Vilsmeier盐及其离子液体的合成、性质和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是指室温或低温(     基于上述想法,我们课题组一直都在开发新型的胍盐离子液体,胍盐分子结构中,由于阳离子中三个氮原子共轭,正电荷分布于三个氮原子上和中心碳上,使得胍盐具有比四烷基铵盐更好的热稳定性。氮原子上的取代基可以进行设计和调节,使胍盐具有一些特殊性质,如胍盐的相转移催化特性,Lewis酸性,表面活性剂等。由于胍的共扼酸的共振稳定性,胍可以归属于有机超强碱,可在有机反应中作碱或碱性催化剂,以多取代胍盐为阳离子的离子液体作为试问离子液体中新的一元,近年来也得到了广泛的应用。加之多取代胍合成方法简单,结构可调,为其广泛应用提供了机会。
     N, N, N', N’-tetramethylchloroformamidinium chloride(“vilsmeier盐”),简称TMC,可以通过四甲基脲与三氯氧磷在温和的条件下得到,既可以作为一种有效的脱水剂使用,也是制备四甲基胍盐离子液体的中间产物。基于TMC作为一种亚胺盐有着和vilsmeier试剂相类似的结构,我们尝试开发了该化合物在有机合成中的应用。
     发展新的基元反应和新的合成方法是有机化学创新进步的基础。在我们课题组常年从事室温胍盐离子液体化学研究的基础上,本论文利用合成设计室温胍盐离子液体为工作基础,以发展新基元合成反应和合成新方法为目标,建立了一种通用性强、步骤简洁的构建新的碳碳键、合成多取代苯类化合物以及构建新型的六元杂环化合物—吡啶-2-酮的新方法。具体内容简述如下:
     1.由于Knoevenagel反应一般在强极性非质子溶剂如DMF、DMSO等中进行,而离子液体完全由正负离子组成,具有较强的极性,可以看作是一种极性非质子溶剂,所以离子液体中的Koevenagel缩合反应引起了化学家们的极大兴趣,近几年来化学家们研究了不同离子液体中、不同催化剂作用下、不同分子结构的底物间的缩合反应。乳酸胍盐离子液体体系下的Knoevenagel反应,该反应条件温和,产物易于分离,产率几乎定量,同时,反应后离子液体可以重复使用六次而催化效果不减。
     2.碳碳键形成和官能团的转化反应是构建有机分子骨架最重要、最基本的反应。基于组内对乳酸胍盐离子液体体系下的Michael加成反应和Knoevenagel反应的研究,我们综合了上述两种反应的特点。通过对反应物的合理设计,在乳酸胍盐离子液体下利用成环-芳构化的方法利用Knoevenagel反应和Michael加成反应“一锅法”合成了多取代苯类化合物,并探究了其反应机理。
     3.六元含氮杂环作为关键的结构单元广泛地存在于天然产物中,同时,它也是多用途的有机合成中间体.作为六元含氮杂环的典型代表,吡啶-2-酮类化合物广泛存在于天然产物中,具有重要的生物、药物活性;同时作为一类多功能有机合成中间体已经被广泛地研究并用于构筑多种生物碱体系以及合成具有药物活性的分子。基于TMC作为一种亚胺盐有着和vilsmeier试剂相类似的结构,为此我们探究了TMC与1,3-二羰基化合物的反应,并通过分子间的反应一步法合成了吡啶-2-酮类化合物,在探究反应机理的过程中还得到了两步有用的中间体,2H-吡喃和4H-吡喃化合物。
     离子液体以其几乎无蒸气压,可以溶解许多有机及无机物,易于与其他物质分离,可以循环使用等优良特性,在各类烷基化和各类缩合反应的重要有机合成反应中得到了广泛的应用。用离子液体作溶剂可以消除有机溶剂对环境的污染,被称为绿色溶剂。当前,一方面离子液体的应用已经处于工业试验阶段,即将进入工业应用;另一方面对离子液体的研究才刚刚开始,因为离子液体的种类很多,而且每一个化学反应在离子液体中进行都有可能取得与传统化学不同的、令人惊异的结果。因此,还有众多未知的化学现象、化学规律和反应机理等待人们去不断探索。
Room-temperature ionic liquids (RTILs) are defined as salts that melt below room temperature. RTILs are composed of a cation and an anion, whose forces of attraction are not sufficiently strong to hold them together as a solid at ambient temperature, and therefore these salts are liquids, unlike traditional molten salts such as for instance sodium chloride that melts above 800°C. RTIL’s are organic fluids typically containing nitrogen-based organic cations and inorganic anions. This property allows them to dissolve organic compounds and serve as potential solvents for industrially important organic reactions. They are emerging as a novel replacement for volatile organic compounds traditionally used as industrial solvents. RTIL’s might be a good possibility for helping create“greener”chemistry, since there are any ways of combining ions to make them. This has been referred to as‘designing’thesolvent system for a particular reaction process, which could result in unique product selectivities or even new chemistry compared to the traditional solvents.
     The RTILs show useful properties such as thermal stability, high ionic conductivity, negligible vapor pressure and large electrochemical window. The RTILs emerged as an alternative recyclable environmentally benign reaction media for chemical process including bio and chemical catalysis.The physical and chemical properties of RTILs, often defined as“green solvents and designed solvents”,can indeed varied over a wide range by selection of suitable cations and anions.
     The most common RTILs in use are salts with N-alkylpyridinum and N,N- dialkylimidazolium cations, such as [Bmim][PF6] (1- butyl -3-Methylimidazolium hexafluorophosphate) and [Bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate). At present,in order to substitute toxic、harmful organic solvents and develop highly efficient green chemistry process,to develop synthesis and application of RTIL,especially, as solvents and catalysts have received much attention.
     There are several advantages and reasons for synthesizing alkylguanidinium- based ionic liquids: 1. The positive charge in the guanidinium salts is delocalized over one carbon and three nitrogen atoms, which gives them a high degree of thermal stability compared to tetraalkylammonium salts. 2. The alkyl- guanidinium salts are widely used as phase transfer catalyst due to their exceptional stability at high temperature. 3. Alkylguanidinium salts exhibit some particularities due to its extraordinary bulkiness. For example, the literature reports structural features, which support the existence of an electron-deficient state at the central carbon atom surrounde by the three nitrogen atoms.
     N, N, N', N’-tetramethylchloroformamidinium chloride (Vilsmeier salt), is prepared through the reaction between 1,1,3,3-tetramethylurea and POCl3 under the mild condition. It is an efficient dehydration reagent, but also the intermediate of the preparation of guanidinium ionic liquids. Owing to the similar framework of Vilsmeier reagent, Vilsmeier salt has also been tried in organic reactions.
