用于拖曳阵阵形测量的光纤磁场传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵形测量是拖曳阵声纳研究的关键技术之一。为了满足被动拖曳阵声纳非声定位的需求,实现光纤水听器拖曳阵主体的全光纤结构,提出了基于地磁场传感的光纤磁场传感技术实现光纤阵列中阵形测量的新研究思路。
     从拖曳阵阵形取向测量精度要求、主要海区地磁分布特点出发,通过基于地磁测量的阵列取向测量理论研究,提出了用于光纤拖曳阵阵形测量的光纤地磁场传感器的性能要求。根据现有材料及技术基础,对建立全光拖曳阵阵形测定光纤磁场传感系统的可行性进行了理论和实验研究,设计了一种测向精度可满足拖曳阵要求、信号处理与光纤水听器声信号处理兼容的光纤地磁场传感及阵列取向测量方案。研制了用于光纤拖曳阵的光纤磁场传感器,通过取向角度测量实验,验证了光纤磁场传感器可以实现基于地磁测量的取向角度测量。
     本论文的主要研究成果和创新如下:
     1、提出并研制了基于磁致伸缩效应的全保偏干涉式光纤地磁场传感器,实现了稳定的地磁传感。
     2、理论分析了保偏光纤干涉系统残存的寄生干涉效应,提出了抑制干涉效应的有效措施,提高了系统的检测精度。
     3、在多匝光纤粘贴磁致伸缩材料的全保偏光纤磁场传感探头研究中,发现了退敏现象,提出了相应的解决办法,保证了磁致伸缩应变有效转化为传感光纤中的相位变化。
     4、提出用光纤磁场传感器进行光纤水听器拖曳阵声纳的取向角测量方案,建立了二单元同轴向光纤磁场传感器以及二维正交单元光纤磁场传感器定向系统,完成了原理性实验验证,为拖曳阵磁场传感定向奠定基础。
The array shape measurement is one of the key techniques of the towed array sonar research. In order to realize all-optical-fiber structure in the main part of the fiber-optic hydrophone towed array, and meet the non-sound-position request of passive towed sonar, a new idea is proposed, which is to apply the fiber-optic Earth magnetic field sensing technology on the shape measurement of the optical fiber array.
     Due to the request of the directional angle precision in the shape measurement of the towed array, and the Earth magnetic field distribution characteristic of the main sea areas, a series of theoretic research about the array direction have been performed, and the performance request for the fiber-optic magnetic field sensor is obtained in the shape measurement of the optical fiber towed array. Based on the acquired material and by-past technology foundation, the feasibility of the shape measurement of the all-optical-fiber towed array with the fiber-optic magnetic field sensor has been proved by means of theoretic and experimental research. Then, an array direction measurement scheme, that is the fiber-optic Earth magnetic field sensing scheme, is brought forward, which can meet the precision request of the direction measurement in the towed array, and also be compatible with the fiber-optic hydrophone in the signal-procession part. Finally, fiber-optic magnetic field sensors used for the fiber-optic towed array are designed and achieved, and the directional angle measurement is realized by the fiberoptic magnetic field sensors through measuring the Earth magnetic field.
     The main works and the creative achievements in the dissertation are as follows:
     1. All-polarization-maintaining-fiber (PMF) interferometric Earth magnetic field sensors are presented and developed, which can stably measure the Earth magnetic field.
     2. The remaining parasitic interfering effect in the polarization maintaining fiber interferometer is theoretically analyzed. Corresponding methods is put forward to restrain the effect, which prompting the detecting precision of the all-PMF Earth magnetic field sensor.
     3. A desensitizing effect is found in the designing process of the all-polarization-maintaining-fiber sensor head which consists of a piece of magntostrictive strip bonded on the optical fiber ribbon at the two end of the strip. Then, corresponding effective technical method is proposed to control the effect, so as to ensure the efficiently transformation from the magnetostrictive strain to the phase in the sensing fiber.
     4. A new scheme is proposed, which is the directional angle measurement of the fiber-optic hydrophone towed array realized with fiber optic Earth magnetic field sensor. Two directional detection systems based on double in-line fiber-optic magnetic field sensors and planar perpendicular fiber-optic magnetic field sensors are respectively built, and the verifying experiments are finished, which have established a foundation for the magnetic field sensing directional engineering of the towed array.
