基于性能的抗震结构位移及能量反应分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以基于性能的抗震设计思路为基础,针对影响结构抗震性能的位移和滞回耗
    能反应这两个主要因素,全面阐述了目前世界范围广泛开展的基于性能的抗震设
    计的研究现状,深入剖析了存在的问题,并展望了发展趋势,对评估结构抗震性
    能的位移和能量反应的分析方法展开研究。取得了如下主要研究成果:
    1.针对目前主要用于结构抗震性能评估的能力谱方法中采用等效高阻尼弹性
    需求谱在理论和应用上存在的问题,全面分析了影响反应谱的结构动力参数和地
    震动参数,基于大量强震记录,采用时程分析方法,计算出具有统计意义的弹塑
    性加速度反应谱、弹塑性位移谱、弹塑性位移与弹性位移的比值反应谱及其谱曲
    线的简化计算公式。给出了弹塑性需求谱曲线,提出并建立了基于弹塑性需求谱
    的能力谱方法和屈服位移改进的计算方法,为基于性能的抗震设计方法提供了一
    条新途径。算例表明该方法具有一定的工程适用性。
    2.针对目前抗震设计中仅考虑结构位移反应进行结构抗震性能评估不能正确
    评价结构抗震性能的问题,提出补充耗能量反应评估结构抗震性能的建议,分析
    影响地震能量反应的地震动及结构动力参数,分别讨论各种参数对能量反应的不
    同影响,得出具统计意义的弹性和弹塑性总输入能量谱及滞回耗能谱;以及滞回
    耗能在总输入能中所占比例的比值谱。拟合出计算谱曲线的简化计算公式,拟合
    精度高,便于工程设计应用;
    考虑持时影响对地面运动分类,输入按持时定义分类的地面运动,计算出单
    自由度体系的位移时程反应和滞回耗能增量反应,得出不同类型地面运动的最大
    塑性位移和滞回耗能增量的反应规律,推导出由滞回耗能增量求最大弹塑性位移
    的计算公式和由此估算结构延性的方法,解决了长期以来依赖单调加载只能近似
    估计抗震结构整体延性的问题,同时建立了抗震结构的位移和滞回耗能这两个不
    同反应之间的关系,可为综合研究结构抗震性能提供研究基础;
    研究杆系模型分别在 7 度和 8 度长持时、中等持时多频谱型和近场短持时脉
    冲型地面运动作用下的能量反应,得出在不同类型的地面运动作用下,滞回耗能
    量可能相差几倍甚至上十倍的规律的基础上,并通过对于框架结构不同时刻能量
    反应和出铰规律的分析,得出框架结构能量薄弱层的概念。提出结构抗震设计应
    同时考虑位移和耗能量薄弱层的建议和用能量谱估计结构滞回耗能量方法,指出
    对于不同地震动的输入,应同时控制结构的位移和累积滞回耗能反应;在评判结
    构破坏时,应加入耗能指标;在考虑滞回耗能的双重损伤指标中应计入一定比例
    的梁的滞回耗能量的建议,为双指标损伤准则的工程应用提供研究基础。
     I
    
    
    中文摘要
    3.讨论了采用时程分析方法进行能量反应分析所需要的地震地面运动输入的
    选择问题,指出采用时程分析方法计算结构的能量反应时,所选地震波应考虑地
    震波的持时的影响,提出直接基于体系的总输入能量反应对地震波进行按持时影
    响分类的方法。该方法仅通过计算结构的弹性总输入能量即可得出地震动的分类,
    方法简单,概念明确,可方便地应用于工程抗震设计中。
    4.分析了时程分析法的求解方法的精度和稳定性,以及恢复力模型中采用精
    确公式求拐点的方法,并推导出求拐点的精确计算公式;
    5.提出以实际框架结构单位质量的滞回耗能量与等效单自由度体系的单位质
    量耗能量相等的原则,识别等效弹塑性单自由度系统的屈服位移的方法。通过逐
    次迭代运算,得出了等效体系的屈服位移d*y。识别的多波统计结果与 FEMA356
    的d*y接近,方法概念明确,计算简单,结果可信。
On the basis of performance based design, which is discussed widely in the
    world, the work of the paper aims at the displacement and hysteretic energy responses
    of seismic structures. The state of arts is reviewed and the disadvantages of the
    performance based design are expatiated and the research trends are presented. The
    analysis methods of displacement and hysteretic energy responses of seismic
    structures are discussed and mainfindings are listed as follows:
     1. The structural dynamic parameters and earthquake parameters which have
    effect on response spectrum are analyzed fully based on the investigation of the
    disadvantages of the method of equivalent high damp ratio elastic demand spectrum
    mainly used for evaluation performance of seismic structures. The elastoplastic
    acceleration spectrum, elastoplastic displacement spectrum and the ratio spectrum of
    the elastoplastic displacement to the elastic displacement are calculated in statistical
    sense by using a great deal of earthquake digital records with time history analysis
    method. The simplified formulas of these spectra are set forth. The improve capacity
    spectrum method based on the elastoplastic demand spectrum and method for
    calculating yield displacement are founded. Anew approach of the performance based
    design is provided with the improved capacity spectrum method. The applicability of
    improved capacity spectrum method in seismic engineering is proved by the
    examples.
     2. The suggestion of appending the capacity of hysteretic energy responses in the
    evaluation of the performance of seismic structures is proposed to solve the problem
    which the performance and capacity of seismic structures cannot be accurately
    evaluated by only considering the displacement response. The total input energy
    spectrum and hysteretic energy responses spectrum and the ratio spectrum of the
    hysteretic energy to the total input energy are calculated in statistical sense based on
    the analysis of the influence of the earthquake parameters and structural dynamic
    parameters on the spectrum. The simplified formulas of these spectra which are
    precise and can be conveniently used forengineering purpose are regressed.