     Developments of new basic reactions and new synthetic methods are the basis for the innovation and advance of organic chemistry. Based on the research achievement of our group in room temperature guanidinium ionic liquids, my thesis starts from the design and synthesis of room temperature guanidinium ionic liquids, aming to develop new basic reactions and new synthetic methods for task functional ionic liquids, particularly, developing a new synthetic strategy to provide a general and simple route to polysubstituted six-membered ring systems. At the same time, starting from the N, N, N', N’-tetramethylchloroformamidinium chloride (Vilsmeier salt), investigations were also carried out on the synthetic methodology for six-membered oxygen-, and nitrogen-containing heterocycles by intermolecular addition. The contents in this thesis mainly include two parts and five aspects.
     Knoevenagel reactions could occur in high polar solvents, such as DMF or DMSO, and ionic liquids, which are absolutely made up of anions and cations, can also be considered as high polar solvents, so Knoevenagel reactions in ionic liquids have been paid more attentions. In the recent years, different ionic liquids, different catalysts, different kinds of reagents have been tried to develop Knoevenagel reactions. As a reaction medium, cyclic guanidinium lactate ionic liquid can catalyze the Knoevenagel condensation of one of aromatic aldehydes with each of active methylene compounds at room temperature in a high yield of over 90% within just 1–7 min. At the same time, the work-up procedure is very simple and the products are not needed to be further purified. The ionic liquid can be easily reused without activity loss.
     Carbon-carbon bond formation and transformation of functional group are the most important and basic reactions to contribute the skeleton of carbon construction. Base on our study about Knoevenagel and Michael reactions in guanidinium lactate ionic liquids, we developed a new method to syntheses polysubstituted benzenes through tandem Knoevenagel and Michael reactions in one pot reactions in guanidinium lactatic ionic liquids.
     Six-member N-heterocycles exist widely in nature products as a key structure cell, and they are also useful intermediates in organic synthesis. The vast number of bioactive natural products and pharmaceutical drugs based on the pyridin-2(1H) -one ring system, such as elfamycin and ilicolicin, has become very important in the area of natural product and pharmacetical chemistry. In addition, functionalized pyridin-2(1H)-ones have been used as versatile intermediates in the synthesis of a wide range of nitrogen-containing heterocycles, such as pyridine, piperidine, quinolizidine, and indolizidine alkaloids. Because of the similar structures between N, N, N', N’-tetramethylchloroformamidinium chloride (Vilsmeier salt) and Vilsmeier reagent, we syntheses pyridin-2(1H)-ones by using Vilsmeier salt andα-Oxo amides, and so obtained two intermediate, 2H-pyran and 4H-pyran.
引文
[1].Welton, T., Chem Rev., 1999, 99, 2071.
    [2].Wasserscheid, P.; Keim, W., Angew. Chem. Int. Ed., 2000, 39, 3772.
    [3].Sheldon, R. A., Chem. Commun., 2001, 2399.
    [4].Dupont, J.; De Souza, R. F.; Suarez, P. A. Z., Chem. Rev., 2002, 102, 3667.
    [5].Sugden, S.; Wilkins, H. J. Chem. Soc. 1927,1291-1298.
    [6].Koch, V. R.; Miller, L. L.; Osteryoung, R. A. J. Am. Chem. Soc. 1976, 5277.
    [7].Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc. Chem. Com. 1992, 965.
    [8].Cole, A. C.; Jensen, J. L.; Ntai, L., J. Am. Chem. Soc., 2002, 124, 5962.
    [9].Boon, J. A.; Leviski, J. A.; Pflug, J. L., J. Org. Chem., 1986, 51, 480.
    [10].Brunelle, D. J.; Scotia, N. Y., US Pat.,5 081 298(1992)
    [11].Wasserscheid, P.; Keim, W., Angew. Chem. Int. Ed., 2000, 39, 3772.
    [12].Kim, Y-J.; Streitwieser, A., J. Am. Chem. Soc., 2002, 124, 5757.
    [13].Robinson, J.; Osteryoung, R. A. J. Am. Chem. Soc. 1979, 101, 323
    [14].Papageogiou, N.; Athanassov, Y.; Giatzel, M et al. J. Electrochem. Soc. 1996, 143, 3099
    [15].Seddon, K. R.; Hussey, C. L.; Nature. 1986, 323, 614
    [16].Olivier H., J., Mol. Catal. A: Chem. 1999, 146, 285
    [17].Mathews C. J.; Smith P. J.; Welton T., Chem. Commun. 2000, 14, 1249
    [18]. Xu L.; Chen W.; Xiao J., Organometallics. 2000, 19, 1123
    [19]. Peng J., Deng Y., Tetrahedron Lett 2001, 42, 403
    [20].刘亚强,王大伟.现代化学概论.西安:陕西师范大学出版社, 2001, 185
    [21].Freemantle, M. Chemicla & Engineering News. 2000, 78, 37
    [22].Freemantle, M. Chemicla & Engineering News. 1999, 77, 11
    [23].Song, C.E.; Oh, C.R.; Roh, E. J. Chem. Commun. 2000, 18, 1743
    [24].Merrigan, T. L.; Bates, E. D.; Dorman, S. C, et al. Chem. Commun. 2000, 20, 2051
    [25].Ohno, H.; Petrotech(Tokyo). 2000, 23, 556
    [26].Kitazume, T.; Kagaku Kogyo. 2000, 51, 437
    [27].Wasserscheid, P.; Keim, W., Angew. Chem. Int. Ed., 2000, 39, 3772.
    [28].Sheldon, R. A., Chem. Commun., 2001, 2399.
    [29].Dupont, J.; De Souza, R. F.; Suarez, P. A. Z., Chem. Rev., 2002, 102, 3667.
