基于位移的概率地震需求分析与结构抗震设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构的抗震性能评估是基于性能的抗震设计理论的主要研究内容之一,不同地震动水平下结构位移反应的概率分析是其难点也是关键所在。基于位移的抗震设计是实现基于性能的设计思想的重要途径,但目前对它的研究还处于概念性的讨论阶段,离实际应用和纳入规范还有较大距离。围绕结构的概率地震需求分析方法以及基于位移的抗震设计方法,本文进行了以下几个方面的研究工作:
     1.目标位移估计是Pushover分析方法用于结构抗震性能评估的关键问题之一。能力谱法可以用来估计结构的目标位移,在该方法中弹塑性反应谱常用于需求曲线的建立。以往对弹塑性反应谱的研究主要集中于等延性强度需求谱。通过探讨等强度延性需求谱和等延性强度需求谱在概念及计算方面的区别,本文提出采用等强度延性需求谱作为结构的需求曲线,并结合由Pushover分析得到的能力曲线,对结构的目标位移及抗震性能进行评估。
     2.通过引入结构的屈服水平系数以及建立等屈服水平延性需求谱,可以像弹性反应谱中的地震系数以及动力放大系数曲线一样,将地震动的幅值特性以及频谱特性分开考虑。收集大量的地震记录,并根据场地类型和特征周期进行分类和分组,在每组地震记录作用下对大量的双线性单自由度体系进行非线性时程反应分析。基于这些分析结果,对给定结构屈服水平以及基本周期条件下的延性需求的概率分布类型进行了假设检验,并通过多元非线性回归得到了不同场地条件下延性需求的统计参数,进而建立了概率延性需求谱。利用概率延性需求谱以及条件分布的性质,本文提出了确定性结构随机地震位移反应分析的简化方法以及概率地震需求分析的简化方法,并通过算例分析对方法的有效性进行了证明。
     3.通过对大量的2自由度体系进行非线性时程反应分析,探讨了结构参数以及场地条件对2自由度体系位移及延性需求的影响规律。采用类似于单自由度体系的分析方法,获得了不同场地条件下2自由度体系的概率延性需求。利用单自由度体系与2自由度体系的概率延性需求分析成果,并结合结构的能力分析,本文提出了对不同支座形式的规则连续梁桥进行地震易损性分析的简化方法。
     4.对常见的主要失效模式为下部破坏型结构,本文提出将其等效成2自由度体系进行Pushover分析,并推导了多自由度体系等效成2自由度体系的计算公式。当结构的非线性较强时,建议在弹性和非弹性反应阶段采用不同的形状向量来描述结构的顶点位移与楼层位移的关系。通过对几个多层框架结构进行分析,比较了5种改进的Pushover分析方法的精度及适用范围。
     5.比较了两种常用的基于位移的抗震设计方法,在此基础上提出把由等强度
Seismic evaluation of structural performance is one of the main research contents in performance-based seismic design theory. Probabilistic analysis of structural displacement responses for different seismic intensities is difficult but principal for performance evaluation. Displacement-based design is an important approach to realize the idea of performance-based design. However the current studies in this field are still at the stage of discussion about some concepts, and away from practical application and implementation into design codes. Focused on structural probabilistic seismic demand analysis and displacement-based seismic design, this dissertation involves the following work:1. Estimating the structural target displacement is essential for Pushover analysis method to be applied to the evaluation of structural seismic performance. The target displacement of a structure can be predicted by capacity spectrum method, where the demand curves are often constructed by elastic-plastic response spectra. The present research on elastic-plastic response spectrum is mostly on constant-ductility strength demand spectrum. After investigating the differences in conception and calculation between constant-strength ductility demand spectrum and constant-ductility strength demand spectrum, the former is proposed for the demand curves. Combined with the capacity curve from Pushover analysis, the target displacement and seismic performance of a structure can be estimated.2. The intensity and frequency content of an earthquake ground motion can be considered separately by introducing normalized yield strength coefficient and constructing constant-strength ductility demand spectrum, similar to the seismic factor and dynamic amplification factor curve in elastic response spectrum. According to the site types and characteristic periods, the collected records are classified. Under each set of records, nonlinear time history response analysis for plentiful bilinear single-degree-of-freedom systems (SDOF) is carried out. Based on these results, and conditional on given normalized yield strength coefficient and structural fundamental period, the probabilistic distribution type of ductility demands is checked by hypothesis test, also the mean and standard deviation of ductility demands are obtained by nonlinear multiple regression analysis. As a result, probabilistic ductility demand spectrum can be constructed. Utilizing probabilistic ductility demand spectrum and the characteristic of conditional probabilistic distribution, simplified