     The earthquake ground motions are classified by considering the duration of
    them and the displacement time-history and hysteretic energy increment response of
    SDOF are calculated. The relationship between the maximal plastic displacement and
     III
    
    
    英文摘要
    hysteretic energy increment for different types of earthquake ground motions are
    found which can solve the problem that the structural global ductility can only be
    computed approximately rely on the method of monotony loads and that can also be
    the basis of the integrated evaluation of the capability of seismic structures.
     The energy response of bar system of frame structures which are subjected to
    long duration type waves, middling duration with multi-frequency components type
    waves and short duration impulse waves with the intensity of 7 and 8 degree are
    analyzed respectively. The results show that the energy response discrepancy is a few
    times, and in some cases may be ten times. For the stories of weak resistance capacity,
    both the displacement and hysteretic energy should be checked in seismic design
    based on structural performance. The hysteretic energy amount should be considered
    when judging whether the structure is damaged. The suggestion, which hysteretic
    energy dissipated by beams and girders should be taken into account when the failure
    criterion is determined by displacement and hysteretic energy amount, are presented.
     3. The method of selecting input earthquake waves in which the duration is
    required to be considered in the analysis of hysteretic energy using time-history
    analysis is discussed. The method of selecting input earthquake waves based on
    hysteretic energy response by using total input energy spectrum is suggested. The
    advantage of the method proposed is simple, definition and convenience
引文
[1] 建筑抗震设计规范, GB 50011 2001,中华人民共和国国家标准,2002,1
    [2] 建筑抗震设计规范条文说明,GB 50011 2001,中华人民共和国国家标准,2002,1
    [3] 腾智明,邹离湘. 反复荷载下钢筋混凝土构件的非线性有限元分析[J]. 土木工程学报,
     Vol.29(2):19-26,1996
    [4] 江见鲸. 钢筋混凝土结构非线性有限元分析[M]. 西安:陕西科学技术出版社,1994
    [5] Veletsos, A. S., and Newmark, N. M. Effects of inelastic behavior on the response of simple
     system to earthquake motions. Proceedings of the 2nd World Conference on Earthquake
     Engineering, Japan 2:895-912. 1960
    [6] 赖明等,规则高层建筑地震作用及其分布的简化分析,建筑结构学报,1992 年 3 期
    [7] Krawinkler H. Pushover Analysis: Why, How, When, and When Not to use It [C]. Proceedings
     for SEAOC 65th Annual Convention. Structural Engineering Association of California MAUI,
     HAWAII, 1996
    [8] 汪梦甫,沈蒲生.钢筋混凝土高层结构非线性地震反应分析现状[J]. 世界地震工
     程.1998(2):1-8
    [9] 朱可善,刘西拉. 钢筋混凝土柱非线性全过程分析[J]. 建筑结构学报, Vol.3(3):35-45,
     1982
    [10] Ray.W.Clough,Dynamics of Structures(M),Copyright?1993,by Mcgraw Hill,Inc,1973
    [11] 胡聿贤,《地震工程学》(M),地震出版社,1988 年
    [12] 赵西安,《高层建筑结构实用设计方法》,同济大学出版社,1992 年
    [13] 包世华等,《高层建筑结构设计》(第二版),清华大学出版社,1990 年
    [14] 龚思礼等,《建筑抗震设计》,建工出版社,1994 年。
    [15] 曹资等,《建筑抗震理论与设计方法》,北京工业大学出版社,1997 年
    [16] 吕西林等,《房屋结构抗震理论与实例》,同济大学出版社,1994 年
    [17] 杨红,罕遇地震作用下剪切型结构响应的统计特征及可靠性分析,重庆建筑大学硕士学
     位论文,1994 年
    [18] 王亚勇等,钢筋砼框架结构时程法地震反应分析,建筑结构,1993 年 7 期
    [19] 武腾清,结构物动力设计,中国建筑工业出版社,1984 年。
    [20] 杜修力,高层钢筋混凝土结构弹塑性地震反应分析文献综述,国家地震局工程力学研究
     所工作报告,1988 年 12 月
    [21] 李国强等,钢框架弹塑性静动力反应的非线性分析模型,建筑结构学报,1990 年第 2 期。
    [22] 王广军,《建筑抗震设计规范》手册,中国建筑科学研究院,1991 年。
     135
    
    
    重庆大学博士学位论文
    [23] 汪梦甫等,钢筋混凝土高层结构非线性地震反应分析现状,世界地震工程,1998 年 21
     期
    [24] 汪梦甫等,钢筋混凝土空间高层框架非线性地震分析,湖南大学学报,1998 年 3 期
    [25] 李国强等,钢筋砼杆系结构的非线性分析模型,建筑结构学报,1990 年 2 期
    [26] 徐贱云,吴健生,铃木计夫,多次载循环荷载作用下钢筋混凝土柱的性能[J]. 土木工
     程学报,Vol.24(3):57-70, 1991
    [27] 程民宪,结构动力分析中几种逐步积分法在负刚度条件下的收敛性和稳定性,工程力
     学,1989 年第 2 期。
    [28] 朱镜清,结构动力学问题中积分格式的稳定性,地震工程与工程振动,1983 年第 3 期。
    [29] 王亚勇等,建筑结构时程分析法输入地震波的研究,建筑结构学报,1991 年第 2 期。
    [30] 王广军,场地条件影响和抗震设计反应谱的若干问题,工程抗震,1992 年 3 期
    [31] 陈永祁,时程分析法中地震波的选择和可靠性分析,建筑科学研究报告,中国建筑科
     学研究院,1985
    [32] 王亚勇,程民宪,刘小第,结构抗震时程分析方法输入地震记录的选择方法及其应用,
     建筑结构,1995 年第 2 期
    [33] 戴国莹等,唐山地震中三座典型钢筋混凝土建筑震害分析,工程抗震研究报告,中国
     建筑科学研究院工程抗震研究所,1980 年。
    [34] 魏琏等,唐山地震作用下一座三层钢筋混凝土框架结构倒塌的分析,建筑科学研究报
     告,中国建筑科学研究院,1979 年
    [35] 陈光华. 地震作用下多层剪切型结构弹塑性位移反应的简化计算[J]. 建筑结构学报,
     Vol.5(1): 45-57, 1984
    [36] 高小旺. 地震作用下多层剪切型结构弹塑性位移反应的实用计算方法[J]. 土木工程学
     报,Vol.17(3):79-87,1984
    [37] 《建筑抗震设计规范》(GBJ11-89),建工出版社,北京,1989 年
    [38] 日本土木学会,《地震反应分析及实例》(M),地震出版社,1983 年
    [39] Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings (eds by Fajar &
     Krawinkler), Elsevier Applied Science, London and New York, pp.3-22 1992
    [40] Bertero V V. Major Issues and Future Directions in Earthquake-Resistant Design [C].