    [30].Hirao, M.; Sugimoto, H. Ohno, H. J. Electro. Chem. Soc. 2000, 147, 4168
    [31].Bonhote, P.; Dias, A. P.; Papageorigiou, N et al. Inorg.Chem. 1996, 35, 1168
    [32].Karodia, N.; Guise, S.; Newland, C et al. Chem.Commun. 1998, 2341
    [33].Ngo, H. I.; LeCopmpte, K.; Hargens, L e tal. Therochem. Acta. 2000, 357, 97
    [34].Huddleston, J. G.; Visser, A. E.; Reichert, W. M etal. Green. Chem. 2001, 3, 156
    [35].Fuller, J.; Breds, A.C.; Carlin, R. T. J. Electroanal.Chem. 1998, 459, 29
    [36].Seddon, K. R. J. Chem. Biotechnol. 1997, 68, 351
    [37].Stegemann, H.; Rhode, A.; Reiche, A et al. Eletrochim.Acta. 1992, 37, 379
    [38].Fannin, A. A.; Floreani, D. A.; King, L. A et al. J. Phys. Chem. 1984, 88, 2614
    [39].Sanders, J, R.; Ward, E. H.; Hussey, C. L. J. Electrochem. Soc. 1986, 133, 325
    [40].Chun, S.; Dzyuba, S. V.; Bartsch, R. A. Anal. Chem. 2001, 73, 3737
    [41].Mcfarlane, D. R.; Golding, J.; Forsyth, etal. Chem. Commun. 2001, 1430
    [42].McEwen, A. B.; Ngo, H. L.; Lecompte, K etal. J. Electrochem. Soc. 1999, 146, 1687
    [43].Kimizuka, N.; Nakashima, T. Langmuir, 2001, 17, 6759
    [44].Aki, S. N. K.; Brennedke, J. F.; Sammanta, A. Chem. Commun. 2001, 413
    [45].Muldoon, M. J.; Gordon, C. M.; Dunkin, I. R.; J. Chem. Soc., Perkin Trans. 2. 2001, 3, 433
    [46].Tait, S.; Osteryoung, R. A. Inorg.Chem. 1984, 23, 4352
    [47].Abdul-Sada, A. A. K.; Greenway, A. M.; Seddon, K. R. et al. Org. Mass. Spectrom. 1993, 28
    [48].Quarmby I C, Osteryoung R A. J. Am. Chem. Soc. 1994, 116, 2649
    [49].Huddleston, J. G.; Rogers, R. D. Chem. Commun. 1998, 16, 1765
    [50].Blancard, L. A.; Hancu, D.; Beckman, E. J et al. Nature. 1999, 399, 28
    [51].Koel, M.; Luovin, S.; Hollis, K et al. Pure and Applied Chem. 2001, 73, 153
    [52].Sutton, P. A.; Lewis, C. A.; Patell, Y et al. Ancient Biomolecules., 1998, 2, 195
    [53].Allen, d.; Baston, G.; Bradley, A et al. Green Chem. 2002, 4, 152
    [54].Thied, R. C.; Haile, A.; Lewin, B et al. Abstr Pap-Am Chem Soc. 2001, 221, IEC-190
    [55].Pitner, W. R.; Bradley, A. E.; Sanders, D et al. Abstr Pap-Am Chem Soc. 2001, 221, IEC-058
    [56].Davis, J. H.. Jr.; Abstr Pap-Am Chem Soc. 2001, 221, IEC-251
    [57].MacFarlane, D. R.; Huang, J. H.; Forsyth, M. Nature, 1999, 402, 792
    [58].McEwen, A. B.; McDevitt, S. F.; Koch, V. R..; J. Electrochem. Soc., 1997, 144, L84
    [59].Ito, Y.; Nohira, T. Electrochim.Acta. 2000, 45, 2611
    [60].Wadhawan, J. D.; Schroder, U.; Dupont, J.; et al. J. Electroanal. Chem., 2000, 493, 75
    [61].Yang, C.-H.; Tai, C.-C.; Huang, Y.-T.; Sun, I.-W. Tetrahedron 2005, 61, 4857.
    [62].Kemperman, G. J.; Horst, B. T.; Goor, D. V.; Roeters, T.; Bergwerff, J.; Eem, R. V.; Basten, J. Eur. J. Org. Chem. 2006, 3169.
    [63].Herrmann, W. A.; B?hm, V. P. W.; Gst?ttmayr, C. W. K.; Grosche, M.; Reisinger, C. P.; Weskamp, T. J. Organomet. Chem. 2001, 617, 616.
    [64].Wang, R. H.; Twamley, B.; Shreeve, J. M. J. Org. Chem. 2006, 71, 426.
    [65].Hyder, Z.; Mo, J.; Xiao, J.-L. Adv. Synth. Catal. 2006, 348, 1699.
    [66].Mo, J.; Xu, L.; Xiao, J.-L. J. Am. Chem. Soc. 2005, 127, 751.
    [67].Larhed, M.; Hallberg, A. J. Org. Chem. 1997, 62, 7858.
    [68].Yoon, B.; Yen, C. H.; Mekki, S.; Wherland, S.; Wai, C. M. Ind. Eng. Chem. Res. 2006, 45, 4433.
    [69].Handy, S. T.; Okello, M. Tetrahedron Lett. 2003, 44, 8395.
    [70].Li, Y.; Zhang, J.-Y.; Wang, W.-K.; Miao, Q.; She, W.-G.; Pan, X.-F. J. Org. Chem. 2005, 70, 3285.
    [71].Gholap, A. R.; Venkatesan, K.; Pasricha, R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. J. Org. Chem. 2005, 70, 4869.
    [72].Hierso, J. C.; Boudon, J.; Picquet, M.; Meunier, P. Eur. J. Org. Chem. 2007, 583.
    [73].Vallette, H.; Pican, S.; Boudou, C.; Levillain, J.; Plaquevent, J. C.; Gaumont, A. C. Tetrahedron Lett. 2006, 47, 5191.
    [74].Zheng, Y. F.; Du, X. F.; Bao, W. L. Tetrahedron Lett. 2006, 47, 1217.
    [75].Kobayashi, S. Synlett 1994, 689.
    [76].Ranu, B. C.; Banerjee, S. Org. Lett. 2005, 7, 3049.
    [77].Ranu, B. C.; Banerjee, S.; Jana, R. Tetrahedron,2007, 63, 776.
    [78].Xu, J.-M.; Qian, C.; Liu, B.-K.; Wu, Q.; Lin, X.-F. Tetrahedron 2007, 63, 986.
    [79].Xu, J.-M.; Wu, Q.; Zhang, Q.-Y.; Zhang, F.; Lin, X.-F. Eur. J. Org. Chem. 2007, 1798.
    [80].Luo, S.-Z.; Mi, X.-L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P. Angew. Chem., Int. Ed. 2006, 45, 3093.
    [81].Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413.
    [82].Mi, X. L.; Luo, S. Z.; Cheng, J. P. J. Org. Chem. 2005, 70, 2338.
    [83].Mi, X.-L.; Luo, S.-Z.; Xu, H.; Zhang, L.; Cheng, J.-P. Tetrahedron 2006, 62, 2537.
    [84].Lin, Y.-S.; Lin, C.-Y.; Liu, C.-W.; Tsai, T. Y. R. Tetrahedron 2006, 62, 872.
    [85].Nobuoka, K.; Kitaoka, S.; Kunimitsu, K.; Iio, M.; Harran, T.; Wakisaka, A.; Ishikawa, Y. J. Org. Chem. 2005, 70, 10106.
    [86].Park, J. K.; Sreekanth, P.; Kim, B. M. Adv. Synth. Catal. 2004, 346, 49.
    [87].Aggarwal, A.; Lancaster, N. L.; Sethi, A. R.; Welton, T. Green Chem. 2002, 4, 517.
    [88].Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217.
    [89].Kumar, A.; Pawar, S. S. J. Org. Chem. 2004, 69, 1419.
    [90].Kumar, A.; Pawar, S. S. J. Org. Chem. 2007, 72, 8111.
    [91].Fu, F.; Teo, Y. C.; Loh, T. P. Org. Lett. 2006, 8, 5999.
    [92].Yadav, J. S.; Reddy, B. V. S.; Kondaji, G.; Sowjanya, S.; Nagaiah, K. J. Mol. Catal. A: Chem. 2006, 258, 361.