引文
[1] 中华人民共和国国家标准.建筑抗震设计规范(GBJ11—89).北京:中国建筑工业出版社,1989,1-64
    [2] 中华人民共和国国家标准.建筑抗震设计规范(GB50011—2001).北京:中国建筑工业出版社,2001
    [3] Uniform Building Code 1997. Structural Engineering Design Provisions. Volume 2. Whittier: International Conference of Building Officials, 1997
    [4] SEAOC. Recommended Lateral Force Requirements and Commentary (SEAOC Blue Book). Seventh Edition. Sacramento: Structural Engineers Association of California, 1999
    [5] 王亚勇.建筑抗震设计中地震作用取值——主要国家抗震规范比较.建筑科学,1999,15(5):36—55
    [6] [日]大崎顺彦.建筑物抗震设计法.毛春茂,刘忠译.北京:冶金工业出版社,1990,1-103
    [7] CEN. European Prestandard Eurocpde 8: Design provisions for earthquake resistance of structures. Brussels, 1994
    [8] SEAOC. Performance-based seismic engineering of building. Vision 2000. Sacramento: Structural Engineers Association of California, 1995
    [9] FEMA. NEHRP guidelines for the seismic rehabilitation of buildings. FEMA-273. Washington, D. C: Federal Emergency Management Agency, 1996
    [10] FEMA. NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings. FEMA-274. Washington, D. C: Federal Emergency Management Agency, 1997
    [11] ATC. Seismic evaluation and retrofit of existing concrete building. Report ATC-40. Redwood City: Applied Technology Council, 1996
    [12] 小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构,2000,30(6):3-9
    [13] Hiraishi H, Midorikawa M, Teshigawara M, et al. Development of performance-based building code in Japan: framework of seismic and structure provisions. In: Joint Meeting of the U.S./Japan Cooperative Program in Natural Resources Panel on Wind and Seismic Effects. Gaithersburg, 1998, 260-271
    [14] 程斌,薛伟辰.基于性能的框架结构抗震设计研究.地震工程与工程振动, 2003,23(4):50-55
    [15] 王亚勇.我国2000年抗震设计模式规范展望.建筑结构,1999,6:32-36
    [16] Priestley M J N. Performancebased seismic design. In: 12WCEE. Paper 2831, Auckland, 2000, 1-22
    [17] Bertero R D, Bertero V. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach. Earthquake Engineering and Structural Dynamics, 2002, 31: 627-652
    [18] 郭子雄.基于变形的抗震设计理论及应用研究:[同济大学博士学位论文].上海:同济大学,2000,1-38
    [19] Xue Q, Chen C C. Performance-based seismic design of structures: a direct displacement- based approach. Engineering Structures, 2003, 25: 1803-1813
    [20] Shome N. Probabilistic seismic demand analysis of nonlinear structures: [dissertation]. Stanford: Department of civil and environmental engineering of Stanford University, 1999, 1-320
    [21] Bazzurro P. Probabilistic seismic demand analysis: [dissertation]. Stanford: Department of civil and environmental engineering of Stanford University, 1998, 1-329
    [22] Carballo J E. Probabilistic seismic demand analysis spectrum matching and design. In: Reliability of Marine Structures Program. Report No. RMS-41. Stanford University, 2000, 1-259
    [23] 马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报,2002,30(12):1429-1434
    [24] 罗奇峰,王玉梅.结构性能设计理论及其发展趋势.见:第五届全国地震工程学术会议论文集.北京:中国建筑学会及中国地震学会,1998,508-513
    [25] 王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述.建筑结构学报,2000,21(1):2-4,36
    [26] Ghobarah A. Performance-based design in earthquake engineering: state of development. Engineering Structures, 2001, 23: 878-884
    [27] 高小旺,龚思礼,苏经宇等.建筑抗震设计规范理解与应用.北京:中国建筑工业出版社,2002
    [28] Jean W Y, Loh C H. Seismic demand for SDOF system-In relating to seismic design. In: Proceedings of the 7th International Conference on Structure Safety and Reliability (ICOSSAR'97). Rotterdam: Balkema Publication, 1998, 1629-1636
    [29] Cosenza E, Manfredi G, Ramasco R. The use of damage functional in earthquake engineering: a comparison between different methods. Earthquake Engineering and Structural Dynamics, 1993, 22:855-868