引文
[1]P.Nash.Review of interferometeric optical fibre hydrophone technology,IEE.Proc.Radar.Sonar.Navag.,1996,143(3):204-209.
    [2]P.J.Nash,;J.Latchem,;G.Cranch etc..Design,development and construction of fibre-optic bottom mounted array.Optical Fiber Sensors Conference Technical Digest,2002.Ofs 2002,15~(th),2002,1:333-336.
    [3]H.Asanuma,S.Hashimoto,S.Tano etc..Development of fiber-optical microsensors for geophysical use,Scientific Use of Submarine Cables and Related Technologies,2003,6:25-27.
    [4]Brian Culshaw.Optical Fiber Sensor Technologies:Opportunitiesand—Perhaps—Pitfalls,J.of Lightwave technology,2004,22(1):39-50.
    [5]M.Lasky,Richard D.Doolittle,B.D.Simmons etc..Recent progress in towed hydrophone array research,IEEE J.of Oceanic Engineering,2004,29(2):374-387.
    [6]Yurek,A.M.Status of Fiber Optic Acoustic Sensing,Optical Fiber Sensors Conference,1992.8~(th),1992,338-341.
    [7]Stanley G.Lemon.Towed array history,1917-2003.J.of Oceanic Engineering,2004,29(2):365-373.
    [8]James A.Musser,Dave Ridyard and Erik Hupkens.Streamer positioning for 3D and 4D applications.Digicourse of IO,2005,8:1-5.
    [9]H.Bucker.Beamforming a towed array of unknown shape,J.Acoust.Soc.Am.,1978,63:1451-1454.
    [10]J.J.Smith,Y.H.Leung and A.Cantoni.The Cramer-Rao lower bound for towed array shape estimation with a single source.IEEE Trans.on Single Processing,1996,44(4):1033-1036.
    [11]B.E.and J.M.Syck.Calculation of the shape of a towed underwater acoustic array.IEEE J.Oceanic Eng.,1992,17(4):193-203.
    [12]D.A.Gray,B.D.Anderson.Towed array shape estimation using Kalman filter-theoretical models.IEEE J.Oceanic Eng.1993,18(4):543-556.
    [13]N.V.Nikitakos,A.K.Leros,K.Kavtsikas.Towed array shape estimation using multimodel partitioning filters.IEEE J.Oceanic Eng.,1998,23(4):380-384.
    [14]Feng Lu,Evangelos.Milios.New towed array shape estimation scheme for real-time sonar system.IEEE J.Oceanic Eng.,2003,28(3):1-5.
    [15]Erik C.Ballegooijen,Gerard W.M.Mierlo,C.Schooneveld etc..Measurement of towed array position,shape and attitude.IEEE J.of Oceanic Engeering,1989,14(4):375-383.
    [16]R.D.Dittman,An optical positioning system for underwater arrays.OCEANS,2001.MTS/IEEE Conference and Exhibition,2001:2454-2458.
    [17]J.A.Bucaro,H.D.Dardy,E.Carome.Fiber-optic Hydrophone.J.Acoust.Soc.Am.,1977,62:1302-1304.
    [18]高学民.光纤水听器及阵列的发展状况.光纤与电缆及其应用技术,1996,1: 48-51.
    [19]A.Dandridge,G..B.Cogdell.Fiber optic sensors for navy application.IEEE LCS,1991,2:81-90.
    [20]沈梁.干涉型光纤水听器阵列消偏振衰落技术的研究.博士学位论文,浙江大学,2000.
    [21]倪明.光纤水听器关键技术研究.博士学位论文,中国科学院声学所,2003.
    [22]杨家德,鲍络群,廖先炳.纤维光学技术在军事中的应用.北京,科学技术文献出版社,1998.
    [23]T.G.Giallorenzi,J.A.Bucaro,and A.Dandrige etc..Optical fiber sensor technology.IEEE J.Ouantum Electronics,1998,QE18(4):626-633.