    [93].Davey, P. N.; Forsyth, S. A.; Gunaratne, H. Q. N.; Hardacre, C.; Mckeown, A.; Mcmath S.E. J.; Rooney, D. W.; Seddon, K. R. Green Chem. 2005, 7, 224.
    [94].Zhu, A.-L.; Jiang, T.; Wang, D.; Han, B.-X.; Liu, L.; Huang, J.; Zhang, J.-C.; Sun, D.-H. Green Chem. 2005, 7, 514.
    [95].Zhu, A.-L.; Jiang, T.; Han, B.-X.; Huang, J.; Zhang, J.-C.; Ma, X.-M. New J. Chem. 2006, 30(5), 736.
    [96].Guo, H.-M.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.Chem. Commun. 2005, 1450.
    [97].Miao, W.-S.; Chan, T. H. Adv. Synth. Catal. 2006, 348, 1711.
    [98].Gruttadauria, M.; Riela, S.; Aprile, C.; Meo, P. L.; Anna, F. D.; Noto, R. Adv. Synth. Catal. 2006, 348, 82.
    [99].Freeman, F. Chem. Rev. 1980, 80, 329.
    [100].Tietze, L. F.; Saling, P. Synlett 1992, 281.
    [101].Tietze, L. F. Chem. Rev. 1996, 96, 115.
    [102].Forbes, D. C.; Law, A. M.; Morrison, D. W. Tetrahedron Lett. 2006, 47, 1699.
    [103].Ranu, B. C.; Jana, R. Eur. J. Org. Chem. 2006, 3767
    [104].Ranu, B. C.; Banerjee, S.; Das, A. Tetrahedron Lett. 2006, 47, 881.
    [105].Matveeva, E. V.; Odinets, I. L.; Kozlov, V. A. Tetrahedron Lett. 2006, 47, 7645.
    [106].Hudson, H. R. Top. Phosphorus Chem. 1983, 11, 339.
    [107].Guo, S.; Du, Z.-Y.; Zhang, S.-G.; Li, D.-M.; Li, Z.-P.; Deng, Y. -Q. Green Chem. 2006, 8, 296.
    [108].Leitner, W. Coord. Chem. Rev. 1996, 155, 257.
    [109].Gibson, D. H. Chem. Rev. 1996, 96, 2063.
    [120].Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498.
    [121].Jiang, J.-L.; Gao, F.-X.; Hua, R.-M.; Qiu, X.-Q. J. Org. Chem. 2005, 70, 381.
    [122].Kim, Y. J.; Varma, R. S. J. Org. Chem. 2005, 70, 7882.
    [123].Xiao, L- F.; Li, F.-W.; Peng, J.-J.; Xia, C.-G. J. Mol. Catal. A: Chem. 2006, 253, 265.
    [124].Chen, W.-P.; Egar, A. L.; Hursthouse, M. B.; Malic, K. M. A.; Mathews, J. E.; Roberts, S. M. Tetrahedron Lett. 1998, 39, 8495.
    [125].Zhang, S.-X.; Feng, J.; Kuo, S.-C.; Brossi, A.; Hamel, E.; Tropsha, A.; Lee, K. H. J. Med. Chem. 2000, 43, 167.
    [126].Ye, F. G.; Alper, H. J. Org. Chem. 2007, 72, 3218.
    [127].Cao, H.; Xiao, W. J.; Alper, H. J. Org. Chem. 2007, 72, 8562.
    [128].Zhao, X.-L.; Liu, L.; Chen, Y.-J.; Wang, D. Tetrahedron 2006, 62, 7113.
    [129].Xiao, Y.; Malhotra, S. V. J. Mol. Catal. A: Chem. 2005, 230, 129.
    [130].Jorapur, Y. R.; Chi, D. Y. J. Org. Chem. 2005, 70, 10774.
    [131].Lu, J.; Ji, S. J.; Loh, T. P. Chem. Commun. 2005, 2345.
    [132].Law, M. C.; Cheung, T. W.; Wong, K. Y.; Chan, T. H. J. Org. Chem. 2007, 72, 923.
    [133].Xiao, Y.; Malhotra, S. V. J. Organomet. Chem. 2005, 690, 3609.
    [134].Katsoura, M. H.; Polydera, A. C.; Katapodis, P.; Kolisis, F. N.; Stamatis, H. Process Biochem. 2007, 42, 1326.
    [135].Conte, V.; Floris, B.; Galloni, P.; Mirruzzo, V.; Scarso, A.; Sordi, D.; Strukul, G. Green Chem. 2005, 7, 262.
    [136].Qian, W.-X.; Jin, E.-R.; Bao, W.-L.; Zhang, Y.-M. Angew. Chem., Int. Ed. 2005, 44, 952.
    [137].Mehdi, H.; Bodor, A.; Lantos, D.; Horváth, I. T.; Vos, D. E. D.; Binnemans, K. J. Org. Chem. 2007, 72, 517.
    [138].Leandro, D. P.; Ja?rton, D.; Roberto, F. S.; Katia, B. G. Catal. Commun. 2008, 9, 135.
    [139].Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
    [140].Jiang, H.; Jia, L.; Li, J. Green Chem. 2000, 2, 161.
    [141].Li, X.-H.; Geng, W.-G.; Zhou, J.-X.; Luo, W.; Wang, F.-R.; Wang, L.-F.; Tsang, S. C. New J. Chem. 2007, 31, 2088.
    [142].He, X.; Chan, T. H. Tetrahedron 2006, 62, 3389.
    [143].Tafesh, A. M.; Weiguny, J. A. Chem. Rev. 1996, 96, 2035.
    [144].Paul, F. Coord. Chem. Rev. 2000, 203, 269.
    [145].Shi, F.; He, Y.-D.; Li, D.-M.; Ma, Y.-B.; Zhang, Q.-H.; Deng, Y.-Q. J. Mol. Catal. A: Chem. 2006, 244, 64.
    [146].Lou, W. Y.; Zong, M. H.; Smith, T. J. Green Chem. 2006, 8, 147.
    [147].Okochi, M.; Nakagawa, I.; Kobayashi, T.; Hayashi, S.; Fu-rusaki, S.; Honda, H. J. Biotechnol. 2007, 128, 376
    [1]. (a)Brunelle,D.J.;scotia,N.Y. US Pat, 5229482 (1993);(b) Brunelle D.J.;scotia,N.Y.US Pat.5229482 (1993).
    [2]. Huang J.; Jiang T.; Gao H.; Han B.; Liu Z.; Wu W.; Chang Y.; Zhao G., Angew. Chem. Int. Ed, 2004, 43, 1397
    [3]. Gros P.; Perchec P. L.; Sene J. P., J. Org. Chem. 1994, 59, 4925
    [4]. Brunelle D. J.; Scotia, N. Y. Method of preparing hexaalkylguanidinium salts. US Pat, 1992, 5082968.
