基于性能的空间网壳结构设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间网壳结构向着跨度更大、体系更复杂、设备更昂贵、影响更深远的方向发展,结构在地震、台风等灾害作用下产生的经济损失日益巨大,这一新特征已引起许多学者的广泛关注和深刻反思。
     本文针对上述问题,从基于性能的设计思想出发,综合空间网壳结构的具体特点,动力失效理论和基于概率的荷载及组合理论,建立了基于性能的空间网壳结构设计理论研究框架,并进行了深入研究。
     空间网壳结构动力失效理论和基于概率的荷载及组合理论是实现性能化设计的基础。本文在现有成果的基础上,对网壳结构动力失效理论作了进一步研究。阐述了网壳结构动力失稳和动力强度破坏这两种可能的失效机理;针对动力失稳,提出了一种新的判定准则-应力变化率准则;针对动力强度破坏,提出了能量与变形的双控准则,并给出了动力破坏指数这一新的指标。对不同跨度、不同矢跨比的单层Keiwitt型网壳结构的动力失效全过程、失效机理和失效特征进行了数值计算和深入分析,通过理论研究和前人试验结果,将单层Keiwitt型网壳结构的动力破坏程度划分为基本完好、轻微破坏、中等破坏、严重破坏、倒塌五个状态,并建立了相应的分界指标。
     本文在前述研究成果的基础上,对空间网壳结构的寿命周期总费用评估和基于投资-效益准则的优化设计方法进行了深入的研究。通过分析网壳结构的组成、材料单价,建立了网壳结构初始造价的计算模型。针对现有网壳结构维护费用的调研,建立了计算维护费用的数学模型。在深入研究网壳结构动力失效理论的基础上,结合工程价值、社会价值等多角度的分析,建立了失效费用的计算方法。在此基础上应用APDL语言编制了基于ANSYS的网壳结构寿命周期总费用的计算流程和应用程序。
     本文分析了空间网壳结构基于投资-效益准则的非线性、多变量、少约束、离散变量的优化设计特征,并且证明了在用钢量相同的情况下,按满应力原则配置的空间杆系结构的刚度最大,进而提出了综合考虑结构初始造价、维护费用及失效后果的全局优化设计的满应力调控法。该方法通过引入调控系数λ来调控满应力设计时的控制应力,并获得分别取不同的调控系数时按照满应力设计的结构配置方案,再计算这些结构配置方案的寿命周期总费用,最后从中选择最小者即为最优方案。应用上述寿命周期总费用的应用程序和满应力调控法便可计算获得以寿命周期总费用最小为优化目标的空间网壳结构,以及相应的最优目标可靠指标、目标控制位移、最优矢跨比等参量。
     本文应用上述理论研究成果对单层Keiwitt型网壳结构进行了全面分析,并同现行规范设计方法进行了比较,提出了基于性能的结构重要性系数的概念,并在大量数值分析的基础上给出了基于性能的单层Keiwitt型网壳结构重要性系数的参考数值。在现行设计方法中使用基于性能的重要性系数,可实现性能化设计与现行规范方法的有效结合。
     本文将基于性能的设计思想引入到空间结构领域,并进行了探索性的研究,得到了一些有益结果和结论。这些研究成果可供实际工程、现行规范和进一步研究参考,同时为网壳结构全面实现性能化设计提供了有价值的依据。
With the developments of spatial latticed shell structures towards larger span, higher height, more expensive equipments and deeper influence, the losses of buildings caused by the disasters are becoming more terrible. Many scholars' have paid abroad attentions to the new problem.
    To this problem, the study frame of the performance-based design theory of spatial latticed shell structures is constructed according to the idea of performance-based design and the characters of spatial latticed shell structures in this paper. The study frame synthesizes the idea of performance-based design, the theory of dynamical failure and the theory of loads and their combinations. Thorough and specific researches are carried out in the following chapters of the paper.
    The theory of dynamical failure of spatial latticed shell structures and the theory of loads and their combinations are the bases of performance-based design theory. Therefore, the exploring researches on the theory of dynamical failure are presented after the research advances are summarized. The paper expounds the two kinds of failure mechanisms of spatial latticed shell structures subjected to dynamic actions, the dynamic instability and the dynamic strength failure. Aiming at the problem of dynamic instability, a new judgment method—stress rate method is proposed. About dynamic strength failure, a double control criterion based on maximum displacement and plastic accumulative dissipated energy is proposed. Moreover, the dynamical failure index is presented to judge the different extent of dynamical strength failure of spatial latticed shell structures. The whole process, mechanism, and characters of dynamic failure of spatial latticed shell structures with different initial parameters are analyzed roundly. According to the theory researches and experiments accomplished by foregone scholars, the five levels (good condition, slight damaged, middling damaged, seriously damaged, collapse) of spatial latticed shell structures are proposed, and the corresponding dividing indexes are presented.