    [24]胡永明,陈哲,孟洲等.全保偏光纤迈克尔逊干涉仪.中国激光,1997,24(10):891-894.
    [25]孟洲,胡永明,熊水东等.全保偏光纤水听器阵列.中国激光,2002,29(5):415-417.
    [26]Eva M.Billingsley,and S.W.Billingsley.Fluxgate magnetometers.SPIE,2003,5090:194-203
    [27]J.E.Lenz.A review of magnetic sensors.Proceedings of IEEE,1990,78(6):973-989.
    [28]James W.casalegno.All-weather vehicle classification using magnetometer arrays.SPIE,2002,4743:205-212.
    [29]J.C.Allred,R.N.Lyman,T.W.Kornack,and M.V.Romalis.High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation.Physical Review Letter,2002,89(13):130801-1-130801-4.
    [30]I.K.Kominis,T.W.Kornack,J.C.Allred,and M.V.Romalis.A subfemtotesla multichannel atomic magnetometer.Nature,2003,422:596-599.
    [31]D.Budker,D.F.Kimball,S.M.Rochester etc..Sensitive magnetometry based on nonlinear magneto-optical rotation.Phy.Review A,2000,62(4):043403-1-043403-7.
    [32]M.N.Deeter,A.H.Rose,G.W.Day.Fast,sensitive magnetic-field sensors based on the Faraday effect in YIG..J.Lightwave Technol.,1990,8(12):1838-1842.
    [33]K.T.V.Crattan,B.T.Meggitt.Optical fiber sensor technology appli,and sys..London,Kluwer academic publishers,1998.
    [34]周胜军,张虎城,李玉权.高精确度光纤磁场传感器的研究[J].中国激光,2003,30(11),1011-1014.
    [35]Zhou Meng,Yongming Hu,Zhe Chen etc..miniature optical fiber sensor fo alternating magnetic field based on In-BiGa Vanadium Iron Garnet crystal.IEEE Transactions on magnetics,2001,37(5):3807-3809.
    [36]黄耀清,赫成宏.以磁致伸缩原理为基础的光纤磁场传感器的最新进展.大庆高等专科学校学报,1997,17(4):38-48.
    [37]F.Bucholtz,D.M.Dagenais,and K.P.Koo etc..Recent development of fiber opticl magnetostrictive sensors.SPIE,1990,1367:226-235.
    [38]C.M.Davis,C.Z.Zarobila,J.D.Rand.Interferometric fiber-optic magnetometers.IEEE Engineering of medicine and biology society,10~(th)Annual Internal conference,1988:916-917.
    [39]J.P.Willson,R.E.Jones.Magnetostrictive fiber-optic sensor system for detecting dc magnetic fields.Optic Lett.1983,8(6):333-335.
    [40]L.L.Picon,V.M.Bright,and E.S.Kolesar.Detection low intensity magnetic field with magnetostictive fiber optic sensor.US Government work,1994:1034-1039.
    [41]F.Bucholtz,C.A.Vilarruel,A.R.Davis etc..Multichannel fiber-optic magnetometer for undersea measurements.J.Lightwave technol.1995,13(7):1385-1395.
    [42]Ammon Yariv,Harry V.Winsor.Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers.1980,5(3):87-89.
    [43]钟文定.铁磁学.北京,科学出版社,1998.
    [44]S.C.Rashleigh.Magnetic-field sensing with a single-mode fiber.Optics Lett.1981,6(1):19-21.
    [45]J.Jarzynski,J.H.Cole,J.A.burcaro etc..Magnetic field sensitivity of an optical fiber with magnetostrictive jacket.Appl.Optics,1980,19(22):3746-3748.
    [46]K.P.Koo,G.H.Sigel.Charicteristics of fiber-optic magnetic-field sensors employing metallic glasses.1982,7(7)334-336.
    [47]J.D.Livingston.Magnetomechanical properties of amorphous metal.Phys.Stat.Sol.,1982,70:591-598.
    [48]K.P.Koo,D.M.Dagenais F.Bucholtz,etc..Modified coherent rotation model for fiber-optic magnetometers using magnetostrictive transducers.SPIE,1989,1169:190-200.