    [5]. Barton D. H.; Elliott J. D.; Géro S. D. Synthesis and properties of a series of sterically hindered guanidine bases. J. Chem. Soc. Perkin. Trans.1. 1982, 2085-2090.
    [6]. (a)Isobe, T.; Fukuda, K.; Ishikawa, T. Tetrahedron: Asymmetry. 1998, 9, 1729-1735; (b) Isobe, T.; Fukuda, K.; Ishikawa, T. J. Org. Chem. 2000, 65, 7770-7773.
    [7].段海峰,张所波,林英杰,邱志明,王宗睦.高等学校化学学报. 2004, 24, 2024-2026.
    [8]. Schlama, T.; Gouverneur, V.; Valleix, A.; Greiner, A.; Toupet, L.; Mioskowlki, C. J. Org. Chem. 1997, 62, 4200-4202.
    [1].(a)Jones, G. Org. Reaet.1967,15,204.(b)Tietze, L, F.; Comprehensive Organic Synthesis.Vol.2,Trost, B.M., Ed. Pergmaon Perss, NewYork, 1991, Chap. 1.11,341-394.
    [2].(a)Kuapp,G:Naimi-Jmaal, M.R.:Sehmeyers, J.Tearthedron, 2003, 59, 753. (b)Shi, D. Q.; Chen, J.; Zhunag, Q. Y.; Wang, X. S.; Hu, H. W. Chin. Chem. Lett., 2003, 14, 1242.
    [3].Kruas, G. A.; Krolski, M. E.; J. Org. Chem., 1986,51, 3347.
    [4].Lehnert, W. Tetrahedron Lett, 1970, 11, 4723.
    [5].Bao, W.L.; Zhang, Y. M.; Yang, T. K.; Synth Commun., 1996, 26, 503.
    [6].Deigdao, F.; Tamariz, J.; Zepeda, G.; Landa, M.; Mirabda, R.; Carcia, J. Synth. Commun., 1995, 25, 753.
    [7].Prajapati, D.; Sandhu, J.S. J. Chem. Soc. Perkin Trans 1, 1993, 739.
    [8].Moison, H.; Texier-Boulet, F.; Foucaud, A. Tetrahedron, 1987, 43, 537
    [9].(a) Texier-Boullet,F.; Villemin, D.: Ricard, M.; Moison, H.: Foucaud, A. Tetrahedron, 1987, 41, 1259. (b)Texier-Boullet, F.: Foueuad, A.T Tertahedron Lett, 1982, 23, 4927.
    [10].戴桂元,史达清,周龙虎,化学试剂,1996,18,39.
    [11].Gowravaram, G: Reddy, B. V. S.: Babu, R.S.; Yadav, J. S. Chem.Lett, 1998, 773.
    [12].Prajapati, D.; Lekho, K. C.: Sandhu, J. S.; Ghosh, A. C. J. Chem.Soc., Perkin Trans 1, 1996,959.
    [13].L, Y. Q. J. Chem. Res., (S), 2000, 524.
    [14].Cabello,J.A.: Campelo, J.M.: Cacria, A.; Luna, D.; Marinas, J. M. J. Org. Chem., 1984, 49, 5195.
    [15].(a)Villemin, D. J. Chem. Soc., Chem. Commun., 1983, 1092. (b) Sun,J.: Yan, C. G; Hna, Y. Synth. Commun., 2001, 31, 151. (c)Villemin,D.: Abdelkrim, B. A. Synth Commun., 2991, 21, 63.
    [16].Gao,Y: Shi, D.Q.: Zhou, L.H. Chin. J. Org. Chem., 1996, 16, 548.
    [17].Dewna, S. K.; Singh, R. Synth. Commun., 2003, 33, 3081.
    [18].(a) Obrador, E.: Casrto, M.: Tamariz, J.; Zepeda, G: Miranda, R.: Delgado, F. Synth. Commun., 1998, 28, 4649.(b) Alcerreca, G: Sanabria, R.; Miranda,R.: Arroyo, G.; Tamariz, J.; Delgado, F. Synth. Commun., 2000, 30, 1295.
    [19].Liu, H. M.; Liu, H.L.; Yuan.Y. J.; Tang, R. X.: Ji, S. J. Chni. J. Chem., 2003, 23, 1159.
    [20].(a) Ren, Z. J.: Cao, W. G: Tong, W. Q.: Jing, X. P. Synth. Commun., 2002, 32, 1947. (b)Jin, T. S.: Wang, A. Q.: Wang, X.: Zhang, J. S.: Li, T. S. Synlett., 2004, 4, 871.
    [21].Angeletti, E.: Canepa, C.: Martinetti. G: Venturello, P. Tetrahedron. Lett,1988, 29, 2261.
    [22].(a)李贵深,李敬慈,王春,冯硕,李晓陆,高等学校化学学报, 2001, 12, 2042
    [23].(a)Maggi, R.: Bigi, F.; Carloni,; Mazzoc, A. Green Chem., 2001, 3, 173.
    [24].Zuo, W.X.: Hua, R.M.: Qiu, X. Q. ReBr(CO)5-Catalyzed Knoevenagel Condensation, Synth. Commun., 2004, 34, 3219.
    [25].章明,张爱琴,唐星华,有机化学,2004,24(9),1106.
    [26].Morrison, D.W.; Forbes, D.C.; Dvais, J.H. Tetrahdron Lett, 2001, 42, 6053.
    [27].Harjani. J.R.: Nara, S. J.: Salunkhe, M.M. Tetrahedron Lett, 2002, 43, 1127.
    [28].Formentin,P.; Garcia, H.; Leyva, A. J.Mol. Catal. A, 2004, 214, 137.
    [29].Khna, F. A.: Dash, J.: Satapathy, R.: UPadhyay, S.K.Tetrahedron Lett, 2004, 45, 3055.
    [30].Su, C.: Chen, Z-C.: Zheng, Q.-G Synthesis, 2003, 555.
    [31].Swatloski, R.P.: Holbery, J. D.: Rogers, R.D. Green. Chem., 2003, 5, 361.
    [32].Cheng, L. H.; Li, Y. Q. Chin. J. Synth. Chem. 2002, 10(6), 504 (in Chinese). (程力惠,李毅群,合成化学, 2002, 10(6), 504.)
    [33].Hou, M.; Yu, B.; Li, Z. L. Chin. J. Synth. Chem. 2002, 10(3), 211 (in Chinese). (侯敏,余波,李志良,合成化学, 2002, 10(3), 211.)
    [34].Xu, X. M.; Li, Y. Q.; Zhou, M. Y.; Tan, Y. H. Chin. J. Org. Chem. 2004, 24(2), 184 (in Chinese). (徐欣明,李毅群,周美云,谭赟华,有机化学, 2004, 24(2), 184.)
    [35].Villemin, D.; Martin, B. J. Chem. Res. 1994, 146.
