新型金属铟的微孔化合物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究在水热和溶剂热体系下,金属铟的无机微孔化合物的合成与结构表征,旨在进一步研究金属铟微孔化合物组成和结构的多样性及它们的合成规律,为无机微孔化合物的规律性研究提供一些基本数据。
     在水热/溶剂热体系下,通过引入[SO4]2-结构基元代替传统的[PO4]3-结构基元,首次合成出两个二维层状结构的硫酸铟化合物和一个三维超分子结构的硫酸铟化合物,并同时得到了一个具有双链结构的草酸铟化合物。在大量实验基础上,较为系统地研究了影响硫酸铟微孔化合物合成的因素(诸如溶剂、时间、温度、反应物配比等)及其组成和结构上的特点,归纳并总结了合成规律,为硫酸铟微孔化合物的合成提供了一些基本的实验数据和规律。
     在水热体系下,引入草酸作为第二有机配体,成功的合成了三个磷酸-草酸铟化合物。其中以1,10-菲啰啉为配体的磷酸-草酸铟化合物具有二维层状结构,而且它是通过一个以1,10-菲啰啉为配体的磷酸铟微孔化合物为初始原料合成出来的;以乙二胺和三乙烯二胺为模板剂的磷酸-草酸铟化合物都具有三维开放骨架结构。文中我们讨论了影响磷酸-草酸铟化合物合成的因素,总结了产物与合成之间的一般规律,丰富了磷酸-草酸盐微孔材料的合成化学。
     选用铟为金属中心,在金属有机配位聚合物领域也做了探索性研究。在{In /btec/L} (btec =1,2,4,5-benzenetetracarboxylate,L = N-donor ligand)体系下成功地合成出两个新颖的铟金属配位聚合物,对其结构进行了表征,并对其荧光性质进行了研究。
Materials with open-framework structures are of great interest due to their rich structural chemistry and the potential applications in separation, absorption, ion-exchange, and catalysis. In these materials, metal phosphates constitute one of the largest families. However, the study of the open-framework metal phosphates was usually focused on changing the“cation”. In recent years, people tried to synthesis new open-framework compounds through changing the“anion”to open a new field for microporous compounds.
     More recently, [SO4]2- group has been investigated as a possible replacement for the traditional phosphate tetrahedral with great success. It is well known that though [SO4]2- tetrahedron is approximately the same size and shape as [PO4]3-, there is a difference of the charge between them, so it could provide variety and novelty to the structures. After the first members of a family of organically templated open-framework cadmium sulfates were synthesized under hydrothermal conditions by Rao et al, a series of metal sulfates based on transition and rare earth metals had been prepared. However, less exploratory work has been carried out on synthesizing the organically templated main block metal sulfates. Especially, to our best knowledge, there is no report on synthesizing indium-containing sulfates. In this thesis, under mild hydrothermal / solvothermal synthesis conditions, we first successfully prepared three indium sulfates with different organic amine molecules as template agents: (2,2’-bipy)[In2(OH)2(H2O)](SO4)2 (1); (4,4’-bipy)In(OH)(HSO4)2 (2) and (C6H22N4)0.5[In(OH)](SO4)2 (3)。
     Compound 1 is the first indium sulfate microporous material. Its two-dimensional layer structure is constructed from two distinct motifs, a one-dimensional butlerite-type chain and a single 4-ring (S4R) unit. The two-dimensional layer structure of compound 2 is built up from 1D butlerite-type In(OH)(HSO4)2 chains, bridged by 4,4’-bipy units. Compound 3 is built up by InO4(OH)2 octahedra and SO4 tetrahedra that share their vertices to generate an one-dimensional anionic tancoite-type chain. The TETA cations are in the cavities of the structure delimited by four different chains, and ionic interactions with the anionic chains exist. The one-dimensional chains are extended into three-dimensional supramolecular structure through the hydrogen–bond interactions among the N atoms of TETA cations and O atoms of the anionic chains. In addition, an indium oxalate (4,4’-bipy)2In2Cl4(C2O4) (4) was obtained in the process of optimizing compound 2. It possesses a double chain framework which has never been reported in indium oxalates. Herein, we discussed the syntheses, structural features and some properties of these novel compounds and summarize the rules of synthesis. Our investigation show that it is possible to prepare structural complex open-framework indium sulfates possessing cavity size, limiting apertures, and framework densities rivaling those of the most open zeolites and aluminophosphates under appropriate reaction conditions.