    Then, this paper presents exploring and deep researches to the evaluation of lifecycle-costs of spatial latticed shell structures and cost-effectiveness criterion based optimum design methods. The mathematics model for calculating initial building cost of spatial latticed shell structures is proposed by analyzing the structural constitutes and unit price of materials. The mathematics model for calculating maintenance cost of spatial latticed shell structures is established by investigations to latticed shell structures in existence. The calculating method of failure costs of spatial latticed shell structures is constructed by analyzing the engineering value and society value after the exploring researches on the theory of dynamical failure. Furthermore, the calculating process and applying program of lifecycle-cost calculation are accomplished.
    The characters of nonlinear, many variables, few constraint, disperse variables for optimum design of spatial latticed shell structures are analyzed. The paper proves that the stiffness of spatial truss structure is largest configured by the full stress principle with the same quantity of steel, and then a full stress adjusting optimum method is proposed, which considers structural building cost, maintenance cost and failure cost synthetically. The method quotes adjusting coefficient λ. to adjust the control stress of full stress design, and obtains the structural configurations of full stress design with different coefficient λ.. Then the lifecycle-costs of these configurations are calculated and the minimum is the optimum configuration. By applying the above calculating program of lifecycle-cost and full stress adjusting optimum method, the optimum spatial latticed shell structures are achieved which take the least lifecycle-cost as target, and the corresponding optimum parameters such as target reliability index, target controlling displacement, rise-span ratio, and so on, are achieved too.
    The paper provides comprehensive analysis to the Keiwitt single layer latticed shell structure according to the above theory and methods, and comparison between the results and those of Chinese national codes are carried out. The concept of structural performance-based importance coefficient is put forward and corresponding reference values are provided too. So the idea of performance-based design is embodied by structural performance-based importance coefficient, and Chinese national codes and performance-based design are integrated effectively.
    This paper introduces the idea of performance-based design to the field of spatial structures, and some groping research works is accomplished. Some useful results and conclusions are obtained, which are referenced to practice engineering, guild regulations and further researches. This paper provides some valuable references to fulfill the whole performance-based design of spatial latticed shell structures.
引文
[1] 蓝天,刘枫.中国空间结构的20年[A].第十届空间结构学术会议论文集[C],2002:1-12.
    [2] 刘锡良,董石麟.20年来中国空间结构形式创新[A].第十届空间结构学术会议论文集[C],2002:13-37.
    [3] 沈世钊.大跨空间结构理论研究若干新进展[A].第十一届空间结构学术会议论文集[C],2005:26-40.
    [4] 董石麟,罗尧治.大跨空间结构的工程实践与学科发展[A].第十一届空间结构学术会议论文集[C],2005:1-11.
    [5] 中华人民共和国标准.建筑结构可靠度设计统一标准(GB50068-20010[S].中国建筑工业出版社,2001.
    [6] 中华人民共和国行业标准.网壳结构技术规程(JGJ61-2003)[S].中国建筑工业出版社,2003.
    [7] 中华人民共和国行业标准.网架结构设计与施工规程(JGJ7-91)[S].中国建筑工业出版社,1991.
    [8] 赵荣国,李卫平,陈锦标.世界地震灾害损失的统计[J].国际地震动态,1996,12:10-18.
    [9] 杨光,沈繁銮.日本阪神地震灾害的一些调查统计数据[J].华南地震,2005,25(1):83-87.
    [10] 蓝天,张毅刚.大跨度屋盖结构抗震设计[M].中国建筑工业出版社,2002.
    [11] 吴建春,尚红,等.国际巨灾问题思考[J].中国减灾,2006(20):42—43.
    [12] Wen Y K, Kang Y J. Minimum building life-cycle cost design criteria, methodology and applications[J]. ASCE Journal of structure engineering, 2001, 127(3): 330-346.
    [13] Vision 2000 Committee. Performance-based engineering of building[C]. Miranda E. Seismology Committee of the Structure Engineer Association of California, Oakland: Wiley Inc, 1995.