    [36].Xiao, L. W.; Li, H. Z.; Liu, H. M. Chin. J. Hebei Univ. 2003, 23(2), 167 (in Chinese). (肖立伟,李慧章,刘卉闵,河北大学学报, 2003, 23(2), 167.)
    [37].Loupy, A.; Song, S. J.; Sohn, S. M.; Lee, Y. M.; Kwon, T. W. J. Chem. Soc., Perkin Trans. 1, 2001, 1220.
    [38].Cruz, P.; Barra, E. D.; Loupy, A.; Langa, F. Tetrahedron Lett. 1996, 37, 1113.
    [39].Wang, G. W.; Wang, B. L. Chin. J. Org. Chem. 2004, 24(1), 85 (in Chinese). (王官武,王宝亮,有机化学, 2004, 24(1), 85.)
    [40].Wang, C.; Li, G. S.; Li, J. C.; Feng, S.; Li, X. L. Chin. J. Org. Chem. 2001, 21(4), 310 (in Chinese). (王春,李贵深,李敬慈,冯硕,李晓陆,有机化学, 2001, 21(4), 310.)
    [41].Mitra, A. K.; De, A.; Karchaudhuri, N. Synth. Commun. 1999, 29(16), 2731.
    [42].Yaday, J. S.; Reddy, B. S.; Basak, A. K.; Visali, B.; Narsaiah, A. V.; Nagaiah, K. Eur. J. Org. Chem. 2004, 546.
    [43].Liu, H. M.; Liu, H. L.; Yuan, Y. J.; Tang, R. X.; Ji, S. J. Chin. J. Org. Chem. 2003, 23(10), 1159 (in Chinese). (刘卉闵,刘卉凌,袁永军,唐然肖,纪姝婧,有机化学,2003, 23(10), 1159.)
    [44].Li, J. T.; Zang, H. J.; Feng, J. Y.; Li, L. J.; Li, T. S. Synth. Commun. 2001, 31(5), 653.
    [45].Martin-Aranda, R. M.; Ortega-Cantero, E.; Rojas-Cervantes, M. L.; Vicente-Rodriguez, M. A.; Banares-Munoz, M. A. J. Chem. Technol. Biotechnol. 2005, 80, 234.
    [46].Zuo, B. J.; Wang, Q. L.; Wang, Y.; Ma, Y. D. Chin. J. Catal. 2002, 23(6), 555 (in Chinese). (左伯军,王琪珑,王远,马玉道,催化学报, 2002, 23(6), 555.)
    [47].Cao, Y. D.; Yang, C. Chin. J. Acta Petrol. Sin. 2002, 18(6), 20(in Chinese). (曹雨诞,杨春,石油学报, 2002, 18(6), 20.)
    [48].Reddy, T. I.; Varma, R. S. Tetrahedron Lett. 1997, 38(10), 1721.
    [49].Hamper, B. C.; Kolodziej, S. A.; Scates, A. M. Tetrahedron Lett. 1998, 39, 2047.
    [50].Simpson, J.; Rathbone, D. L.; Billington, D. C. Tetrahedron Lett. 1999, 40, 7031.
    [51].Li, Y. Q.; Zhou, M. Y.; Xu, X. M.; Ou, Y. Q. Chin. J. Appl. Chem. 2003, 20(1), 89 (in Chinese). (李毅群,周美云,徐欣明,欧亦群,应用化学, 2003, 20(1), 89.)
    [52].Li, Y. Q.; Ye, H. H. Chin. J. Org. Chem. 2002, 22(9), 678 (in Chinese). (李毅群,叶海鸿,有机化学, 2002, 22(9), 678.)
    [53].Zhang, M.; Zhang, A. Q.; Tang, X. H. Chin. J. Org. Chem.2004, 24(9), 1106 (in Chinese). (章明,张爱琴,唐星华,有机化学, 2004, 24(9), 1106.)
    [54].Li, G. S.; Li, J. C.; Wang, C.; Feng, S.; Li, X. L. Chin. J. Chem. Univ. 2001, 22(12), 2042 (in Chinese).(李贵深,李敬慈,王春,冯硕,李晓陆,高等学校化学学报, 2001,22(12), 2042.)
    [55].Geng, L. J.; Wang, S. X.; Li, J. T.; Liu, C. H. Chin. J. Org. Chem. 2002, 22(12), 1047 (in Chinese). (耿丽君,王书香,李记太,刘春红,有机化学, 2002, 22(12), 1047.)
    [56].李贵深,王春,李敬慈,张英群,李晓陆,有机化学, 2003, 23(8), 858.
    [57].张英群,王春,李敬慈,李贵深,杨丽华,河北农业大学学报, 2002, 25(4), 128.
    [58].李敬慈,李贵深,王春,冯硕,河北大学学报, 2001, 21(3), 269.
    [59].Harjani.J.R.; Nara,S.J.; Salunkhe,M.M. Tertahedron Lett, 2002,43,1127.
    [60].Formentin, P.;Garcia, H.; Leyva, A.J.Mol.Catal.A, 2004, 214,137.
    [61].Khan, F. A.; Dash, J.; Satapathy, R.; Upadhyay, S. K. Tertahedron Lett, 2004, 45,3055.
    [62].徐欣明,李毅群,周美云,有机化学,2004,24,184
    [63].Li, Y. Q.; Xu, X. M.;Zhou, M. Y. Chin.Chem.Lett., 2003, 14, 448.
    [64].Zheng, X.L.; Zhang, Y. M. Synth.Comnrun., 2003, 33, 159.
    [65].Zhang, X.Y.; Fan, X. S.; Niu, H.Y.; Wang, J. J. Green.Chem., 2003, 5, 267.
    [66].Zhang, X.Y.; Fan, X. S.; Niu, H.Y.; Wang, J. J. Chin.Chem.Lett., 2003, 14, 1005.
    [67].Bao, W. L.; Wang, Z. M.; Li, Y. X. J. Chem. Res.(S)2003, (5), 294.
    [68].Su, C.; Chen,Z. C.; Zheng, Q. G. Synthesis, 2003, 555.
    [69].Hangarge, R. V.; Jarikote, D. V.; Shingare, M. S. Green. Chem., 2002, 4, 266.
    [1]. (a) Akai S, Tsujino T, Fukuda N, et al. Asymmetric Total Synthesis of Fredericamycin A: An Intramolecular Cycloaddition Pathway[J]. Chem Eur J, 2005, 11(21): 6286-6297. (b) Dalal N S, Shi X L. On the formation of oxygenated radicals by fredericamycin A and implications to its anticancer activity: an ESR investigation[J]. Biochemistry, 1989, 28(2): 748-750.
    [2].Dudley G B, Takaki K S, Cha D D, Danheiser R L. Total Synthesis of (-)-Ascochlorin via a Cyclobutenone-Based Benzannulation Strategy[J]. Org Lett, 2000, 2(21): 3407-3410.