     Proceedings of Earthquake Engineering, 10th World Conference, Balkema, 1994
    [41] Bertero V V. The need for Multi-Level Seismic Design Criteria[R]. Report No.
     UCB/EERC-96/01. University of California, Berkeley, USA, 1996
    [42] Bertero V V. Overview of Seismic Risk Reduction in Urban Areas: Role, Importance, and
     Reliability of current U.S. Seismic Codes: Performance-based Seismic Engineering[R]. China-
     United States Bilateral Workshop on Seismic Codes. Guangzhou, 1997
     136
    
    
    参 考 文 献
    [43] SEAOC Vision 2000 Committee. Performance-Based Seismic Engineering of Building[R].
     Report Prepared by Structural Engineers Association of California, Sacramento, California,
     USA, 1995
    [44] ATC-34. A Critical Review of Current Approaches to Earthquake-Resistant Design[R].
     Applied Technology Council, Redwood City, 1995
    [45] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology
     Council. Red Wood City, California, 1996
    [46] FEMA 273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings[R].
     Federal Emergency management Agency, Washington, D.C. September, 1996
    [47] FEMA 274. NEHRP Guidelines for the Rehabilitation of Buildings[R]. Federal Emergency
     Management Agency, Washington, D.C. September, 1996
    [48] Bertero V V. Performance-based Seismic engineering: A Critical Review of Proposed
     Guidelines[R]. Seismic Design Methodologies for the Next Generation of Codes, Fajfar &
     Krawinkler(eds), Balkema, 1997
    [49] Building Center of Japan. Report of development of new engineering framework for
     building structures (in Japanese). Integrated Development Project, Ministry of construction,
     1996, 1997 and 1998
    [50] Otani S. Recent Developments in Seismic Design Criteria in Japan[C]. Proceedings of 11th
     WCEE, Mexico, 1996
    [51] Otani S. Development of Performance-based Design Methodology in Japan[R]. Proceedings
     of Workshop on Seismic Design methodologies for Next Generation Codes. Bled, Slovenia,
     June 24-26, 1997
    [52] 小古俊介. 日本基于性能结构抗震设计方法的发展[J]. 建筑结构,Vol.30(6):3-9,2000
    [53] 谢礼立. 抗震性态和基于性态的抗震设防[C]. 国家自然科学基金“九五”重大项目—
     —大型复杂结构的关键科学问题及设计理论研究论文集. 大连理工大学出版社,1999
    [54] 马玉宏. 基于性态的抗震设防标准研究[D]. 中国地震局工程力学研究所学位论文(指
     导教师:谢礼立),2000
    [55] 杨溥. 基于位移的结构地震反应分析方法研究[D]. 重庆建筑大学学位论文(指导教师:
     赖明,王亚勇),1999
    [56] 钱稼茹,罗文斌,静力弹塑性分析——基于性能/位移抗震设计的分析工具[J]. 建筑结
     构,Vol.30(6):23-26,2000
    [57] Bertero V V. Performance-Based Seismic Engineering: Conventional Vs. Innovative
     Approaches[C]. Proceedings of 12th WCEE, Auckland, 2000
    [58] Bertero R D and Bertero V V. Application of A comprehensive Approach for the
     137
    
    
    重庆大学博士学位论文
     Performance-Based Earthquake-Resistant Design of Buildings[C]. Proceedings of 12 th WCEE,
     Auckland, 2000
    [59] Hosseini M and Vayeghan F Y. Design Verification of An Existing 8-Story Irregular steel
     Building by 3-D Dynamic and Pushover Analysis[C]. Proceedings of 12th WCEE, Auckland,
     2000
    [60] Kuramoto H, Teshigawara M et al. Predicting the earthquake Response of Buildings Using
     Equivalent Single Degree of Freedom System[C]. Proceedings of 12th WCEE, Auckland, 2000
    [61] Peter K and Badoux M. Application of the Capacity Spectrum Method to R. C. Buildings
     with Bearing Walls[C]. Proceedings of 12th WCEE, Auckland, 2000
    [62] Requena M and Ayala A G. Evaluation of A Simplified Method for the Determination of the
     NonLinear Seismic Response of R.C. Frames[C]. Proceedings of 12th WCEE, Auckland, 2000
    [63] Sigmund V, Guljas I and herman K. An Evaluation of the Displacement Controlled Design
     Procedures[C]. Proceedings of 12th WCEE, Auckland, 2000
    [64] Soda S N Ishikura A and Takahashi Y. ADV Response Spectrum for Performance evaluation
     of R.C. Building with/without Damping Devices[C]. Proceedings of 12th WCEE, Auckland,
     2000
    [65] Wong K K F, Yang R. Inelastic Dynamic Response of structures Using Force analogy
     Method[C]. Proceedings of 12th WCEE, Auckland, 2000
    [66] Heidebrecht A and Rutenberg A. Applications of Drift Spectra in Seismic Design[C].