    [49]Miroslar Sedlar,Lvan Paulicka,and Michael Sayer.Optical fiber magnetic field sensors with ceramic magnetostrictive jackets.APPLIED OPTICS,1996,35(27):5340-5344.
    [50]A Speliotis,O.Kalogirou and D.Niarchos.Magnetostrictive properties of amorphous and partially crystalline TbDyFe thin films.J.Appl.Phys.,1997,81(8):5696-5698
    [51]吕凤军.TbDyFe/FeNi复合多层膜及其与光纤复合结构的制备和磁敏性能研究.硕士学位论文,国防科技大学,2004.
    [52]谢海涛.非晶稀土-铁磁致伸缩薄膜的制备、结构及性能研究.博士学位论文,国防科技大学,2001.
    [53]F.Bucholtz,C.A.Villarruel,D.M.Dagenais,etc..Fiber optic magnetic sensor technology undersea applications.SPIE,1994,2292:2-13.
    [54]王惠文.光纤传感技术与应用.北京,国防工业出版社.1999
    [55]Ki D.Oh,Jaydeep Rande,Vivek Arya,et al..Miniaturized fiber optic magnetic field sensors.SPIE,1998,3538:136-142.
    [56]K.P.Koo,and G.H.Sigel.Detection scheme in a fiber-optic magnetic-field sensor flee from ambiguity due to material magnetic phsteresis.Optics Letters,1984,9(6):257-259.
    [57]C.K.Kirkendall,and F.Bucholtz.Selfaligning demodulator for remotely operated fibre optic magnetic sensor system.Electronics Letters,1994,30(12):999-1000.
    [58]Changhai Shi,Jianping Chen,Guiling Wu etc..Stable dynamic detection scheme for magnetostrictive fiber-optic interferometric sensors.OPTICS EXPRESS,2006,14(12):5098-5102.
    [59]Ryotaku SATO,Shigemi SAITO.Design of Fiber-Optic Magnetometer Utilizing Magnctostriction.Japanese Journal of Applied Physics,2007,46(2):817-820.
    [60]A.D.Kersay,M.J.Marrone and M.A.Davis.Polarization-insensitive fibre optic Michelson interferometer.Electronics Lett.,1991,27(6):518-519.
    [61]ShinjiYamashita,Kazuo Hotate.Polarization-independent depolarizers fofhighly coherent light using Faraday rotator mirrors.J.lightwave Technology,1997,15(5):900-905.
    [62]张雅彬,窦峥,曹家年.干涉型光纤传感器的分集检测消偏振衰落技术的研究.应用科技,2004,31(8):22-24.
    [63]N.J.Frigo,A.Dandridge,A.B.Tveten.Technique for elimination of polarization fading in fibre interferometers.Electronics Lett.1984,20(8):319-320.
    [64]A.D.Kersey,M.J.Marrone,A.Dandridge,etc..Optimization and stabilization of visibility in interferometrie fiber-optic sensors using input-polarization control.J.Lightwave Technol.,1998,16(10):1599-1609.
    [65]周效东.干涉型光纤传感器输入偏振态反馈控制的理论分析.光学学报,1997,17(6):794-798.
    [66]胡永明,孟洲,熊水东等.干涉型全保偏光纤水听器阵列研制.声学学报,2003,28(2):155-158.
    [67]K.Bucholtz,C.A.Villarmel,C.K.K.Kirkendall,et al..Fiber optic magnetometer system for undersea application.Electronics Letters,1993,29(11):1032-1033.
    [68]李志能,沈梁,叶险峰.干涉型光纤传感器的分集消偏振衰落技术的信号处理.光电工程,2002,29(1):55-58.
    [69]K.P.Koo,F.Bucholtz,and A.Dandridge.Synchronous sampling demodulation scheme for nonlinear fiber-optic sensor.Optics Letters,1986,11(10):683-685.
    [70]F.Bucholtz,K.P.Koo,and A.Dandridge.Effect of external perturbations on fiber-optic magnetic sensor.Journal of Lightwave Technology,1988,6(4):507-512.