    [3].(a) Rawat M, Wulff W D. Total synthesis of carbazoquinocin C: application of the o-benzannulation of Fischer carbene complexes to carbazole-3,4-quinone alkaloids[J]. Org Lett. 2004, 6(3): 329-332. (b) Minatti A, Dotz K H. Enantioselective total synthesis of (-)-curcuquinone via regioselective chromium-mediated benzannulation[J]. J Org Chem. 2005, 70(9): 3745-3748.
    [4].(a) Hartshorn S R. Non-conventional electrophilic aromatic substitutions and related reactions[J]. Chem Soc Rev, 1974 (3): 167-192. (b) Beak P, Snieckus V. Directed lithiation of aromatic tertiary amides: an evolving synthetic methodology for polysubstituted aromatics[J]. Acc Chem Res, 1982, 15(10): 306-312.
    [5].(a) Katritzky A R, Li J, Xie L. [3+3] Benzannulations of benzenoid- and heteroaromatic-ring systems[J]. Tetrahedron, 1999, 55(28): 8263-8293. (b) Bamfield P, Gordon P F. Aromatic benzene compounds from acyclic precursors[J]. Chem Soc Rev, 1984 (13): 441-488. (c) Saito S, Yamamoto Y. Recent advances in the transition-metal- catalyzed regioselective approaches to polysubstituted benzene derivatives[J]. Chem Rev, 2000, 100(8): 2901-2916.
    [6].Saito, S.; Salter, M. M.; Gevorgyan, V.; Tsuboya, N.; Tando, K.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 3970-3971.
    [7].Gevorgyan, V. Tando, K. Uchiyama, N. Yamamoto, Y. J. Org.Chem. 1998, 63, 7022-7025.
    [8].Gevorgyan V. V, Quan LG, Yamamoto Y. Effective synthesis of aryl ethers and coumaranones employing the palladium-catalyzed enyne-diyne[J]. J Org Chem. 2000, 65(2): 568-572.
    [9]. M. J. Lee, K.Y. Lee, D.Y. P, J. N. Kim, Tetrahedron, 2006, 62, 3128-3136.
    [10].Naoki Asao, Kumiko Takahashi, Sunyoung Lee, Taisuke Kasahara, and Yoshinori Yamamoto, AuCl3-Catalyzed Benzannulation: Synthesis of Naphthyl Ketone Derivatives from o-Alkynylbenzaldehydes with Alkynes, J Am Chem Soc. 2002, 124, 12650-12651.
    [11]. Murakami, M.; Ubukata, M.; Itami, K.; Ito, Y. Angew. Chem.,Int. Ed. Engl. 1998, 37 (16), 2248-2250.
    [12].Kita V, Okunaka R, Honda T, Shindo N, et al. Strong base-induced intramolecular cycloaddition of homophthalic anhydrides: an efficient synthesis of polycyclic peri-hydroxy aromatic compounds[J]. J Org Chem, 1991, 56(1): 119-125.
    [13]. Kita Y, Higuchi K, Yoshida Y, et al. Enantioselective total synthesis of a potent antitumor antibiotic, fredericamycin A[J]. J Am Chem Soc. 2001, 123(14): 3214-22.
    [14]. Shair M D, Yoon T Y, Mosny K K, et al. The Total Synthesis of Dynemicin A Leading to Development of a Fully Contained Bioreductively Activated Enediyne Prodrug[J]. J Am Chem Soc, 1996, 118(40): 9509-9525.
    [15].Barun O, Nandi S, Panda K, et al. [4 + 2] Cycloaromatization of 4-Bis(methylthio)- 3-buten-2-one with Active Methylene Ketones: A Simple and Facile Phenol Annulation[J]. J Org Chem, 2002, 67(15): 5398-5401.
    [16].Prelog V, Ruzicka L, Metzler O, Zur Kenntnis des Kohlenstoffringes.über cis-3.4-Polymethylen- cyclohexanone[J]. Helv Chim Acta, 1947, 30(6): 1883-1895.
    [17].Chem.Commun. 2005,2633-2634
    [18].Alan R. Katritzky, Jianqing Li, Linghong Xie, [3+3] Benzannulations of benzenoid- and heteroaromatic-ring systems Tetrahedron, 1999, 55, 8263-8293.
    [19].Chan T H, Brownbridge P. Chemistry of enol silyl ethers. 5. A novel cycloaromatization reaction. Regiocontrolled synthesis of substituted methyl salicylates[J]. J Am Chem Soc, 1980, 102(1 0); 3534-3538.
    [20].(a) Balu M P, Ila H, Junjappa H. Cycloaromatization ofα-oxoketene dithioacetals with 2- picolyllithium: A facile quinolizinium cation annelation[J]. Tetrahedron Lett, 1987, 28(26): 3023-3026. (b) Datta A, Ila H, Junjappa H. Novel cycloaromatization in reformatsky reaction onα-oxoketene dithioacetals: A regioselective synthesis of substituted ethyl 2-hydroxy-6- methylthiobenzoates [J]. Tetrahedron Lett, 1988, 29(4): 497-500.
    [21].Sota Sato, Hiroyuki Isobe, Takatsugu Tanaka, Tomohiko Ushijima, Eiichi Nakamura Three-component synthesis of polysubstituted benzene derivatives via Diels–Alder reaction of cyclopentadienone acetal with alkyne Tetrahedron, 2005, 61, 11449-11455.
    [22].Xihe Bi, Dewen Dong, Qun Liu, Wei Pan, Lei Zhao, and Bing Li, [5 + 1] Annulation: A Synthetic Strategy for Highly Substituted Phenols and Cyclohexenones J Am Chem Soc, 2005, 127, 4578-4579.
    [23].Sinder B B, Patricia J J. Manganese(III)-based oxidative free-radical cyclizations. Oxidative cyclization and aromatization of 3-oxo-6-heptenoate esters[J]. J Org Chem, 1989, 54(1): 38-46.
    [24].(a) Danheiser D L, Gee S K. A regiocontrolled annulation approach to highly substituted aromatic compounds[J]. J Org Chem, 1984, 49(9): 1672-1674. (b) Smith A B III, Kozmin S A, Paone D V. Total Synthesis of (-)-Cylindrocyclophane F[J]. J Am Chem Soc, 1999, 121(32): 7423-742.
    [25].Danheiser R L, Helgason A L. Total Synthesis of the Phenalenone Diterpene Salvilenone[J]. J Am Chem Soc, 1994, 116(21): 9471-9479.
    [26].Tamotsu Takahashi, Masanori Ishikawa, and Shoquan Huo, Reaction of a Double Bond of Zirconacyclopentadienes: Formation of 1,2,3,5-Tetrasubstituted Benzenes via the C?C Bond Cleavage J. Am. Chem. Soc. 2002, 124, 388-389.
    [27].(a) D?tz K H, Tomuschat P. Annulation reactions of chromium carbene complexes: scope, selectivity and recent developments[J]. Chem Soc Rev, 1999, 28(3): 187-198. (b) D?tz K H. Synthesis of the Naphthol Skeleton from Pentacarbonyl-[methoxy(phenyl) carbene]chromium (O) and Tolan[J]. Angew Chem Int Ed Engl, 1975, 14(9): 644-645.