    [30] 叶列平,经杰.论结构抗震设计方法.www.paper.edu.cn, 2005-1-15
    [31] FEMA. Hazus99 User's Manual. Washington, D.C: Federal Emergency Management Agency, 1999
    [32] Faella G. Evaluation of the R/C structures seismic response by means of nonlinear static push-over analysis. In: 11th WCEE. Paper No. 1146, 1996, 1-8
    [33] Ghobarah A, EI-Attar M, Aly N M. Evaluation of retrofit strategies for reinforced concrete columns: a case study. Engineering Structures, 2000, 22: 490-501
    [34] Chandler A M, Mendis P A. Performance of reinforced concrete frames using force and displacement based seismic assessment methods. Engineering Structures, 2000, 22:352-363
    [35] Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems. Report No. PEER-1999/02, Berkeley: Pacific Earthquake Engineering Research Center, 1999, 1-65
    [36] 叶献国.多层建筑结构抗震性能的近似评估——改进的能力谱方法.工程抗震,1998,4:10-14
    [37] Lin Y Y, Chang K C. An improved capacity spectrum method for ATC-40. Earthquake Engineering and Structural Dynamics, 2003, 32: 2013-2025
    [38] Fajfar P. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structure Dynamics, 1999, 23: 979-993
    [39] Fintel M, Ghosh S K. Explicit inelastic dynamic design procedure for aseismic structures. Journal ACI, 1979, 2: 110-118
    [40] Cornell C A, Krawinkler H. Progress and challenges in seismic performance assessment. PEER Center News, 2000: 3(2): 1-2. URL http://peer.berkeley.edu/news/2000springs/index. html, 2004-1-5
    [41] Mackie K, Stojadinovic B. Optimal probabilistic seismic demand models for California highway bridges. J. Bridges. Engng.,ASCE, 2001, 6(6): 468-484
    [42] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31: 491-514
    [43] FEMA. Recommended seismic design criteria for new steel moment-frame buildings. Report No. FEMA-350. Washington, D. C: Federal Emergency Management Agency, 2000
    [44] FEMA. Recommended Specifications and Quality Assurance Guidelines for Steel-Moment Frame Construction for Seismic Applications. Report No. FEMA-353. Washington, D. C, 2000, 1-200
    [45] Zhang Y Y, Acero G, Conte J, et al. Seismic reliability assessment of a bridge ground, system. In: 13th World Conference on Earthquake Engineering. Paper No 2978. Vancouver, 2004, 1-15
    [46] Karim K R, Yamazaki F. A simplified method of constructing fragility curves for highway bridges. Earthquake Engineering and Structural Dynamics, 2003, 32: 1603-1626
    [47] Gardoni P, Mosalam K M, Kiureghian A D. Probabilistic seismic demand models and fragility estimates for RC bridges. Journal of Earthquake Engineering, 2003, 7(Special Issue 1): 79-106
    [48] Karim K R, Yamazaki F. Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation. Earthquake Engineering and Structural Dynamics, 2001, 30: 1839-1856
    [49] Hwang H,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报,2004,37(6):47-51
    [50] Singhal A, Kiremidjian A S. Method for probabilistic evaluation of seismic structure damage. J. Struct. Engng., ASCE, 1996, 122(12): 1459-1467
    [51] Jalayer F. Direct probabilistic seismic analysis: implementing non-linear dynamic assessments: [Dissertation]. Stanford: Department of Civil and Environmentat Engineering of Stanford University, 2003, 1-238
    [52] Vamvatsikos D, Cornell C A. The incremental dynamic analysis and its application to performance-based earthquake engineering. In: 12th European. Conference on Earthquake Engineering. Paper reference 479. London, 2002, 1-10
    [53] Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves. Journal of Engineering Mechanics, 2000, 126(12): 1224-1231