    [14] FEMA 273. NEHRP guidelines for the seismic rehabilitation of buildings[R]: FEMA 274, Commentary[R]. Washington(DC): Federal Emergency Management Agency, 1996.
    [15] 小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,(6):3-9.
    [16] Yamanouchi H et al. Performance-based engineering for structural design of buildings[M]. Building research institute, Japan, 2000.
    [17] 王亚勇.我国2000 年工程抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2-4.
    [18] 王梦甫,周锡元.基于性能的建筑结构抗震设计[J].建筑结构,2003,(3):59-61.
    [19] 李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].科学出版社,2004.
    [20] Heidebrecht AC, Naumoski ND. Development application of displacement-based design approach for moment-resisting frame structures[M]. In: Fajfar P, Krawinkler H, editors. Seismic Design Methodologies for the Next Generation of Codes. Rotterdam: AA Balkema, 1997: 217-228.
    [21] Mazzolani FM, Piluso V. A simple approach for evaluating performance levels of moment-resisting steel flames[M]. In: Fajfar P, Krawinkler H, editors. Seismic Design Methodologies for the Next Generation of Codes. Rotterdam: AA Balkema, 1997: 241-252.
    [22] Sasani M. Two level performance-based design of reinforced concrete structural walls[M]. In: Proceedings of 6th US National Conference on Earthquake Engineering. Oakland(CA): Earthquake Engineering Research Institute, 1998, [CD-Rom].
    [23] Taylor AW, Stone WC. Performance-based seismic design of reinforced concrete bridge colunms[M]. In: Proceedings of 5th US National Conference on Earthquake Engineering, vol. 1. Oakland(CA): Earthquake Engineering Research Institute, 1994: 459-468.
    [24] Harris SP, Herman K. Performance-based seismic upgrading of lifeline electric utility buildings using probabilistic risk assessment methods[M]. In: Proceedings of 6th US National Conference on Earthquake Engineering. Oakland(CA): Earthquake Engineering Research Institute, 1998, [CD-Rom].
    [1] Akira Inokuma. Basic study of performance-based design in civil engineering[J]. Journal of Structural engineering ASCE, 2002, 128(1): 30-35.
    [2] Vision 2000 Committee. Performance-based engineering of building[C]. Miranda E. Seismology Committee of the Structure Engineer Association of California, Oakland: Wiley lnc, 1995.
    [3] FEMA 273. NEHRP guidelines for the seismic rehabilitation of buildings[R]; FEMA 274, Commentary[R]. Washington(DC): Federal Emergency Management Agency, 1996.
    [4] Fajfar P, Krawinkler H, et al. Seismic design methodologies for the next generation of codes[M]. Rotterdam: Balkema, 1997.
    [5] Federal Emergency Management Agency(FEMA). Performance-based seismic design of buildings[R]. FEMA report 283, September, 1996.
    [6] Applied Technology council(ATC). Seismic Evaluation and Retrofit of Existing Concrete Buildings[R]. ATC 40, 1996.
    [7] 王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2-4.
    [8] 王梦甫,周锡元.基于性能的建筑结构抗震设计[J].建筑结构,2003,(3):59-61.
    [9] 李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用[M].科学出版社,2004.
    [10] 小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,(6):3-9.
    [11] 中华人民共和国标准.建筑结构抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,2001.
    [12] Mazzolani FM, Piluso V. A simple approach for evaluating performance levels of moment-resisting steel frames[R]. In: Fajfar P, Krawinkler H, editors. Seismic Design Methodologies for the Next Generation of Codes. Rotterdam: AA Balkema, 1997: 241-252.
    [13] Sasani M. Two level performance-based design of reinforced concrete structural walls[C]. In: Proceedings of 6th US National Conference on Earthquake Engineering. Oakland(CA): Earthquake Engineering Research Institute, 1998, [CD-Rom].
    [14] Taylor AW, Stone WC. Performance-based seismic design of reinforced concrete bridge columns[C]. In: Proceedings of 5th US National Conference on Earthquake Engineering, vol.1. Oakland(CA): Earthquake Engineering Research Institute, 1994: 459-468.
    [15] Harris SP, Herman K. Performance-based seismic upgrading of lifeline electric utility buildings using probabilistic risk assessment methods[C]. In: Proceedings of 6th US National Conference on Earthquake Engineering. Oakland(CA): Earthquake Engineering Research Institute, 1998, [CD-Rom].
    [16] 金伟良.工程荷载组合理论与应用[M].北京:机械工业出版社,2006.