    [28].Astruc D. Modern Arene Chemistry[M]. Wiley-VCH: Weinheim, Germany, 2002.
    [29].Ono N. The Nitro Group in Organic Synthesis[M]. Wiley-VCH: New York, 2001.
    [30].Ballini R, Bosica G. A Direct Method for the Synthesis of Polyfunctionalized Unsaturated Carbonyl Derivatives by Michael Addition of Nitroalkanes to Enediones with the Help of DBU[J]. Tetrahedron, 1995, 51(14): 4213-4222.
    [31].Handbook of Organopalladium Chemistry for Organic Synthesis[M]. Negishi E, Ed, 2002, John Wiley & Sons, Inc.
    [1].(a) Elbein, A. D.; Molyneux, R. J. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1981; Vol. 5, p 1. (b) Li, Q.; Mitscher, L. A.; Shen, L. L. Med. Res. Rev. 2000, 20, 231.
    [2].(a)Gossauer, A.; Prog. Chem. Org. Nat. Prod. 2003, 86,1. (b) Royles, B. J. L. Chem.Rev. 1995, 95, 1981.
    [3].The Chemistry ofβ-lactams; Page, M. I. Ed.; Blackie Academic & Professional: New York, 1992.
    [4].Hiroshi Morita, Shiori Oshimi, Yusuke Hirasawa, Koichiro Koyama, Toshio Honda, Wiwied Ekasari, Gunawan Indrayanto, and Noor Cholies Zaini, Org. Lett., 2007, 9, 3691-3693
    [5].M. Rudyanto, Y. Tomizawa, H. Morita, and T. Honda Org. Lett., 2008, 10, 1921-1922.
    [6].Cornelia Uncua, Adriana Tudose, Miron Teodor Cproiu, Marieta Plvei, Rita Kakou-Yao Tetrahedron 55, 1999, 15011-15024.
    [7].Wafaa M. Abdou, Neven A. F. Ganoub, Abeer A. M. Shaddy Tetrahedron 1998, 54, 9079-9088.
    [8].Fateh V. Singh, Manish Dixit, Sumit Chaurasia, Resmi Raghunandan, Prakas R. Maulik, Atul Goel, Tetrahedron Lett. 2007, 48, 8998-9002.
    [9].Richard W. J. Carney, Janice Wojtkunski, Bruno Fechtig, R. T. Puckett, Barbara Biffar, George DeStevensJ. Org. Chem. 1971, 36, 2602-2606.
    [10].Terrence R. Burke , Benjamin Lim, Victor E. Marquez, Zhen Hong Li, Joseph B. Bolen, Irena Stefanova, Ivan D. HorakJ. Med. Chem. 1993, 36, 425-432.
    [11].Vijay Nair, Ani Deepthi, Tetrahedron Letters 2006, 47, 2037–2039.
    [12].Cristina Cimarelli, Gianni Palmieri, Tetrahedron 2000, 56, 475–478.
    [13].J. A. Van Allan, S. Farid, G. A. Reynolds, S. Chie Chang, JOC 1973, 38, 2834-2838
    [14].Cristina C., Gianni P., Tetrahedron 2000, 56, 475–478.
    [15].朱汝锦编译,国外医药抗生素分册1996,17,444-465.
    [16].刘长令,精细与专用化学品2004, 12, 29-30.
    [17].Haifeng Song, Kongchang Chen, He Tian. Dyes and Pigments. 2004, 60(1), 11-119.
    [18].Kraus Helmut,Klausener Alexander,Fuerstenwerth Hauke. 1995, US, 5, 420-428.
    [19].刘超美,中国药物化学杂志,1993,6,51-53.
    [20].刘晓红,郭苏闽,于晨侠,徐州师范大学学报(自然科学版)2001, 19, 13-14.
    [21].陈卫民,曾陇梅,徐继红,第一军医大学学报,1998, 18, 282-283.
    [22].F. Sainte, B. S.Poncin, A. M. H.Frisque, and L. Ghosez, J. Am. Chem. Soc., 1982, 104, 1428-1430
    [23].孙强,高世萍,姚小华等.东北师大学报自然科学版. 1995,2,71-74
    [24].孙强,张振权,孙云鸿等.合成化学. 1993, 4, 351-355.
    [25].Xihe Bi, Dewen Dong, Qun Liu, Wei Pan, Lei Zhao, Bing Li, J. Am. Chem. Soc., 2005, 127 (13), 4578–4579.
    [26].Li Chen, Yu-Long Zhao, Qun Liu, Chao Cheng, and Cheng-Ri Piao,J. Org. Chem., 2007, 72 (24), 9259–9263.
    [27].Wei Pan, Dewen Dong, Kewei Wang, Jie Zhang, Rigenhada Wu,Dexuan Xiang, Qun Liu, Org.Lett. 2007, 9, 2421-2423.
    [28].Dexuan Xiang,Yang Yang,Rui Zhang,Yongjiu Liang,Wei Pan,Jie Huang, Dewen Dong, J. Org. Chem. 2007, 72, 8593-8596.
    [29].Rui Zhang, Dingyuan Zhang, Yongli Guo, Guangyuan Zhou, Zijiang Jiang, and Dewen Dong, . Org. Chem., 2008, 73 (23), 9504–9507.
    [30].韦红映. 2-氯吡啶和2,6-二氯吡啶的合成,杭州化工. 2004, 34(4),23~24.
    [31].梁诚. 2-氯吡啶和2,6-二氯吡啶,中国氯碱. 2002, 5, 10~12.
    [32].郑淑玲,张明华. 6-氯-2吡啶酮的合成和表征,天津化工. 2006, 20, 16~18.
    [33].陈卓,胡高云,龚娟等.5-甲基-2(1H)吡啶酮的合成.合成化学2004, 12, 89~93.
    [34]. T. Zhu, Z. Yan, A.r Chucholowski, T. R. Webb, and R. Li, J. Comb. Chem., 2006, 8,401-409.
    [35].谢文林,马林,郭刚军等. N-取代-6-芳硫基吡啶酮类化合物的合成与生物活性研究.有机化学. 2002,22,999~1003
    [36].路再生,倪兆平,牛德仲. N-芳基-2-乙基-3-羟基-4-吡啶酮的微波合成,有机化学. 2003,23,89~91
    [37].李玉娟,王钝,于鑫等。沈阳药科大学学报.2005, 22(1), 17~18
    [38].Hartmann L. A, Stephen J. F.,1984, US ,4, 473-696.
    [39].廖琪丽,王建营,胡文祥.科技导报.2008, 26(3), 44~45.
    [40]. Pachter I. J,Kloetzel M C.J. Am. Chem. Soc.1952, 74, 1321~1324.
    [41].孙强,高世萍,姚小华等.合成化学. 1995,3(1),84~87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700