    [54] 钟益村,高小旺,汪颖富等.建筑抗震设计规范(GBJ11-89)应用与设计实例.第1版.北京:中国铁道出版社,1993,203-207
    [55] 杨媛,白绍良.从各国规范对比看我国抗震设计安全水准评价中的有关问题.重庆建筑大学学报,2000,22(增刊):192-200
    [56] Lin Y Y, Chang K C, Wang Y L. Comparison of displacement coefficient method and capacity spectrum method with experimental results of RC columns. Earthquake Engineering and Structural Dynamics, 2004, 33: 35-48
    [57] Wang Y Y, Liu X D, Cheng M X. The earthquake input for time-history analysis of structure.地震研究,1992,15(1):104-118
    [58] 杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标.土木工程学报,2000,33(6):33-37
    [59] 李英民,杨溥,赖明等.结构时程分析法输入地震动样本容量及响应设计取值的确定.地震工程与工程振动,1999,19(增刊):156-163
    [60] 程民宪.结构动力分析中几种逐步积分法在负刚度条件下的收敛性和稳定性.工程力学,1989,6(2):35-47
    [61] Krawinkler H. Pros and cons of a Pushover analysis of seismic performance evaluation. Engineering Structures, 1998, 20: 452-464
    [62] 钱稼如,罗文斌.静力弹塑性分析——基于性能/位移抗震设计的分析工具.建筑结构,2000,30(6):23-26
    [63] 叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例.建筑结构学报,2000,21(1):37-43
    [64] 田颖,钱稼茹,刘凤阁.在用RC框架结构基于位移的抗震性能评估.建筑结构,2001,31(7):53-56
    [65] 侯钢领,何政,吴斌等.钢筋混凝土结构的屈服位移Chopra能力谱损伤分析与性能设计.地震工程与工程振动,2001,21(3):29-35
    [66] 何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计.地震工程与工程振动,2000,20(2):31-38
    [67] 庄一舟,金伟良,李海波等.海洋导管架平台抗震可靠性分析方法.海洋学报,1999,21(5):129-136
    [68] 欧进萍,侯纲领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报,2001,22(6):81-86
    [69] 熊向阳,威震华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学,2001,17(5):8-13
    [70] 杨溥.基于位移的结构地震反应分析方法研究:[重庆建筑大学博士学位论文].重庆:重庆建筑大学,1999,53-77
    [71] Bracci J, Kurmath S K, Reinhorn A M. Seismic performance and retrofit evaluation of reinforced concrete structures. Journal of Structural Engineering, 1997, 123(1): 3-10
    [72] Chopra A K, Goel R K. Evaluation of NSP to estimate seismic deformation: SDF systems. Journal of Structural Engineering, ASCE, 2000,126 (4): 482-490
    [73] Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis for RC buildings. Earthquake Engineering and Structural Dynamics, 1996, 25: 31-46
    [74] Han S W, Wen Y K. Method of reliability-based seismic design Ⅰ: equivalent nonlinear systems. Journal of Structural Engineering, 1997, 123(3): 256-263
    [75] Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for building. Earthquake Engineering and Structural Dynamics, 2002, 31: 561-582
    [76] 尹华伟,易伟建.结构地震反应Pushover位移形状向量的选取.湖南大学学报,2004,31(5):88-93
    [77] Veletsos A S, Newmark N M. Effect of inelastic behavior on the response of simple systems to earthquake motions. In: Proceeding of the second WCEE. Tokyo and Kyoto, 1960, 895-912
    [78] Newmark N N.高耸结构的地震分析和设计的新趋势.见:地震工程学(中译本),北京:科学出版社,1978,1-550
    [79] Newmark N M. A statistical study of inelastic response spectra. In: Proceeding of the second U. S. National Conference on Earthquake Engineering. Stanford: EERI, 1979, 495-504
    [80] Newmark N M, Riddell R. Inelastic spectra for seismic design. In: 7th WCEE. Istanbul, 1980, Vol. 4: 129-136
    [81] Lai S P, Biggs J M. On inelastic response spectra for aseismic building design. In: 7th WCEE. Istanbul, 1980, Vol. 4: 365-367
    [82] Elahadamsi F E, Mohraz B. Inelastic earthquake spectra. Earthquake Engineering and Structural Dynamics, 1987, 15: 91-104
    [83] Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOP systems. John A. Blume Earthquake Engineering Center. Report No. 95. Stanford University, 1991, 2-3
    [84] Miranda E. Evaluation of site-dependent inelastic seismic design spectra. Journal of Struct. Engng., ASCE, 1993, 119(5): 1319-1339
    [85] Vidic T, Fajfar P, Fischinger M. Consistent inelastic design spectra: strength and disptacement. Earthquake Engineering and Structural Dynamics, 1994, 23: 507-521.