    [17] 李国强,黄宏伟.工程结构荷载与可靠度设计原理[M].北京:中国建筑工业出版社,2001.
    [18] 陈基发,沙志国.建筑结构荷载设计手册(第2版)[M].北京:中国建筑工业出版社,2004.
    [19] 中华人民共和国标准.建筑结构荷载规范(GB50009-2001)[S].中国建筑工业出版社,2001.
    [20] 高小旺,邵卓民、苏经宇.地震作用与结构抗震可靠度标准[C],抗震结构的最优设防烈度与可靠度(第三部分),科学出版社,1999.
    [21] 建设部抗震办公室编.建筑地震破坏等级划分标准[M].地震出版社,1991.
    [22] 高小旺,等.不同重要性建筑抗震设防标准的探讨[C].城市与工程减灾基础研究论文集(1996),中国科学技术出版社,1997.
    [23] Yamanouchi H et al. Performance-based engineering for structural design of buildings[R]. Building research institute, Japan, 2000.
    [24] Wen Y K. Reliability and performance based design[J], structural safety, 2001, 23: 407-428.
    [25] Wen Y K. Minimum lifecycle cost design under multiple hazards[J]. Reliability Engineering and System Safety, 2001, 73: 223-231.
    [26] Wen Y K, Kang Y J. Minimum building life-cycle cost design criteria, methodology and applications[J]. ASCE Journal of structure engineering, 2001, 127(3): 330-346.
    [27] Ang AH-S, Lee J-C. Cost optimal design of R/C buildings[J]. Reliability Engineering and System Safety 2001; 73: 233-238.
    [28] Ang AH-S, Leon D D. Determination of optimal target reliabilities for design and updating of structures[J]. Structural Safety, 1997, 19(1): 91-103.
    [29] Frangopol DM, Lin KY, Estes AC. Life-cycle cost design of deteriorating structures[J]. Journal of Structural engineering ASCE 1997; 123(10): 1390-1401.
    [30] Frangopol, D., and Corotis, R. B., eds. Reliability-based structural system assessment, design and optimization[J]. J. Struct. Safety, 1994, 16-29.
    [31] Liu M, Bums SA, Wen Y K. Optimal seismic design of steel frame buildings based on life cycle cost considerations[J]. Earthquake Engineering and Structural Dynamics, 2003; 32: 1313-32.
    [32] S. C. Liu and F. Neghsbat. A Cost Optimization Model for Seismic Design of Structures[J], Bell Systerm Technical Journal, 1972, 51(10): 100-110.
    [32] 陈定外译,何广乾校.结构可靠性总原则(ISO 2394:1998)[S].中国工程建设标准化协会、建设部标准定额站,1999.
    [33] ISO/DIS2394. General principles on reliability for structures[S]. 1998.
    [34] 陈基发,沙志国.建筑结构荷载设计手册(第2版)[M].北京:中国建筑工业出版社,2004.
    [35] 高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J],地震工程与工程振动,1985,5(1):13-22.
    [36] 金伟良.工程荷载组合理论与应用[M].北京:机械工业出版社,2006.
    [37] 中华人民共和国标准.建筑结构荷载规范(GB50009-2001)[S].中国建筑工业出版社,2001.
    [38] 李忠学,沈祖炎,等.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(2):148-151.
    [39] 沈世钊,支旭东.球面网壳结构在强震下的失效机理[J].土木工程学报.2005,38(1):11-20.
    [40] Jihui Xing. Failure Mechanism of Single-layer Latticed Cylindrical shells subjected to severe earthquake loadings[A]. International symposium new Olympics new shell and spatial structures[C],Beijing:2006.
    [41] 杜文风,高博青,董石麟.一种判别杆系结构动力稳定的新方法—应力变化率法[J].浙江大学学报(工学版),2006,(3):506-511.
    [42] S. Kato, M. Shoumura, and M. Mukaiyama. Study on Dynamic Behavior and Collapse Acceleration of single Layer Reticular Domes Subjected to Horizontal and Vertical Earthquake Motions[J]. J. Structural and Construction Engineering, 1995,47(7):89-96.
    [43] 范峰,沈世钊.单层球壳模拟地震振动台试验及结构减震试验研究[J].哈尔滨建筑大学学报,2000,33(3):18-22.
    [44] Shiro Kato, Toru Takeuchi, et al. State of art report on seismic response estimation of metal spatial structures under earthquake motions[A]. International symposium new Olympics new shell and spatial structures[C],Beijing:2006.
