Diffusion tensor imaging of normal and injured developing human brain - a technical review. NMR Biomed, 2002, 15: 543-552.
    [19] Moseley M. Diffusion tensor imaging and aging– a review. NMR Biomed, 2002, 15: 553-560.
    [20] Mori S, Frederiksen K, Van Zijl PC, et al. Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. AnnNeurol, 2002, 51(3): 377-380.
    [21] Arfanakis K, Hermann BP, Rogers BP, et al. Diffusion tensor MRI in temporal lobe epilepsy. Magnetic Resonance Imaging, 2002, 20: 511-519.
    [22] Focke NK, Yogarajah M, Bonelli SB, et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. NeuroImage, 2008, 40: 728-737.
    [23] Pomara N, Crandall DT, Choi SJ, et al. White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiat Res, 2001, 106: 15-24.
    [24] Lim KO, Helpen JA. Neuropsychiatric applications of DTI– a review. NMR Biomed, 2002, 15: 587-593.
    [25] Phan KL, Orlichenko A, Boyd E, et al. Preliminary Evidence of White Matter Abnormality in the Uncinate Fasciculus in Generalized Social Anxiety Disorder. Biol Psychiatry, 2009, 66(7): 691-694.
    [26] Roberts TPL, Liu F, Kassner A, et al. Fiber Density Index Correlates with Reduced Fractional Anisotropy in White Matter of Patients with Glioblastoma. Ajnr, 2005, 26: 2183–2186.
    [27]吴义根,李可. SPM软件包数据处理原理简介—第一部分:基本数学原理.中国医学影像技术, 2004, 20(11): 1768-1772.
    [28] Enders F, Sauber N, Merhof D, et al. Visualization of White Matter Tracts with Wrapped Streamlines. Provs IEEE Visualization, 2005: 51-58.
    [29] Kindlmann G, Weinstein D, Hart D. Strategies for direct volume rendering of diffusion tensor fields. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(2): 124-138.
    [30] Margerison J, Corsellis J. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy with particular reference to the temporal lobes. Brain, 1966, 89: 499-530.
    [31] Bettus G, Wendling F, Guye M, et al. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy research, 2008, 81(1): 58-68.
    [32] Blumenfeld H, McNally KA, Vanderhill SD, et al. Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex, 2004, 14: 892-902.
    [33] Cook MJ. Mesial temporal sclerosis and volumetric investigations. Acta Neurologica Scandinavica, 1994, 89: 109 - 114.
    [34] Bettus G, Guedj E, Joyeux F, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp, 2009, 30(5): 1580-1591.
    [35] Schoene-Bake JC, Faber J, Trautner P, et al. Widespread affections of large fiber tracts in postoperative temporal lobe epilepsy. NeuroImage, 2009, 46: 569-576.
    [36] Spencer SS. Substrates of localization-related epilepsies: biologic implications of localizing findings in humans. Epilepsia, 1998, 39: 114-123.
    [37] Yu AH, Li KC, Yu CS, et al. Diffusion tensor imaging in medial temporal lobe epilepsy. Chinese medical journal, 2006, 119: 1237-1241.
    [38] Salmenpera TM, Simister RJ, Bartlett P, et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy research, 2006, 71: 102-106.
    [39] Labate A, Cerasa A, Gambardella A, et al. Hippocampal and thalamic atrophy in mild temporal lobe epilepsy. Neurology, 2008, 71: 1094-1101.
    [40] Romano A, Fasoli F, Ferrante M, et al. Fiber density index, fractional anisotropy, adc and clinical motor findings in the white matter of patients with glioblastoma. European radiology, 2006, 18(2): 331–336.
    [41] Stadlbauer A, Nimsky C, Gruber S, et al. Changes in Fiber Integrity, Diffusivity, and Metabolism of the Pyramidal Tract Adjacent to Gliomas: A Quantitative Diffusion Tensor fiber Tracking and MR Spectroscopic Imaging Study. AJNR, 2007, 28: 462–469.
    [42] Straube T, Kolassa IT, Glauer M, et al. Effect of task conditions on brain responses to threatening faces in social phobics: an event-related functional magnetic resonance imaging study. Biol Psychiatry, 2004, 56(12): 921-930.
    [43] Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol, 2002, 12(2): 169-177.
    [44] Tillfors M, Furmark T, Marteinsdottir I, et al. Cerebral Blood Flow during Anticipation of Public Speaking in Social Phobia: A PET Study. Biol Psychiatry, 2002, 52: 1113–1119
    [45] Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends in Cognitive Sciences, 2000, 4: 223-233.
    [46] Allison T, Puce A, McCarthy G. Social perception from visual cues: role of the STS region. Trends in Cognitive Sciences, 2000, 4(7): 267-278
    [47] Dilger S, Straube T, Mentzel HJ, et al. Brain activation to phobia- related pictures in spider phobic humans: An event-related functional magnetic resonance imaging study. Neurosci Letter, 2003, 348: 29–32.
    [48] Lovero KL, Simmons AN, et al. Anterior insular cortex anticipates impending stimulus significance. NeuroImage, 2009, 45: 976–983.
    [49] Amir N, Klumpp H, Elias J, Bedwell JS, et al. Increased activation of the anterior cingulated cortex during processing of disgust faces in individuals with social phobia. Biol Psychiatry, 2005, 57(9): 975-981.
    [50]陆勋林.大脑左侧角回的综合语言功能.理论探新, 2009: 282-283.
    [51] Margulies DS, Vincent JL, Kelly C, et al. Precuneus shares intrinsic functional architecture in humans and monkeys. PNAS, 2009, 106(47): 20069-20074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700