     Proceedings of 12th WCEE, Auckland, 2000
    [67] Kelly T E and Chambers J D. Analysis Procedures for Performance-Based Design[C].
     Proceedings of 12th WCEE, Auckland, 2000
    [68] Magenes G. A Method for Pushover Analysis in Seismic Assessment of Masonry
     Buildings[C]. Proceedings of 12th WCEE, Auckland, 2000
    [69] FEMA 356 (2000) ,Prestandard and commentary for the seismic rehabilitation of
     buildings.Report FEMA 356, Federal Emergency Management Agency, Washington DC.
    [70] EC8 (2003) Eurocode 8: Design of structures for earthquake resistance.General
     rules,seismic actions and rules for buildings. EN1998-1:2003, British Standards
     Institution,London.EC8,
    [71] Tsopelas P, Constantinou M C, Kircher C A and Whittaker A S. Evaluation of Simplified
     Methods of Analysis for Yielding Structures[R]. Report No.NCEER-97-012. National Center
     for Earthquake Engineering Research. State University of New York at Buffalo, 1997
    [72] FEMA 302. NEHRP Recommended Provisions for Seismic Regulations for New Buildings
     and other Structures Part I: Provisions [R]. Prepared by the Building Seismic Safety Council
     138
    
    
    参 考 文 献
     for the Federal Emergency Management Agency, Washington D. C. 1997
    [73] FEMA 303. NEHRP Recommended Provisions for Seismic Regulations for New Buildings
     and other Structures Part II: Commentary[R]. Prepared by the Building Seismic Safety Council
     for the Federal Emergency Management Agency, Washington D. C. 1997
    [74] SEAOC Blue Book, Recommended Lateral Force Requirements and Commentary-Errata to
     1996 Sixth Edition[R]. Structural Engineers Association of California, 1997
    [75] Kircher C A, Kircher P E & Associates. Capacity Spectrum Pushover Method: Seeing is
     Believing[C]. Proceedings of SEAOC 65th Annual Convention. MAUI, HAWAII, 1996
    [76] Krawinkler H. New Trends in Seismic Design Methodology [C]. Proceedings of 10 th
     European Conference on Earthquake Engineering, Duma (eds.), 821-830, Balkema, 1995
    [77] 方 鄂 华, 钱稼茹 . 我国高层建筑抗震设计的若干问题. 土木工程学报 , Vol.
     32(1):3-8,1999
    [78] Elghadamsi F E and Mohraz B. Inelastic Earthquake Spectra[J]. Earthquake Engineering
     and Structural Dynamics, Vol.15, pp.91-104,1987
    [79] Fajfar P. Capacity Spectrum Method Based on Inelastic Demand Spectra[J] Earthquake
     Engineering and Structural Dynamics, Vol.28, 979-993, 1999
    [80] Newmark N M and Hall W J. Earthquake Spectra and Design[R]. Earthquake Engineering
     Research Institute, University of California at Berkeley, 1982
    [81] Krawinkler H and Nassar A A. Seismic Design Based on Ductility and Cumulative Damage
     Demands and Capacities [R]. Nonlinear Seismic Analysis and Design of Reinforced Concrete
     Buildings(eds by Fajar & Krawinkler), Elsevier Applied Science, London and New York, pp.
     23-29, 1992
    [82] Vidic T, Fajfar P and Fischinger M. Consistent Inelastic Design Spectra: Strength and
     Displacement [J]. Earthquake Engineering & Structural Dynamics. Vol. 23, 507-521, 1992
    [83] Freeman S A, Nicoletti J P and Tyrell. Evaluation of Existing Buildings for Seismic Risk-A
     Case Study of Puget Sound Naval Shipyard Bremerton[C]. Proceedings of 1st U.S. National
     Conference on Earthquake Engineering, Washington, Earthquake Engineering Research
     Institution, pp: 113-122, 1975
    [84] Chopra A K and Goel B K. Capacity-Demand-Diagram Methods for Estimating Seismic
     Deformation of Inelastic Structures: SDOF Systems[R]. Report No. PEER-1999/02. Pacific
     Earthquake Engineering Research Center. University of California at Berkeley, 1999
    [85] Ghosh S K. Seismic Detailing of Reinforced Concrete Structures and Performance-Based
     Codes[R]. Seismic Design Methodologies for the Next Generation of Codes, Fajfar &
     Krawinkler(eds), Balkema, 1997
     139
    
    
    重庆大学博士学位论文
    [86] Miranda E and Bertero V V. Evaluation of Strength Reduction Factors for
     Earthquake-Resistant Design[J]. Earthquake Spectra. Vol.10, 357-379, 1994
    [87] Fajfar P and Gaspersis P. The N2 Method: the Seismic Damage Analysis of RC Buildings[J].