    [71]D.M.Dagenais,F.Bucholtz,and K.P.Koo.Elimination of residual signals and reduction of noise in a low-frequency magnetic fiber sensor.Appl Phys Lett,1988,53(16):1474-1476.
    [72]K.P.Koo,F.Bucholtz,D.M.Dagenais,and A.Dandridge.A compact fiber-optic magnetometer employing an amorphous metal wire transducerl.IEEE Photonics Technology Letters,1989,1(12):464-466.
    [73]D.M.Dagenais,F.Bucholtz,K.P.Koo,and A.Dandrige.Detection of low-frequency magnetic signal in a magnetostrictive fiber-optic sensor with suppressed residual signal.Journal of Lightwave Technology,1989,7(6):881-886.
    [74]A.R.Davis,S.S.Patrick,A.Dandrick,and F.Bucholtz.Remote fiber-optic AC magnetometer.Electronics Letters,1992,28(3):271-273.
    [75]M.J.Marrone,R.D.Esman,and A.D.Kersey.Fiber-optic magnetic lield sensor with an orthoconjugating loop mirror.Optics Letter,1993,18(18):1556-1558.
    [76]F.Bucholtz,G.Wang,C.K.Kirkendall,et al..Under performance of eight element fiber optic magnetometer array.Electronics Letters,1994,30(23):1974-1975.
    [77]D.M.Dagenais,F.Bucholtz.Slow dynamics of metallic glass measured at room temperature with a fiber optic interfermeter.IEEE TRANS.On Magnetics,1995,31(6):4026-4028.
    [78]K.P.Koo,D.M.Dagenais,S.Vohra,etc..Dual excitation scheme for direct suppression of residual signal in fiber-optic magnetometers.Electronics Lett.1990,26(22):1867-1868.
    [79]K.P.Koo,F.Bucholtz,and A.Dandridge.Passive stabilization of a fiber-optic nonlinear sensor by using a sampling scheme.Optics Letters,1987,12(6):440-442
    [80]F.Bucholtz,D.M.Dagenais,C.A.Villarruel,etc..Demostration of a fiber optic array of three-axis magnetometers for undersea application.IEEE TRANS.On Magnetics,1995,31(6):3194-3196.
    [81]刘岚.自动消除磁滞模糊的光纤测磁传感仪.传感器技术学报.1995,3:50-53.
    [82]刘延冰,李红斌,张金如.光纤磁致伸缩传感器灵敏度的研究.华中理工大学学报,1993,21(2):74-77.
    [83]刘延冰,李红斌,张卫军,姜勇.光纤弱磁场测量传感器.光子学报,1994,23(1):45-48.
    [84]周晓军,林水生,刘文达,等…光纤微弱磁场传感器软件解调方法.电子科技大学学报,2003,32(3):261-263.
    [85]倪明环,周晓军,于彦明.补偿光纤Micchelsonr弱磁传感器相位漂移的新方法.光电子·激光,2006,17(1):58-61.
    [86]李守荣,姚寿铨.磁力共振在磁致伸缩光纤磁场传感器中的应用.北京大学学报(自然科学版),38(3):229-333.
    [87]姚寿铨,李守荣.灵敏稳定的光纤弱磁场传感器.上海大学学报(自然科学版),2000,6(3):203-206.
    [88]薛青,陈建平,张翼等.Michelson干涉型光纤磁场传感器稳定性研究.光纤与光缆及其应用,2006,2:19-22.
    [89]于彦明,周晓军,倪明环.偏振无关光纤迈克耳孙干涉型磁场传感器研究.激光与电子学进展,2006,43(5):35-38.
    [90]R.C.奥汉德利.现代磁性材料原理和应用.北京,化学工业出版社,2004.
    [91]宛德福,马兴隆.磁性物理学.北京,电子工业出版社,1999.
    [92]胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(1).稀有金属材料与工程,2000,29(6):365-369.
    [93]胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究 (2).稀有金属材料与工程,2001,30(1):1-4.
    [94]王威,王社良,苏三庆,徐金兰.磁致伸缩材料的应力感知机理.工业建筑,2004,34(9):51-69.
    [95]启明,金延(编译).金属玻璃的开发和应用.环球信息,2005,3:41-43.