    [45] 王光远.工程软设计理论[M].科学了出版社,1992.
    [46] Kanda J, Shah H. Engineering role in failure cost evaluation for buildings[J], Structural Safety, 1997,19(1):79-90.
    [47] 陈朝晖,等.服役结构抗震维修决策,国家基础性研究重大项目“现有混凝土结构耐久性评估”年度研究报告[R],清华大学土木工程系,1995.
    [48] Wen Y K.Minimum lifecycle cost design under multiple hazards[J]. Reliability Engineering and System Safety,2001, 73: 223-231.
    [49] Ellingwood B R, Mori Y. Reliability-based service life assessment of concrete structures in nuclear power plants; optimum inspection and repair[J]. Nuclear Engineering and Design,1997,175:247-258.
    [50] Lukic M, Cremona C. Probabillstic optimization of welded joints maintenance versus fatigue and fracture[J]. Reliability Engineering and System Safety,2001,72:253-264.
    [51] Wen Y K. Minimum Building Life-Cycle Cost Design Criteria. I Methodology[J]. Journal of structural engineering, 2001, 127(3):330-337.
    [52] Aktas E, Moses F, Ghosn M. Cost and safety optimization of structural design specifications[J]. Reliability Engineering and System Safety,2001,73:205-212.
    [53] 高小旺,等.不同重要性建筑抗震设防标准的探讨[A],城市与工程减灾基础研究论文集(1996)[C].中国科学技术出版社,1997.
    [54] Kanda J, Shah H. Engineering role in failure cost evaluation for buildings[J]. Structural Safety, 1997,19(1):79-90.
    [55] 黄渝祥,杨宗跃.灾害间接经济损失的计量[J],灾害学,1994(3):7-11
    [56] 侯民忠.地震区人员伤亡计算方法初探[J].工程抗震,1992(4):30-33.
    [57] 钱令希.工程结构优化设计[M].北京:水利电力出版社,1983.
    [58] 张炳华,侯旭.土建结构优化设计[M].上海:同济大学出版社,1988.
    [59] M. Papadrakakis, N.D. Lagaros, V. Plevris. Design optimization of steel structures considering uncertainties[J]. Engineering Structures,2005,27(5):1408-1418.
    [60] 隋允康,高峰,等.基于层次分解方法的桁架结构形状优化[J],计算力学学报,2006,23(1):46-51.
    [61] Ang A H-S,Leon D D. Determination of optimal target reliabilities for design and updating of structures[J]. Structural Safety,1997,19(1):91-103.
    [62] Wang J J, Lee J C. Optimal target reliability of bridges based on minimum life-cycle cost consideration[J]. Computational Structural Engineering, An International Journal,2002,2(1):11-17.
    [63] 陈立周.工程离散变量优化设计方法-原理与应用[M].机械工业出版社,1989.
    [64] Joines J A, Houck C R. On the Use of Non—stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with Gas[A].Proceedings of the Evolutionary Computation Conference,Orlando,1994.
    [65] O.K.Gupta,A.Ravindran. Nonlinear integer programming and discrete optimization[J]. Trans. Of ASME,1983, 105(6):71-84.
    [66] 孙焕纯.离散变量结构优化设计[M],大连:大连理工大学出版社,2002.
    [67] A.Glankwahmdee. Unconstrained discrete nonlinear programming, Engineering Opt [J], 1979, 4(6):56-68.
    [68] Wang S, Teo K L, Lee HWJ. A new approach to nonlinear mixed discrete programming problems[J]. Engng Optim, 1998,30:249-262.
    [69] Manolis Papadrakakis,Nikos D.Lagaros. Reliability-based structural optimization using neural networks and Monte Carlo simulation Compute[J]. Methods Appl. Mech. Engrg.,2002,(19): 3491-3507.
    [70] 牟在根,侯晓武.ANSYS环境下基于离散变量的网架结构优化设计[J].北京科技大学学报,2006,28(5):417-422.
    [71] 王光远.工程软设计理论[M].科学出版社,1992.
    [72] 欧进萍,牛荻涛,王光远.多层非线性抗震钢结构损失估计与优化设计[M].计算结构力学及其应用,1992,9(2):1-9.
    [1] 杨联萍,李志坚,钱若军.网壳结构设计概念[A].第十届空间结构学术会议论文集[C],北京:中国建材工业出版社,2002:247-250.
    [2] 叶继红,沈世钊.单层球壳动力稳定参数分析[R].国家自然科学基金“九五”重大项目2001年度报告.2001:78-82.