     Earthquake Engineering & Structural Dynamics, Vol.25, 31-46,1996
    [88] Fajfar, P. Capacity spectrum method based on inelastic demand spectra. IKIPR Report EE
     3/98. September. Ljubljana, Slovenia: Univ. of Ljubljana. 1998.
    [89] Park Y J, Reinhorn A M and Kunnath S K. IDARC: Inelastic Damage Analysis of Reinforced
     Concrete Frame-Shear-Wall Structures [R]. Report No. NCEER-87-0008, State University of
     New York at Buffalo
    [90] 叶献国.基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟[J].土木工程学
     报,Vol.31(4):3-13,1998
    [91] 何政. 钢筋混凝土结构非线性分析及地震设计设计与控制 [D]. 哈尔滨工业大学:工学博
     士学位论文(指导教师:欧进萍),2000 年 11 月,56-83
    [92] Valles R E, Reinhorn A M, Kunnath S K, Li C and Madan A. IDARC2D Version 4.0: A
     Computer Program for the Inelastic Damage Analysis of Buildings[R]. Report No.
     NCEER-96-0010. National Center for Earthquake Engineering research. State University of
     New York at Buffalo, 1996
    [93] Housner. G.W., Limit Design of Structures to Resist Earthquake,Proc. of First World Conf.
     on Earthquake Engrg.,Berkeley,CA[C],1956
    [94] Mckevitt, W E. et al. Hysteretic Energy Spectra in Seismic Design [C]. Proceedings of 7th
     WCEE, Vol.7, 1980
    [95] T.F.Zahrah, and W.J.Hall Seismic Energy Absorption in Simple Structures, Structural
     Research Series, No.501, Civil Engrg.Studies University of Illinois, Urbana-Champain Illinois,
     1982
    [96] Akiyama.H. Earthquake Limit-State Design for Buildings[M], University of Tokyo Press,1985
    [97] Akiyama H. Earthquake Resistant Design Based on the Energy Concept[J]. Proceedings of 9th
     WCEE, pp. 905-910, 1988
    [98] Uang,C-M. and Bertero.V.V. Evaluation of seismic Energy in Structures, Earthquake
     Engineering and Structural Dynamics,Vol. 19.1990,77-90
    [99] 陈永祁.结构在地震动时延性和累积耗能的双重破坏准则,建筑结构学报,1986,1
    [100] 瞿伟廉,李桂青, 建筑结构破坏机制探讨,工程地震,1990,9
    [101] 刘伯权,钢筋混凝土柱抗震结构的破坏准则及可靠性分析,重庆建筑大学博士论文,
     1994,11
    [102] 徐云钟,钢筋混凝土抗震结构破坏准则初探,重庆建筑大学硕士论文,1994,7
     140
    
    
    参 考 文 献
    [103] 张有为,钢筋混凝土柱抗震破坏准则,重庆建筑大学硕士论文,1996,
    [104] Housner.G.W., Behavior of Structures during Earthquake, J.of the Engrg.Mech.Div., ASCE[J],
     1959,85(4)
    [105] A.S.Veletos,N.M.Newmark. Effect of Inelastic Behavior on the Response of Simple Systems
     to Earthquake Motion,2WCEE[M],1960
    [106] N.M.Newmark and W.J.Hall, Seismic Design Criteria for Nuclear Reactor Facilities,Proc.
     4WCEE[M],Vol.2.37-50,1969
    [107] N.M.Newmark,W.J.Hall,A Rational Approach of Seismic Design Standars for Structures,
     5WCEE[M],1975
    [108] N.M.Newmark,高耸结构的地震分析和设计的趋势.地震工程学 [M],北京:科技出版社,
     1978
    [109] N.M.Newmark,Earthquake Resistant Design and ATC Provisions,Proc.3Rd CCEE[M],
     1979,1:609~651
    [110] 王前信等.弹塑性反应谱.地震工程研究报告集[R],第二集,北京:科学出版社,1965
    [111] 陈聃.抗震结构的延性谱.清华大学抗震抗爆工程研究报告集[R],清华大学出版社,1980
    [112] Chen Dan. Ductility Spectra and Collapse Spectra for Earthquake Resistant Structures,
     Proc.7th European Conference on Earthquake Engineering[R],1982
    [113] 韦承基. 弹塑性结构的位移比谱. 建筑结构学报[J]. Vol.4(2):40-48, 1983
    [114] Cheng Mingxian. Residual strength spectra for Earthquake Resistant Structures, Proc.Int,
     Conference on Design. Construction and repair of Building Structures in Earthquake
     Zones[M].1987,
    [115] Fajfar.P. and Fischinger.M. Earthquake Design Spectra Connsidering Duration
     ofGroundMotion,Proc.4thU.S.NCEE.May,1990,Palm,springs,California,Vol.2,15-24
    [116] Peter.fajfar,Tomaz Vidic,Consistent Inelastic Design Spectra:Hysteretic and Input Energy,
     EESD,1994,23
    [117] Tolis S V and Faccioli E. Displacement Design Spectra[J]. Journal of Earthquake Engineering,
     Vol.3 (1): 107-125, 1999
    [118] Ye L P and Otani S. Maximum Seismic Displacement of Inelastic Systems Based on Energy
     Concept[J]. Earthquake Engineering and Strucutral Dynamics. Vol.28, 1483-1499, 1999
    [119] 吴云芳,肖明葵,一种积分方法在负刚度条件下的收敛性和稳定性,重庆建筑大学学报
     2000 年 6 月;
    [120] 肖明葵等,滞回恢复力模型中求折点的一种方法,重庆大学学报 2002 年第 1 期 Vol.24,
     Nov.202P32-36,
    [121] 吴云芳、肖明葵. 一种积分法在负刚度条件的收敛性和稳定性. 重庆建筑大学学报,2000
     141
    
    
    重庆大学博士学位论文
     年 5 月
    [122] 夏洪流。基于频域响应统计特性等效的结构等效线形化的方法研究,博士学位论文,
     1999,1-90
    [123] 张川,钢筋混凝土框架——抗震墙结构的抗震性能及模型化方法研究,博士学位论文,
     1994,(1-113)
    [124] Freeman, S. A.. Prediction of response of concrete buildings to severe earthquake motion.