    [86] Riddell R. Inelastic design spectra accounting for soil coaditions. Earthquake Engineering and Structural Dynamics, 1995, 24: 1491-1510
    [87] Lee L H, Han S W, Oh Y H. Determination of ductility factor considering different hysteretic models. Earthquake Engineering and Structural Dynamics, 1999, 28: 957-977
    [88] 翟长海.工程结构等延性地震抗力谱研究.地震工程与工程振动,2004,24(1):22-29
    [89] Miranda E. Inelastic displacement ratios for structures on firm sites. Journal of Structural Engineering, 2000, 126(10): 1150-1159
    [90] Miranda E, Estimation of inelastic deformation demands of SDOF systems, Journal of Structural Engineering, 2001, 127(9): 1005-1012
    [91] Miranda E, Ruiz-Garcia J. Evaluation of approximate methods to estimate maximum inelastic displacement demands. Earthquake Engineering and Structural Dynamics, 2002, 31:539-560
    [92] Akkar S D, Miranda E. Statistical evaluation of approximate methods for estimating maximum deformation demands on existing structures. Journal of Structural Engineering, 2005, 131(1): 160-172
    [93] 夏洪流,李英民,杨溥等.罕遇地震作用下SDOF结构位移响应的统计特性分析.重庆建筑大学学报,2000,22(增刊):139-143
    [94] Tena-Colunga A. Displacement ductility demand spectra for the seismic evaluation of structures. Engineering Structures, 2001, (23): 1319-1330
    [95] Farrow K T. Capacity-demand index relationship for performance-based seismic design: [Dissertation]. Notre Dame: University of Notre Dame, 2001
    [96] Riddell R, Garcia J E, Garces E. Inelastic deformation response of SDOF systems subjected to earthquakes. Earthquake Engineering and Structural Dynamics, 2002, 31:515-538
    [97] 吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,2004,24(1):39-48
    [98] Chopra A K, Chintanapakdee C. Inelastic deformation ratios for design and evaluation of structures: Single-Degree-of-Freedom Bilinear Systems. Journal of Structural Engineering, ASCE, 2004, 130(9): 1309-1319
    [99] 庄表中,梁以德,张佑启.结构随机振动.北京:国防工业出版社,1995,180-194
    [100] 张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究.世界地震工程,2000,16(3):33-38
    [101] 孙景江,江近仁.与规范反应谱相对应的金井清谱的谱参数.世界地震工程,1990,(1):42-48
    [102] 欧进萍,牛获涛,杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动,1991,11(3):45-54
    [103] 高小旺,鲍霭斌.地震作用的概率模型及统计参数.地震工程与工程振动, 1985,5(1):13-21
    [104] 欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数.哈尔滨建筑工程学院学报,1194,27(5):1-10
    [105] 王京哲,朱晞.近场地震速度脉冲下的反应谱加速度敏感区.中国铁道科学,2003,24(6):27-30
    [106] 王东升,冯启民,翟桐.近断层地震动作用下钢筋混凝土桥墩的抗震性能.地震工程与工程振动,2003,23(1):95-102
    [107] Der Kiureghian A. Probabilistic Modal Combination for Earthquake Loading. In: 7th WCEE. 1980, Vol. 6, Pt.Ⅲ: 729
    [108] 江近仁,陆钦年.多自由度滞变结构随机地震反应分析的均值反应谱方法.地震工程与工程振动,1984,4(4):1-12
    [109] 钟万勰.一个高效结构随机响应算法系列——虚拟激励法.自然科学进展——国家重点实验室通讯,1996,6(4):395-401
    [110] 戴宗信.结构动力学的概率分析.上海:上海交通大学出版社,1989,227-296
    [111] 林家浩,夏杰,张亚辉等.非平稳随机摄动分析中的久期项效应.振动工程学报,2003,16(3):124-128
    [112] 欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998,1-401
    [113] 张明.非线性随机振动等效线性化的一种推广.西南交通大学学报,1998,33(1):77-81
    [114] [新西兰]鲍雷T,[美国]普里斯特利MJN.钢筋混凝土和砌体结构的抗震设计.戴瑞同,陈世鸣,林宗凡等译.第1版.北京:中国建筑工业出版社,1999,1-58