    [3] 董石麟,钱若军.空间网格结构分析理论与计算方法[M].中国建筑工业出版社,1999.
    [4] 沈世钊,陈昕.网壳结构稳定性[M].科学出版社,1999.
    [5] 叶继红.单层网壳结构豹动力稳定分析[D].上海:同济大学博士学位论文,1995.
    [6] 李忠学,沈祖炎等.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(2):148-151.
    [7] 沈祖炎,叶继红.运动稳定性理论在结构动力分析中的应用[J].工程力学,1997,14(3):21—28.
    [8] 叶继红,沈祖炎.单层网壳结构的动力稳定实验研究[J].空间结构,1997,3(2):34-41.
    [9] 王策.单层球面网壳动力稳定性[D].哈尔滨:哈尔滨建筑大学博士学位论文,1997.
    [10] 王策,沈世钊.球面网壳阶跃荷载作用动力稳定性[J].建筑结构学报,2001,22(1):62-68.
    [11] 范峰,沈世钊.单层球壳模拟地震振动台试验及结构减震试验研究[J].哈尔滨建筑大学学报,2000,33(3):18-22.
    [12] 何艳丽.桅杆结构的动力稳定性分析[D].上海:同济大学博士学位论文,2000.
    [13] 郭海山.单层球面网壳动力稳定性及抗震性能研究[D].哈尔滨:哈尔滨建筑大学博士学位论文,2001.
    [14] Wang Ce, Shen Shizhao. Dynamic stability of single layer reticulated dome under step load [A]. International Conference on Advances in Steel Structures [C]. Chan S L ed. Oxford: Elsevier,1999. 201-208.
    [15] 王策,沈世钊球面网壳阶跃荷载作用动力稳定性[J].建筑结构学报,2001,22(1):62-68.
    [16] 王策.在强地震作用下球面网壳结构的动力稳定[J].清华大学学报(自然科学版),2001,40(1):57-60.
    [17] 李海旺,史俊亮,郭可,尹德钰.撞击荷载作用下单层球面网壳动力稳定性研究[A].第十一届空间结构学术会议论文集[C].北京:中国建材工业出版社,2005:182-186.
    [18] S. Kato, M. Shouumura, and M. Mukaiyama. Study on Dynamic Behavior and Collapse Acceleration of single Layer Reticular Domes Subjected to Horizontal and Vertical Earthquake Motions[J]. J. Structural and Construction Engineering, 1995,47(7):89-96
    [19] L Liu, S. Xue, M. Yamada. Comparison between experimental result and numerical analysis for dynamic response of a single-layer latticed dome[A]. Proc. Asia-Pacific Conf on Shell and Spatial Structures[C], Beijing, 1996: 668-673.
    [20] 范峰,钱宏亮,等.强震作用下球面网壳动力强度破坏研究[J].哈尔滨工业大学学报,2004,36(6):722—725.
    [21] 沈世钊,支旭东.球面网壳结构在强震下的失效机理[J].土木工程学报.2005,38(1):11-20.
    [22] Park Y J, Ang A H-S, Wen Y K. Mechanistic seismic damage model for reinforced concrete[J]. ASCE Journal of structural engineering,1985,111(4):722-739.
    [23] 中华人民共和国行业标准.网架结构设计与施工规程(JGJ7-91)[S].中国建筑工业出版社,1991.
    [24] 李忠学,沈祖炎等.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(2):148-151.
    [25] 叶继红,沈祖炎.单层网壳结构的动力稳定实验研究[J].空间结构,1997,3(2):34-41.
    [26] J. Liu, S. Xue, M. Yamada. Comparison between experimental result and numerical analysis for dynamic response of a single-layer latticed dome[A]. Proc. Asia-Pacific Conf on Shell and Spatial Structures[C], Beijing, 1996: 668-673.
    [27] 李忠学,沈祖炎等.钢网壳模型的动力稳定性振动台试验研究[J].试验力学,1999,14(4):484-491.
    [28] 范峰,沈世钊.单层球壳模拟地震振动台试验及结构减震试验研究[J].哈尔滨建筑大学学报,2000,33(3):18-22.
    [29] 罗永峰,沈祖炎等.单层网壳结构弹塑性稳定试验研究[J].土木工程学报,1995,28(4):33—40.
    [30] 李忠学.杆系钢结构的非线性动力稳定性分析[D].同济大学博土学位论文,1980.