     Publication SP-55, 589-605. Detroit, Mich.: American Concrete Inst.1978
    [125] Deierlein, G. G., and Hsieh, S-H. Seismic response of steel frames with semi-rigid connections
     using the capacity spectrum method. Proceedings of 4th U.S. National Conference on
     Earthquake Engineering 2:863-72. 1990
    [126] Freeman, S. A. Development and use of capacity spectrum method. Proceedings of 6th U.S.
     National Conference on Earthquake Engineering, Seattle. CD-ROM. Oakland, Calif.: EERI.
     1998
    [127] 叶献国,多层建筑结构抗震性能的近似评估,工程抗震,1998 年 4 期
    [128] Iwan, W. D., and Gates, N. C. Estimating earthquake response of simple hysteretic structures.
     Journal of the Engineering Mechanics Div.. 105 (EM3):391-405. ASCE (1979a).
    [129] Iwan, W. D., and Gates, N. C. The effective period and damping of a class of hysteretic
     structures. Earthquake Engineering and Structural Dynamics 7(3):199-212. (1979b).
    [130] Kowalsky, M. J., Priestley, M. J. N., and Macrae, G. A. Displacement-based design of RC
     bridge columns in seismic regions. Earthquake Engineering and Structural Dynamics 24(12):
     1623-43. (1995).
    [131] Moehle, J. P. Displacement-based design of R/C structures subjected to earthquakes.
     Earthquake Spectra 8(3): 403-427. (1992).
    [132] Taylor C P, Thomsen J H and Wallace J W. Experimental Verification of Displacement-Based
     Design Procedures for Slender R.C. Structural Walls[R]. Papers presented at the 11the WCEE.
     Report No. UCB/EERC-96/01, Earthquake Engineering Research Center, University of
     California at Berkeley, 1996
    [133] Calvi G M. A Displacement-Based Approach for Vulnerability Evaluation of Classes of
     Buildings[J]. Journal of earthquake Engineering, Vol.3(3):411-438, 1999
    [134] Reinhorn, A. M., Li, C., and Constantinou, M. C. Experimental and analytical investigations
     of seismic retrofit of structures with supplemental damping. Report No. NCEER-95- 0001.
     State Univ. of New York at Buffalo. 1995.
    [135] Reinhorn, A. M. Inelastic analysis techniques in seismic evaluations. Seismic design
     methodologies for the next generation of codes, eds. P. Fajfar and H.Krawinkler, 277-87. 1997.
     142
    
    
    参 考 文 献
    [136] Rotterdam: Balkema. Riddell, R., Hidalgo, P., Cruz, E. Response modification factors for
     earthquake resistant design of short period buildings. Earthquake Spectra 5(3):571-90. 1989.
    [137] Hudson, D. E. Equivalent viscous friction for hysteretic systems with earthquake-like
     excitations. Proceedings of Third World Conference on Earthquake Engineering II:185-202.
     1965
    [138] Jennings, P. C. Equivalent viscous damping for yielding structures. Journal of the Engineering
     Mechanics Div. 94 (EM1):103-116. ASCE. 61 (1968).
    [139] Peter Fajfar, Simple Push-Over Analysis of Buildings Structures, 11th World Conference On
     Earthquake Engineering, 1996
    [140] Peter Fajfar, 《Towards a New Seismic Design Methodology for Buildings》(Research at the
     University of Ljubljana), Faculty of civil Engineering and Geodesy, Institute of Structural and
     Earthquake Engineering, 1996
    [141] 李冬.建筑结构水平地震作用分布规律研究,硕士学位论文,2000(1-52)
    [142] Whittaker A, Constantinou M and Tsopelas P. Displacement Estimates for Performance-Based
     Seismic Design[J]. Journal of Structural Engineering, Vol. 124(8): 905-912, 1998
    [143] Moehle J P. Displacement-Based Seismic Design Criteria[R]. Papers presented at the 11
     WCEE. Report No. UCB/EERC-96/01, Earthquake Engineering Research Center, University
     of California at Berkeley, 1996
    [144] Wallace, J. W. Displacement-based design of R/C structural walls. Proceedings of
     10thEuropean Conference on Earthquake Engineering 3:1539-144. 1995.