    [96]韩志勇,周寿增,张茂才等.铁基磁致伸缩材料的制备应用及最新进展.金属功能材料,2004,11(4):38-41.
    [97]龙毅,叶荣昌,万发荣等.磁性金属玻璃研究进展.金属功能材料,2002,9(4):1-6.
    [98]李扩社,徐静,张深根.稀土超磁致伸缩材料进展.金属功能材料,2003,10(6):30-33.
    [99]廖延彪.偏振光学.北京,科学出版社,2003.
    [100]阎永志.光纤偏振器.压电与声光,1995,17(2):14-16.
    [101]倪明,张仁和,胡永明等.干涉型光纤水听器的闭环工作点控制和信号解调实现.应用声学,2001,20(6):13-18.
    [102]倪明,胡永明,孟洲等.数字化PGC解调光纤水听器的动态范围.激光与光电子学进展,2005,42(2):33-37.
    [103]A.Dandridge,A.B.Tveten,T.G.Giallorenzi.Homodyne demodulation schemes for fiber optic sensors using phase generated carrier.IEEE Transactoins on microwave theory and techniques,1982,MTT-30(10):1635-1641.
    [104]李玉深,周波,李绪友.干涉型光纤水听器相位载波解调技术.传感器技术,2004,23(2):14-17.
    [105]安振昌.中国地磁测量、地磁图和地磁场模型的回顾.地球物理学报2002,45(增刊):189-196.
    [106]彭富清.地磁模型与地磁导航.海洋测绘,2006,26(2):73-75.
    [107]刘太满,李根奎.磁偏角在油田定向井中应用初探.西部探矿工程,2006,增刊,376-378.
    [108]赵敏华,吴斌,石萌等.基于三轴磁强计与雷达高度计的融合导航算法.宇航学报,2004,25(4):411-415.
    [109]王建琦,曹喜滨.利用地磁场测量的小卫星自主导航设计.航天控制,2002,3:39-43.
    [110]李谋成,徐满意.基于地磁传感的交通监测系统.大连大学学报,2005,26(4):19-23.
    [111]吕永清,蔡亚先,程骏玲.地震仪器定向与磁偏角.大地测量与地球动力学,2006,26(2):120-123.
    [112]夏国辉,里弼东,张凤玉等.中国附近海域地磁偏角图及其数学模式(1990.0).测绘学报,1994,23(1):23-28.
    [113]廖延彪.光纤光学.北京,清华大学出版社,2000.
    [114]Chen Zhe,Liao Yanbiao,Hu Yongming etc..Performance of polarizers and coupler in an all polarization maintaining fiber interferometer.Chinese J.of Lasers,2000,B9(2): 148-154.
    [115]韩泽.干涉型光纤水听器研究.国防科技大学硕士学位论文,1999.
    [116]倪明,张仁和,胡永明等.干涉型光纤水听器的闭环工作点控制和信号解调实现.应用声学,2001,20(6):13-18.
    [117]倪明,胡永明,陈哲等.金属覆层保偏光纤偏振器的五层波导模型及理论分析.光学学报,2001,21(2):142-146.
    [118]胡永明,廖延彪,陈哲等.新型双偏振结构保偏光纤偏振器的研制.光学学报,2001,21(6):741-743.
    [119]K.P.Koo,F.Bucholtz,A.Dandridge.Synchronous sampling demodulation scheme for nonlinear fiber-optic sensors.Optics Lett.,1986,11(10):683-685.
    [120]K.T.V.Crattan,B.T.Meggitt.Optical fiber sensor technology,appli,and Sys..Published by Klumer Academic Publishers,London,1998.
    [121]C.K.Kirkendall and A.Dandridge.Overview of high performance fibre-optic sensing.J.Phys.D:Appl.Phys.,2004,37:197-216.
    [122]D.Y.Kim,H.J.Kong,B.Y.Kim.Fiber-optic DC magnetic field sensor with balanced detection technique.IEEE Photonics Tech.Lett.,1992,4(8):945-948.
    [123]于彦明,周晓军,倪明环.偏振无关光纤迈克耳孙干涉型磁场传感器研究.激光与光电子学进展,2006,43(5):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700