    [31] 范峰.网壳结构抗震性能、振动控制的理论与试验研究[D].哈尔滨建筑大学博士学位论文,1999.
    [32] 高小旺,鲍霭斌.用概率方法确定抗震设防标准[J].建筑结构学报,1986,7(2):55—63.
    [33] 邓小刚.多层钢筋混凝土框架房屋的震害预测方法[J].工程抗震,1993(1):24-28.
    [1] 陈定外译,何广乾校.结构可靠性总原则(ISO 2394:1998)[M].中国工程建设标准化协会、建设部标准定额站,1999.
    [2] 王光远.工程软设计理论[M].科学出版社,1992.
    [3] Kanda J, Shah H. Engineering role in failure cost evaluation for buildings[J]. Structural Safety, 1997, 19(1):79-90.
    [4] 杨莉.中小型体育馆建筑投资估算分析[J].哈尔滨建筑大学学报,2000,33(3):85-89.
    [5] 王庆成,郭复初.财务管理学[M].北京:高等教育出版社,2000.
    [6] 成其谦.投资项目评价[M].北京:中国人民大学出版社,2003.
    [7] 陈朝晖等.服役结构抗震维修决策[R],国家基础性研究重大项目“现有混凝土结构耐久性评估”年度研究报告,清华大学土木工程系,1995.
    [8] Wen Y K, Minimum lifecycle cost design under multiple hazards[J]. Reliability Engineering and System Safety, 2001,73:223-231.
    [9] EllingwoodB R, Mori Y. Reliability-based service life assessment of concrete structures in nuclear power plants; optimum inspection and repair[J]. Nuclear Engineering and Design, 1997, 175:247-258.
    [10] Lukic M, Cremona C. Probabilistic optimization of welded joints maintenance versus fatigue and fracture[J]. Reliability Engineering and System Safety, 2001,72:253-264.
    [11] Wen Y K. Minimum life-cycle cost design under multiple hazards[J]. Reliability Engineering and System Safety, 2001,73:223-231.
    [12] Aktas E, Moses F, Ghosn M. Cost and safety optimization of structural design specifications[J]. Reliability Engineering and System Safety, 2001,2001,73:205-212.
    [13] Ang A H-s, Lee J C. Cost optimal design of R/C buildings, Reliability Engineering and System Safety[J].2001,73:233-238.
    [14] 高小旺,邵卓民、苏经宇.地震作用与结构抗震可靠度标准[R],抗震结构的最优设防烈度与可靠度(第三部分),科学出版社,1999.
    [15] Kanda J, Shah H, Engineering role in failure cost evaluation for buildings[R], Structural Safety, 1997,19(1):79-90.
    [16] 建设部抗震办公室编,建筑地震破坏等级划分标准[S].地震出版社,1991.
    [17] 高小旺,等.不同重要性建筑抗震设防标准的探讨[C].城市与工程减灾基础研究论文集(1996),中国科学技术出版社,1997.
    [18] 李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用[M].科学出版社,2004.
    [19] Ang A H-s, Leon D D. Determination of optimal target reliabilities for design and updating of structures[J]. Structural Safety , 1997, 19(1):91-103.
    [20] 黄渝祥,杨宗跃.灾害间接经济损失的计量[J],灾害学,1994(3):7-11
    [21] 侯民忠.地震区人员伤亡计算方法初探[J].工程抗震,1992(4):30-33.
    [22] 蓝天,刘枫.中国空间结构的20年[A].第十届空间结构学术会议论文集[C],2002:1-12.
    [23] 刘锡良,董石麟.20年米中国空间结构形式创新[A].第十届空间结构学术会议论文集[C],2002:13-37.
    [24] 沈世钊.大跨空间结构理论研究若干新进展[A].第十一届空间结构学术会议论文集[C],2005:26-40.
    [25] 董石麟,罗尧治.大跨空间结构的工程实践与学科发展[A].第十一届空间结构学术会议论文集[C],2005:1-11.
    [26] 贺仲雄.模糊数学及其应用[M].天津科学技术出版社,1983.
    [27] 高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,5(1):13—22.
    [28] 高小旺.鲍霭斌.用概率方法确定抗震设防标准[J].建筑结构学报,1986,7(2):55—63.
    [29] 中华人民共和国标准,建筑抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,2001.
    [30] 陈基发,沙志国.建筑结构荷载设计手册(第2版)[M].北京:中国建筑工业出版社.2004.
    [1] 李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用[M].科学出版社,2004.