    [145] R. Scott Lawson, Nonlinear static push-over analysis-why, when, and how? 15th U.S. national
     conference on earthquake Engineering, 1994
    [146] G.D.P.K.Seneviratna, strength and displacement demands for seismic design of structural
     walls, 15th U.S. national conference on earthquake engineering, 1994
    [147] Giuseppe Faella, Evaluation of the R/C Structures Seismic Response by Means of Nonlinear
     Static Push-over Analysis, 11 th world Conference on Earthquake Engineering, 1996
    [148] 杨成.结构弹塑性地震反应分析的改进能力——需求曲线方法研究,硕士学位论文,2003
     (1-54)
    [149] Moehle J P. Displacement-Based Seismic Design –A Compromise between Simple and
     Comprehensive[R]. The EERC-CUREe Symposium in Honor of Vitelmo V. Bertero, Report
     No. UCB/EERC-97/05, Earthquake Engineering Research Center, University of California at
     Berkeley, 1997
    [150] Browning J, Li Y R, Lynn A, Moehle J P. Performance Assessment for a Reinforced Concrete
     Frame Building[R]. Seismic Design Methodologies for the Next Generation of Codes, Fajar &
     143
    
    
    重庆大学博士学位论文
     Krawinkler (Eds), Balkema, Rotterdam, 1997
    [151] Fajfar P. equivalent Ductility Factors Taking into Account Low-Cycle Fatigue[J]. Earthquake
     Engineering & Structural Dynamics. Vol. 21, 837-848,1992
    [152] 李国强、李杰、苏小卒,建筑结构抗震设计, 中国建筑工业出版社 2002 年 8 月 北京
     PP79-81
    [153] Bertero,V.V., Uang, C.M., Issues and Future Directions in the Use of an Energy Approach for
     Seismic-Resistant Design of Structures, Nonlinear Seismic Analysis and Design of Reinforced
     Concrete Buildings, Ed. by P.fajfar, and H.Krawinkler, Elsevier Applied Science[M],1992
    [154] Fajfar,P.,Vidic,T.,and Fischinger,M.,Seismic Demand in Medium and Long-Period Structures,
     Earthquake Energ.yandStruct.dyn[J].1989,18
    [155] P.fajfar, T.Vidic,Seismic Demand in medium and long-period Structures, Earthquake Engrg.
     and Struct.dyn.,Vol.18,1989
    [156] T.Vidic, P.fajfar, On hysteretic to input energy ratio, Proc. 6th Canadian Conf. On Earthquake
     Engrg., Moscow, 1990,PP.312-321
    [157] P.fajfar, T.Vidic, On Energy demand and supply in SDOF systems, Nonlinear Seismic Anlysis
     and Design of Reinforced Concrete Building, Ed.by P.fajfar and H.Krrawinkler, Elsevier
     Applied Science,1992
    [158] Stojadinovic B, Thewalt C R. Energy Balanced Hysteresis Models. Earthquake- engineering
     Research at Berkeley-1996: Papers presented at the 11th world Conference on Earthquake
     Engineering [R]. Report No. UCB/EERC-96/01. Earthquake Engineering Research Center.
     University of California at Berkeley, 1996
    [159] 黄宗明,白绍良,赖明,结构非弹性地震能量反应分析的方法,第三届全国结构工程学
     术会议论文集,1994
    [160] 黄宗明,肖明葵等,结构抗震阻尼问题非线性分析,重庆建筑大学学报 1996 年 6 月;
    [161] 白绍良,黄宗明,肖明葵,结构抗震能量分析方法综述,建筑结构 1996 年 3 月;
    [162] 肖明葵等,结构滞回耗能影响因素分析,《工程力学》增刊 2000 年 6 月,
    [163] 肖明葵等,抗震结构的滞回耗能谱, 世界地震工程, 2002 年第 4 期
    [164] Nariyuki Y and Hiro K. Effect of Structural and Hysteretic Energy of MDOF System
     Subjected to Seismic Excitation[C]. Proceedings of 9th WCEE, Tokyo-Kyoto, Japan, 1988
    [165] Chung-Che Chou and Chia-Ming Uang. A procedure for evaluating seismic energy demand of
     framed structures, EESD,2003; 32:229–244 (DOI:10.1002/eqe.221)
    [166] Park Y J and Ang A H-S. Mechanistic Seismic Damage Model for Reinforced Concrete [J].
     Journal of Structural Engineering, ASCE, Vol. 111(4) 722-739, 1985
    [167] Park Y J and Ang A H-S. Seismic Damage Analysis of reinforced Concrete Buildings[J].
     144
    
    
    参 考 文 献
     Journal of Structural engineering, ASCE, Vol.111(4): 740-756, 1985
    [168] Paret, T. F., Sasaki, K. K., Eilbekc, D. H., and Freeman, S. A. Approximate inelastic
     procedures to identify failure mechanisms from higher mode effects. Paper No. 966, 11th
     World Conference on Earthquake Engineering. Acapulco, Mexico. 1996.
    [169] Kent D C and Park R. Cyclic Load Behavior of Reinforcing Steel[J]. Journal of British
     Society for Strain Measurement. Vol.9(3):98-103,1973
    [170] Park H and Klingner R E. Nonlinear Analysis of RC Members Using Plasticity with Multiple
     Failure Criteria [J]. Journal of Structural Engineering. Vol.123(5):643-651,1997
    [171] Y.H.Chai, “Energy-Based Linear Damage Model for High-Intensity Seismic Loading”,
     Journal of Structural Engineering, May, 1995
    [172] Paret T F, Sasski K K, Eilbeck D H and Freeman S A. Approximate Inelastic Procedures to
     Identify Failure mechanics from Higher Mode Effects[C]. Proceedings of 11th WCEE, Mexico,
     1996
    [173] 江近仁,孙景江, 砖结构的地震破坏模型,地震工程与工程振动,1987,(3)
    [174] 李国豪,工程结构抗震动力学,上海科学技术出版社,1980 年
    [175] 朱伯龙等,工程结构抗震设计原理,上海科学技术出版社,1982 年
    [176] [美]M.帕兹,结构动力学-理论与计算,地震出版社,1993 年
    [177] Trifunac.M.D,Brady.A.G.,A study of thr duration of Strong Earthquake Ground Motion,Bulltin
     of Seismolorgical Society of America,Vol.65,581-626.1975
    [178] 谢礼立,张晓志,地震动记录持时与工程持时,地震工程与工程振动,Vol.8,No.1,1988,
     3
    [179] 尹保江,地震作用下结构弹塑性位移反应规律的研究,重庆建筑大学硕士学位论文,
     1997.6
    [180] 徐植信等,强烈地面运动持时对结构物倒塌的影响,同济大学学报,1982.2
    [181] LiePing Ye and Shunsuke Otani, Maximum Seismic Displacement of Inelastic Systems Based
     on Energy Concept, EESD, 28, 1999.