     Another important change in“anion”is to introduce suitable multidentate ligands (such as oxalate) into inorganic framework as the second ligand. The phosphate groups can be replaced partially or completely by the second ligand, resulting in novel open-framework inorganic-organic hybrid materials. In this way, it is possible to retain some of the robustness of the inorganic framework while including the much greater chemical and topological flexibilities of the organic units. In this thesis, under mild hydrothermal synthesis conditions, we successfully prepared three indium phosphate-oxalates with different organic amine molecules as template agents: (C12N2H8)2[In4(H2O)2(HPO4)2(PO4)2(C2O4)] (6), (C2N2H10)3In6(HPO4)6(PO4)2(C2O4)3·4H2O (7) and (C6N2H14)[In4(H2O)2(HPO4)2(PO4)2(C2O4)2]·7H2O (8). It is noteworth that compound 6 was synthesized by using indium phosphate (C12N2H8)[In(HPO4)(H2PO4)]·H2O (5) as a precursor.
     The one-dimensional ladder of 5 consists of InO4N2 octahedra, HPO4 and H2PO4 tetrahedra. The structure of 6 is constructed from one-dimensional double six-membered rings columns that connected by the oxalate units into a two-dimensional layer. Comparison of the structures of compounds 5 and 6 clearly suggests that the one-dimensional double six-membered rings column of compound 6 may be viewed as generating from the one-dimensional four-membered ring ladder of compound 5. So, compound 5 probably plays two roles, dissolving in solution acting as In source of reactants and as the precursor for constructing into the structure of compound 6. The crystal structure of compound 7 may be viewed as the stacking of the neutral inorganic layers with the oxalate units as pillars to form the 3D open-framework structure with approximately circular 1D 12-membered channels. Compound 8 displays a three-dimensional open-framewok with 1D 12-membered channels that built up from 1D indium phosphate inorganic chains, cross-linked by oxalate units. In this thesis, we also discussed the syntheses and structural features of these indium phosphate-oxalates and the structural relationships among them.
     In addition, metal-organic coordination polymers with rigid open frameworks, zeolite-like materials, possess not only porous phases similar to inorganic zeolites but also better performance in the field of optics, electronics, catalysis and magnetism, and have attracted much more attentions. Compared with many novel structures with divalent transition metal centers, the frameworks containing IIIA group metal centers are much less reported. The indium complexes have proven to possess interesting properties in catalytic, so it is very meaningfully to design and synthesis indium coordination polymers.
     In this thesis, we tried to introduce indium (III) center to the {M/btec/L} (L = N-donor ligand) system, and successfully synthesized two novel indium (III) metal-organic materials, In(2,2’-bipy)(btec)0.5Cl (9) and In2(phen)4(Hbtec)2 (10). Compound 9 exhibits a novel wavelike 2D layer with contorted rhombic grids, while compound 10 possesses a 2D supramolecular framework structure with quadrangle windows.
引文
[1]徐如人,庞文琴,无机合成与制备化学[M].北京:高等教育出版社,2001.
    [2]Everett D.H., In IUPAC Mannul of Symbols and Terminology, Pure Appl. Chem [J]. 1972, 31: 578.
    [3]Cronstedt A. F, Vetenskaps K., Acad Handle Stockholm[M]. 1756, 17: 120.
    [4]Smith J.V., Definition of A Zeolite, Definition of a zeolite [J]. Zeolites, 1984, 4 : 309.
    [5]Barrer R.M., White E.A.D., The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates [J]. J. Chem. Soc., 1952, 1561.
    [6]Miton R.M., USPat. 1989, 882: 243.
    [7]Brech D.M., USPat. 1965, 216: 789.
    [8]Breck D.M., USPat. 1964, 130: 007.
    [9]Sand L.B., USPat. 1969, 436:174.