    [2] Wen Y K, Kang Y J. Minimum building life-cycle cost design criteria, methodology and applications[J]. ASCE Journal of structure engineering, 2001,127(3):330-346.
    [3] Yamanouchi Het al. Performance-based engineering for structural design of buildings[R]. Building research institute, Japan, 2000.
    [4] 孙焕纯,柴山,王跃方.离散变量结构优化设计[M].大连:大连理工出版社,1995.
    [5] 孙国正.优化设计及应用[M].北京:人民交通出版社,200.
    [6] Ang A H-S, Leon D D. Determination of optimal target reliabilities for design and updating of structures[J]. Structural Safety, 1997, 19(1) :91-103.
    [7] Wang J J, Lee J C. Optimal target reliability of bridges based on minimum life-cycle cost consideration[J]. Computational Structural Engineering, 2002, 2 (1): 11-17.
    [8] R. luus. Optimization of System Reliability by a new nonlinear integer programming procedures[J]. IEEE Trans on Reliability, 1975,24(1):9-12.
    [9] E.G. Davydov. Application of the Penalty function method in integer programming problems[J]. Engineering Cybernetics, 1972, 10(1):25-36.
    [10] 孙焕纯.离散变量结构优化设计[M].大连:大连理工大学出版社,2002.
    [11] O. K. Gupta, A. Ravindran, Nonlinear integer programming and discrete optimization[J]. Trans. Of ASIDE, 1983, 105(6):71-84.
    [12] A. Glankwahmdee. Unconstrained discrete nonlinear programming[J]. Engineering Opt, 1979, 4 (6) : 56-68.
    [13] D.B.Fox. A coeposite algorithm for mixed integer constrained nonlinear optimization[J]. Engineering Opt, 1982, 7(4):22-30.
    [14] C.Willam. Monte Carlo Integer Programming[M]. 1980.
    [15] P.L.Hammer 着,黄承明译.离散最优化的发展趋势[J].应用数学与计算机数学,1981,(1):26-31.
    [16] 正光远,董明耀.结构优化设计[M].北京:高等教育出版社,1987.
    [17] 董石麟,钱若军.空闻网格结构分析理论与计算方法[M].北京:中国建筑工业出版社,2000.
    [18] GBJ68-84.中华人民共和国标准,建筑结构设计统一标准[R].中国建筑工业出版社,1984.
    [19] 赵国藩.工程结构可靠性理论与应用[M].大连理工大学出版社,1996.
    [20] 安伟光,蔡萌林,陈卫东.随机结构系统可靠性分析与优化设计[M].哈尔滨工程大学出版社,2005.
    [21] 肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].科学出版社,2003.
    [22] 贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用[J].建筑结构学报,2002,23(4):2-9.
    [23] 赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [24] 董聪.现代结构系统可靠度理论及应用[M].北京:科学出版社,2001.
    [25] 杨伟军,赵传智.土木工程结构可靠度理论与设计[M].北京:人民交通出版社,1998.
    [26] 高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,59(1):13-22.
    [27] 李继华.建筑结构概率极限状态设计[M].中国建筑工业出版社,1990.
    [1] 中华人民共和国标准,建筑结构可靠度设计统一标准(GB50068-20010[S],中国建筑工业出版社,2001.
    [2] 中华人民共和国行业标准,网壳结构技术规程(JGJ61-2003)[S],中国建筑工业出版社,2003.
    [3] 蓝天,张毅刚.大跨度屋盖结构抗震设计[M].中国建筑工业出版社,2002.
    [4] 刘锡良,董石麟.20年来中国空间结构形式创新[A].第十届空间结构学术会议论文集[C],2002:13-37.
    [5] 沈世钊.大跨空间结构理论研究若干新进展[A].第十一届空间结构学术会议论文集[C],2005:26-40.
    [6] 董石麟,罗尧志.大跨空间结构的工程实践与学科发展[A].第十一届空间结构学术会议论文集[C],2005:1-11.
    [7] 张明山.弦支穹顶结构的理论研究[D].浙江大学博士毕业论文,浙江,杭州,2004.
    [8] 中华人民共和国标准,建筑结构抗震设计规范(GB50011-2001) [S],中国建筑工业出版社,2001.
    [9] 中华人民共和国标准,高层建筑混凝土结构技术规程(JGJ3-2002) [S],中国建筑工业出版社,2001.
    [10] 中华人民共和国标准,高层民用建筑钢结构技术规程(JGJ3-98) [S],中国建筑工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700