    [115] 孙克俭.钢筋混凝土抗震结构的延性及延性设计.呼和浩特:内蒙古人民出版社,1991,1-256
    [116] 钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构,2001,31(4):3-6
    [117] Gulkan P, Sozen M. inelastic response of reinforced concrete structures to earthquake motions. ACI Journal, 1974, 71(22): 604-610
    [118] Kowalsky M, Priestley M J N, MarRae G A. Displacement-based design of RC bridge columns in seismic regions. Earthquake Engineering and Structural Dynamics, 1995, 24: 1623-1643
    [119] Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings—theory. Engineering Structures, 2000, 22: 201-209
    [120] Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings—application. Engineering Structures, 2000, 22:210-221
    [121] Goel R K, Chopra A K. Direct displacement-based design: use of inelastic design spectra versus elastic design spectra. Earthquake Spectra, 2001, 17(1): 47-64
    [122] Goel R K, Chopra A K. Improved direct displacement-based design procedure for performance-based seismic design of structures. In: Proceedings of 2001 Structures Congress. Washington D. C, 2001,1-10
    [123] Freeman S A, Nieoletti J P, Tyrrell J V. Evaluation of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard. In: Proc. of the 1st U. S. National Conference on Earthquake Engineering. Bremerton, 1975, 113-122
    [124] Xue Q. A direct displacement-based seismic design procedure of inelastic structures. Engineering Structures, 2001, 23: 1453-1460
    [125] 赵冠远,阎贵平.一种基于能力谱法的位移抗震设计方法.中国铁道科学,2002,23(3):64-67
    [126] Takada T, Yamaguehi K. Two-step seismic limit state design procedure based on non-linear LRFD and dynamic response analysis. Structural Safety, 2002, 24: 397-415
    [127] 叶列平.等往复振动能量准则及其在结构抗震与建筑设计中的应用.见:第五届中日建筑结构技术学术交流会论文集.西安,2001,515-522
    [128] 王亚勇.关于设计反应谱、时程法和能量方法的探讨.建筑结构学报,2000,21(1):21-28
    [129] 程斌,薛伟辰.基于性能的框架结构抗震设计研究.地震工程与工程振动,2003,23(4):50-55
    [130] 钟华.钢筋混凝土框架—剪力墙结构抗震性能研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2002,1-67
    [131] Rosenblueth E, Herrera I. On a kind of hysteretie damping. Journal of Engineering Mechanics Division ASCE, 1964, 90:37-48
    [132] Iwan W D. Estimating inelastic response spectra from elastic spectra. Earthquake Engineering and Structural Dynamics, 1980, 8: 375-388
    [133] Kanda J, Iwasaki R. Probability-based seismic safety evaluation of existing building. Engineering Structures, 1997, 19(9): 708-717
    [134] Shome N, Cornell C A. Normalization and scaling accelerograms for nonlinear structural analysis. In: Proceedings of the 6th U. S. National Conference on Earthquake Engineering. Seattle, 1998
    [135] Cornell A C, Shome N, Carballo J E, et al. Earthquake ground motions and nonlinear dynamic analysis. The John A. Blume. Earthquake Engineering Center, 1998, Issue No. 16: 2-3
    [136] Luco N, Corncll C A. Structural-performance assessment at near-fault sites. The John A. Blume. Earthquake Engineering Center, 2002, Issue No. 31: 2-3
    [137] Luco N. Probabilistic demand analysis SMRF connection fractures and near-source effects: [Dissertation]. Stanford: Department of civil and environmental engineering of Stanford University, 2002, 88-157