    [10]Barrer R.M., Denny P.J., Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates [J]. J. Chem. Soc., 1961: 971.
    [11]Argauer R.J., Landolt G. R., USPat. 1972, 702: 866.
    [12]Chen N.Y., Kaeding W.W., Dwyer F.G., Stable carbocations CXII Preferential formation of the bicyclo[3.3.0]-1-octyl cation from bicyclooctyl precursors and its rearrangement to the 2-methylnorbornyl cation [J]. J. Am. Chem. Soc, 1971, 93 : 6783.
    [13]Zones S.I., Yuen L.T., Nakagawa Y., et al. Proc. 9th, Int. Zeol. Conf., Montrealm, 1992, 163 & S. I. Zones, D. S. Santilli, 171.
    [14]Lobo R.F., Zones S.I., Davis M.E., Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1995, 21: 47.
    [15]Freyhardt C.C., Tsapatsis M., Lobo R.F., et al. A High-Silica Zeolite with a 14-Tetrahedral-Atom Pore Opening [J]. Nature, 1996, 381: 29
    [16]Lobo R.F., Zones S.I., Davis M.E., et al., ZMPC’97, Sendai, Meeting, Sendai, 1997.
    [17]Shannon M.D., Cassi J.L., Cox P.A., et al. Structure of the 2-Dimensional Medium-Pore High-Silica Zeolite Nu-87 [J]. Nature, 1991, 353, 417.
    [18]Lawton S.L., Rohrbaugh W.J., The Framework Topology of Zsm-18: A Novel Zeolite Containing Rings of 3 (Si, Al)-O Species [J]. Science, 1990, 247 : 1319.
    [19]Taramasso M., Perego G., Notari B., Proc. 5th Inter. Conf. on Zeolites, Heyden, Washington, DC 1980, 40.
    [20]庞文琴,景晓燕,张密林,高等学校化学学报,1982, 3: 577.
    [21]裘式纶,吉林大学博士学位论文[D],1988.
    [22]Pujado P.R., Rabo J.A., Antos G.J., Gembicki S.A., Industrial catalytic applications of molecular sieves [J]. Catal. Today, 1992, 13:113.
    [23]Notari B., Titanium silicalites [J]. Catal. Today, 1993, 18:163.
    [24]Clearfield A., Karlin K.D., Metal phosphonate chemistry [J]. In Progress in Inorganic Chemistry, Wiley, New York, 1998, 371.
    [25]Wilson S. T., Look B.M., Messina C.A., et al. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids [J]. J. Am. Chem. Soc., 1982, 104:1146.
    [26]Davis M.E., Saldrnaga C., Montes C., et al. A molecular sieve with eighteen-membered rings [J]. Nature, 1988, 331: 698.
    [27]Dessau R. M., Schlenker J. L., Higgins J.B., Framework topology of AIPO4-8: the first 14-ring molecular sieve [J]. Zeolites, 1990, 10: 522.
    [28]Huo Q., Xu R., Li S., et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20 [J]. J. Chem. Soc. Chem. Commun., 1992, 875.
    [29]Flanigen E.M., Lok B.M., Patton R.L., et al. Aluminophosphate Molecular Sieves and the Periodic Table. Proc. Of the 7th Intl. Zeolite Conf. Kodansha-Elsevier, Murakam Y, Lijima A, Ward J W (Eds)1986, 103-112.
    [30]Yu J.H., Xu R.R., Rich Structure Chemistry in the Aluminophosphate Family [J]. Acc. Chem. Res., 2003, 36: 481-490.
    [31]Parise J.B., Preparation and structural characterization of two metallophosphate frameworks clathrating diprotonated ethylenediamine: AlPO4-12 and GaPO4-12 [J]. Inorg. chem., 1985, 24 : 4312.
    [32]Parise J.B., Some gallium phosphate frameworks related to the aluminium phosphate molecular sieves: X-ray structural characterization of {(PriNH3)[Ga4(PO4)4·OH]}·H2O [J]. J. Soc. Chem. Commun., 1985, 606.