    [182] 胡冗冗,王亚勇,地震动瞬时能量与结构最大位移反应关系研究,建筑结构学报,Vol.21,
     2000.
    [183] 白绍良等,钢筋混凝土及砖石结构,中央广播电视大学出版社,1986 年
    [184] 江见鲸等,土建工程实用计算程序选编,地震出版社,1991 年
    [185] 李杰等,地震工程学导论,地震出版社,1982 年
    [186] 王传志,腾智明. 钢筋混凝土结构理论[M]. 北京:中国建筑工业出版社,283-295 页,
     1985
    [187] 欧进萍,何政等.钢筋混凝土结构基于地震损伤性能的设计[J]。地震工程与工程振
     145
    
    
    重庆大学博士学位论文
     动.1999,Vol.19(1):21-30
    [188] 魏琏,钢筋混凝土高层建筑新抗震设计法,工程抗震,1987 年 3 期
    [189] 方鄂华等,我国高层建筑抗震设计的若干问题,土木工程学报,1999 年 1 期
    [190] 刘南科,周基岳,肖允徽,向阳。钢筋混凝土框架的非线性全过程分析[J]. 土木工程
     学报,Vol.23(4):2-14,1990
    [191] 欧进萍,何政等.钢筋混凝土结构的地震损伤性能控制设计[J].建筑结构学报.2000,
     Vol21.(1):63-70
    [192] 刘伯权等,抗震结构的破坏准则评述及探讨,重庆建筑大学学报,1993.12
    [193] Kunnath S K, Reinhorn A M and Lobo R F. IDARC Version 3.0: A Program for the Inelastic
     Damage Anlaysis of reinforced Concrete Structures[R]. report No. NCEER-92-0022, National
     Center for earthquake Engineering Research, State University of New York at Buffalo, 1992
    [194] Kunnath S K, Reinhorn A M and Park Y J. Analytical Modeling of Inelastic Seismic
     Response of R/C Structures[J]. Journal of Structural Engineering, Vol. 116(4): 996-1017, 1990
    [195] 冯世平,沈聚敏,钢筋混凝土杆系结构的非线性全过程分析,建筑结构学报,1989 年
     第 4 期
    [196] 高小旺,地震作用下多层剪切型结构弹塑性位移反应的实用计算方法,土木工程学报,
     1984 年 3 期
    [197] 尹之潜等,多层建筑楼层变位与屈服强度的关系和控制变位防止倒塌问题,地震工程
     与工程振动,1985 年 1 期
    [198] 韦承基等,高层建筑层间位移控制的建议,工程抗震,1994 年 2 期
    [199] Loh C-H and Ho R C. Seismic Damage Assessment Based on Different Hysteretic Rules[J].
     Earthquake Engineering and Structural Dynamics, Vol.19, 753-771, 1990
    [200] Williams M S and Sexsmith R G. ,Seismic Damage Indices for Concrete Structures: A
     State-of-the-Art Review[J]. Earthquake Spectra, Vol.11(2):319-349, 1995
    [201] Williams M S, Villemure I and Sexsmith R G. , Evaluation of Seismic Damage Indices for
     Concrete Elements Loaded in Combined Shear and Flexure[J]. ACI Structural Journal,
     Vol.94(3):315-322, 1997
    [202] 欧进萍,吴波.压弯构件在主余震作用下的累积损伤试验研究[J]. 地震工程与工程振动,
     Vol.14,No.3,1994
    [203] Powell G H and Allahabadi R. Seismic Damage Prediction by Deterministic Methos:
     Concepts and Procedures[J]. Earthtuake Engineering and Structural Dynamics. Vol. 17,
     719-734, 1988
    [204] Rodriguez M E and Aristizabal J C. Evaluation of A Seismic Damage Parameter[J].
     Earthquake Engineering and Strucutural Dynamics. Vol.28, 463-477, 1999
     146
    
    
    参 考 文 献
    [205] 牛荻涛,任利杰. 改进的钢筋混凝土结构双参数地震破坏模型[J]. 地震工程与工程振动
     [J], Vol.16, No.4,1996
    [206] 陈永祈,龚思礼. 结构在地震动时延性和累积塑性耗能[J]. 建筑结构学报,Vol.7(1):
     35-48, 1986
    [207] 邱法维. 钢筋混凝土结构的地震耗能分析与抗震设计[D]. 哈尔滨:哈尔滨建筑大学学
     位论文(指导教师:王光远,欧进萍),1993
    [208] 杜修力、欧进萍,建筑结构地震破坏评估模型,世界地震工程,1991(3)
    [209] 刘纲,抗震框架结构能量反应的初步分析,重庆大学硕士学位论文,2002 年,5 月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700