    [138] Ryan K L, Chopra A K. Estimation of seismic demands on isolators based on nonlinear analysis. J. Struct. Engng., ASCE, 2004, 130(3): 392-402
    [139] Berg G V, Thomaides S S. Energy consumption by structures in strong-motion earthquake. In: Proc. 2nd WCEE. Tokyo and Kyoto, 1960, 681-697
    [140] Newark N M, Hall W H., Earthquake spectra and design. 1st edition. Oakland: Earthquake Engineering Research Institute, 1982
    [141] 王广军.抗震规范中结构影响系数C的应用及变迁.世界地震工程,1991,(1):37-44
    [142] 陈聃.抗震结构的延性谱.见:清华大学抗震抗爆工程研究报告集.北京:清华大学出版社,1980,65-81
    [143] Valles R E, Reinhorn A M, Kunnath S, et al. IDARC 2D Version 4.0: A program for the inelastic damage analysis of building. Technical Report NCEER-96-0010. Buffalo: National Center for Earthquake Engineering Research, 1996, Section 4: 1-74
    [144] Hachem M M. Bispec help manual. Version 1.0. Pacific Earthquake Engineering Research Center, 2000, 1-67
    [145] 宋雅桐,朱继澄.满足规范设计谱的人造地震波及若干结构反应.建筑结构学报,1983,4(3):43-54
    [146] 陈水祁,刘锡荟,龚思礼.拟合标准反应谱的人工地震波.建筑结构学报,1981,4(1):34-43
    [147] 江近仁,洪峰.功率谱与反应谱的转换和人工地震波.地震工程与工程振动,1984,4(3):1-11
    [148] 李英民.工程地震动的模型化研究:[重庆建筑大学博士学位论文].重庆:重庆建筑大学,1999,165-205
    [149] 李建华,李杰.考虑反应谱变异特性的人工合成地震波.同济大学学报,2002,30(9):1038-1043
    [150] MacRae G, Morrow D, Roeder C. Near-fault shaking demands on short struetures.http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=ASCECP000103040 492000111000001&idtype=evips. 2004-12-8
    [151] Luco N, Mai P M, Cornell CA, et al. Probabilistic seismic demand analysis at a near-fault site using ground motion simulations based on a stochastic-kinetic earthquake source model. In: 7th US National Conference on Earthquake Engineering. Boston, 2002, 1-10
    [152] 高孟潭.新的国家地震区划图.地震学报,2003,25(6):630-636
    [153] 项忠权,孙家孔.石油化工设备抗震.第1版.北京:地震出版社,1995,98-110
    [154] USGS. Relationship between peak ground acceleration, effective peak acceleration and effective peak velocity, http://eqhazmaps.usgs.gov/faq/parm07.html, 2005-1-18
    [155] 周定松.钢筋混凝土框架结构基于性能的抗震设计方法:[同济大学博士学位论文].上海:同济大学,2004,1-148
    [156] NEHRP. Recommended Provisions for the Development of Seismic Regulations for New Buildings. 1997 Edition. Washington, D. C: Building Seismic Safety Council, 1997
    [157] 欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用.地震工程与工程振动,1994,14(3):14-22
    [158] 李大华.随机地震反应谱的统计分析.土木工程学报,1990,23(4):60—67
    [159] 范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001,1-204
    [160] 韦承基,魏琏,高小旺等.结构抗震弹塑性变形可靠度分析.工程力学,1986,3(1):60-70
    [161] 赵雷,陈虬,路湛沁.考虑参数随机性的钢筋混凝土结构非线性地震可靠度分析.建筑结构学报,1999,20(3):23-34
    [162] 孙荣恒.应用概率论.北京:科学出版社,1998,81-247
    [163] FEMA. Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings. Report No. FEMA-351. Washington, D. C: Federal Emergency Management Agency, 2000
    [164] 中华人民共和国交通部部标准.公路工程抗震设计规范(JTJ 004-89).北京:人民交通出版社,1990,1-64
    [165] 陈颙,陈棋福,陈凌.地震损失预测评估中的易损性分析.中国地震,1999,15(2):97-105
    [166] Karim K R, Yamazaki F. Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation. Earthquake Engineering and Structural Dynamics, 2001, 20: 1839-1856
    [167] 尹之潜,赵直,杨淑文.建筑物易损性和地震损失与地震加速度谱值的关系.地震工程与工程振动,2003,23(4):195-200