    [33]Parise J.B., Preparation and structure of a gallium phosphate framework with clathrated isopropylamine [J]. Acta. Crystallogr, set c, 1986, 42:144-147.
    [34]Yong G., Feng S., Xu R., Crystal structure of the gallophosphate framework: X-ray characterization of Ga9P9O36OH·HNEt3 [J]. J. Soc. Chem.Commun., 1987, 1254.
    [35]Feng S., Xu R., Yang G., Sun H., Chem. J. Chin. Univ., 1988, 4:1.
    [36]Wang T., Yang G., Feng S., et al. A novel mixed octahedral–tetrahedral framework: X-ray characterization of a microporous gallophosphate, Ga2P2O8(OH)H2O·NH4·H2O·0.16 PrOH (GaPO4-C7) [J]. Chem. Commun., 1989, 948.
    [37]Xu R., Chen J., Feng S., Stad. Surf. Sci. Catal., 1991, 60: 63.
    [38]霍启升,吉林大学博士学位论文[D], 1992.
    [39]Loiseau T., Ferey G.., Synthesis and crystal structure of ULM-16, a new open-framework fluorinated gallium phosphate with 16-ring channels: Ga4(PO4)4F2·1.5NC6H14·0.5H2O·0.5H3O [J]. J. Mater. Chem., 1996, 6:1073.
    [40]Sassoye C., Loiseau T., Taulelle F., et al. A new open-framework fluorinated gallium phosphate with large 18-ring channels (MIL-31) [J]. Chem. Commun., 2000, 11: 943.
    [41]Sassoye C., Marrot J., Loiseau T., Ferey G., Utilization of Cyclopentylamine as Structure-Directing Agent for the Formation of Fluorinated Gallium Phosphates Exhibiting Extra-Large-Pore Open Frameworks with 16-ring (ULM-16) and 18-ring Channels (MIL-46) [J]. Chem. Mater., 2002, 14:1340.
    [42]Beitone L., Marrot J., Loiseau T., et al, MIL-50, an Open-Framework GaPOwith a Periodic Pattern of Small Water Ponds and Dry Rubidium Atoms: a Combined XRD, NMR, and Computational Study [J]. J. Am. Chem. Soc., 2003, 125:1912-1922.
    [43]Walton R.I., Millange F., Loiseau T., et al. Crystallization of a Large-Pore Three-Dimensional Gallium Fluorophosphate under Mild Conditions [J]. Angew. Chem. Int. Ed., 2000, 39: 4552-4555.
    [44]Lin C.H., Wang S.L., Lii K.H., [Ga2(DETA)(PO4)2]·2H2O (DETA = Diethylenetriamine): A Novel Porous Gallium Phosphate Containing 24-Ring Channels [J]. J. Am. Chem. Soc., 2001, 123: 4649-4650.
    [45]Chen C, Liu Y.L, Wang S.H, et al. Hydrothermal Syntheses, Structural Characterizations, and Photoluminescence Properties of Three Fluorinated Indium Phosphates with Bipyridyl Ligands: In3F2(2,2’-bipy)2(HPO4)2(H1.5PO4)2, In2F2(H2O)(2,2’-bipy)(HPO4)2 and In2F2(H2O)(2,2’-bipy-5-amine)(HPO4)2 [J]. Chem. Mater. 2006, 18: 2950-2958.
    [46]Chen C, Yi Z, Bi M.H, et al. Hydrothermal synthesis and characterization of the first 1-D indiumphosphate chain In2(HPO4)2(H2PO4)2F2·C4N2H12, a precursor for high dimensional structures [J]. J. Solid State Chem. 2006, 179: 1478–1485.
    [47]Chippindale A.M., Brech S.J., Synthesis and crystal structure of the first organically templated layered indium phosphate [C5H5NH]+[In(HPO4)(H2PO4)2]– [J]. Chem. Commun., 1996, 2781.
    [48]Lii K.H., Huang Y.F., Synthesis and Structures of [In4(4,4’-bipy)3(HPO4)4 (H2PO4)4]·4H2O and In4(4,4’-bipy)3(HPO4)4(H2PO4)4, Indium Phosphates with a Pillared Layer Structure [J]. Inorg. Chem. 1999, 38 : 1348-1350.