    [168] 张令心,江近仁,刘洁平.多层住宅砖房的地震易损性分析.地震工程与工程振动,2002,22(1):49-55
    [169] 彭育隆.利用贝氏定理修正桥梁易损性曲线:[台湾国立中央大学硕士学位论文].台湾:台湾国立中央大学土木工程研究所,2002
    [170] Dutta A. On energy based seismic analysis and design of highway bridges: [Dissertation]. Buffalo: State University of New York at Buffalo, 1999, Section 5: 1-180
    [171] 范立础,王志强.桥梁减隔震设计.北京:人民交通出版社,2001,1-138
    [172] 庄军生.桥梁支座.北京:中国铁道出版社,2000,1-201
    [173] 王志强.隔震桥梁分析方法与设计理论研究:[同济大学博士学位论文].上海:同济大学,2000,1-104
    [174] 龚一琼.梁式桥的减隔震体系研究:[同济大学硕士学位论文],上海:同济大学,2001,1-51
    [175] 宋一凡.公路桥梁动力学.北京:人民交通出版社,2000,247-280
    [176] 何度心,黄龙生,陆干文等.桥梁抗震计算.北京:地震出版社,1991,34-86
    [177] 杨茀康.结构动力学.北京:人民交通出版社,1987,16-213
    [178] 兰青龙,安卫平,郭星全等.太旧高速公路周缘地区地震灾害损失预测与防震减灾对策.华北地震科学,1998,16(2):37-44
    [179] Kim S H. Fragility analysis of bridges under ground motion with spatial variation: [Dissertation]. Irvine: University of California, 2002, 1-191
    [180] Saxena V, Deodatis G. Development of fragility curves for multi-span reinforced concrete bridges. http://www.iassar.mek.dtu.dk/SC1.htm. In: 11th Meeting of SC1. New York: Columbia University, 2002, 1-7
    [181] Shinozuka M, Feng M. Q, Kim H K, et al. Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics, 2000, 126(12): 1287-1295
    [182] Priestley M J N.袁万城译.桥梁抗震设计与加固.北京:人民交通出版社,1997,1-420
    [183] 范立础,李建中,王君杰.高架桥梁抗震设计.北京:人民交通出版社,2001,110-137
    [184] 潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计:[同济大学博士学位论文].上海:同济大学,2001,1164
    [185] 王东升,翟桐,郭明珠.利用Push—over方法评价桥梁的抗震安全性.世界地震工程,2000,16(2):47-51
    [186] [日]武田寿一.建筑物隔震 防振与控振.纪晓惠,陈良,鄢宁译.北京:中国建筑工业出版社,1997,1-80
    [187] 杜永峰,张迪,党育等.基础隔震结构简化模型的振动参数识别.世界地震工程,2001,17(2):53-58
    [188] 李中锡,周锡元.规则型隔震房屋的自振特性和地震反应分析方法.地震工程与工程振动,2002,22(2):33-41
    [189] 周富霖.工程结构减震控制.北京:地震出版社,1997,49-64
    [190] Zhao Y G, Ono T. System reliability evaluation of ductile frame structures. Journal of Structural Engineering, 1998, 124(6): 678-685
    [191] Ono T, Zhao Y G. On the COF of weak-beam-strong-column designed one-span steel structures. In: Structural Safety and Reliability. Rotterdam, 1998, 183-190
    [192] 杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究:[重庆建筑大学博士学位论文].重庆:重庆建筑大学,2000,121-185
    [193] 高小旺.地震作用下多层剪切型结构弹塑性位移反应的实用计算方法.土木工程学报,1984,17(3):79-84
    [194] 陈光华.地震作用下多层剪切型结构弹塑性位移反应的简化计算.建筑结构学报,1984,45-57
    [195] 尹华伟.钢筋混凝土框架—剪力墙结构非线性抗震计算方法的研究及其应用:[湖南大学硕士学位论文].长沙:湖南大学,2001,55-73
    [196] 詹次洚.评估高楼耐震需求之新侧推分析程序之研发:[逢甲大学硕士学位论文].台中:逢甲大学,2004,5-38
    [197] Chopra A K, Goel R K. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Buildings: Theory and Preliminary Evaluation. Report No. PEER 2001/03. Berkeley: Pacific Earthquake Engineering Research Center, 2001, 1-85
    [198] 刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究:[北京工业大学博士学位论文].北京:北京工业大学,2003,172-212
    [199] 楼梦麟.结构动力分析的子结构方法.第1版.上海:同济大学出版社,1997,1-230
    [200] Fujii K, Nakano Y, Sanada Y. A simplified nonlinear analysis procedure for single-story asymmetric buildings, Journal of Japan Association for Earthquake Engineering, 2004, 4(2): 1-20
    [201] 阎盛海.建筑结构抗震分析.北京:中国建材工业出版社,1999,86-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700