    [49]Chippindale A.M., Brech S.J., Cowley A.R., Novel Pillared Layer Structure of the Organically Templated Indium Phosphate [In8(HPO4)14(H2O)6] (H2O)5 (H3O)(C3N2H5)3 [J]. Chem. Mater. 1996, 8: 2259.
    [50]Du H.B., Chen J.S., Pang W.Q., et al. Synthesis and structural characterization of two- and three-dimensional fluorinated indium phosphates [J]. Chem. commun., 1997, 781.
    [51]Du Y., Yu J.H., Wang Y., et al. [Co(en)3][In3(H2PO4)6(HPO4)3]·H2O: A new layered indium phosphate templated by cobalt complex [J]. J. Solid State Chem. 2004, 177: 3032-3037.
    [52]Chen C, Wang S.H, Zhang N, et al. Novel ?uorinated indium phosphate with a double-layers structure: Assembled from racemic chiral building units [J]. Micro. Meso. Mater, 2007, 106: 1–7.
    [53]Li J.Y, Li L, Yu J.H, Xu R.R, [C4N2H12]2[In3(HPO4)5(H2PO4)F2]: The First 2-D Fluorinated Indium Phosphate with Double-Sheet Layers and 8-Ring Channels [J]. Inorg. Chem. Commun., 2006, 9: 624.
    [54]Dhingra S.S., Haushalter R.C., Hydrothermal synthesis and crystal structure of [H3NCH2CH2NH3][In2(HPO4)4]. A novel octahedral–tetrahedral framework indium phosphate with occluded organic cations [J]. J. Chem. Soc., Chem. Commun., 1993, 1665.
    [55]Williams I.D., Yu J., Du H., et al. A Metal-Rich Fluorinated Indium Phosphate, 4[NH3(CH2)3NH3]·3[H3O]·[In9(PO4)6(HPO4)2F16]·3H2O, with 14-membered Ring Channels [J]. Chem. Mater., 1998, 10: 773-776.
    [56]Thirumurugan A., Natarajan S., Synthesis and structure of a new three-dimensional indium phosphate with 16-membered one-dimensional channels [J]. Dalton Trans., 2003, 3387.
    [57]Yi Z, Yang Y.L, Huang K.K, et al. Hydrothermal synthesis and characterization of two new three-dimensional ?uoroindium phosphates In4(PO4)4(H2O)4F2·C6H14N2 and In8(PO4)8(H2O)8F4·(C5H14N2)2 [J]. J. Solid State Chem, 2004, 177 : 4073–4080.
    [58]Chen C, Yi Z, Ding H, et al. Template synthesis and characterization of a novel three-dimensional open-framework indium phosphate (C6N4H22)1/2[In3(HPO4)6]·H3O [J]. Micro. Meso. Mater, 2005, 83 :301–308.
    [59]Chen C, Liu Y.L, Fang Q. et al. Novel open-framework ?uorinated indium phosphate with 14-ring intersecting channels: Assembled from 6*1 and racemic pillared secondary building units [J]. Micro. Meso. Mater, 2006, 97 : 132–140.
    [60]Lii K.H., RbIn(OH)PO4: an indium(III) phosphate containing spirals of corner-sharing InO6 octahedra [J]. J. Chem. Soc., Dalton Trans., 1996, 6: 815.
    [61]Mao S.Y., Li M.R., Huang Y.X., et al. Hydrothermal Synthesis and Crystal Structure of the First Ammonium Indium(III) Phosphate NH4In(OH)PO4 with Spiral Chains of InO4(OH)2 [J]. J. Solid State Chem. 2002, 165: 209-213.
    [62]陈超.具有开放骨架结构的磷酸铟,磷酸钛微孔晶体的水热合成研究[D].长春:吉林大学博士学位论文, 2006.
    [63]Harvey G., Meier W. M., Stud. Surf. Sci. Catal. 1989, 49A:411.
    [64]Gier T.E., Stucky G.D., Low-temperature synthesis of hydrated zinco(beryllo)- phosphate and arsenate molecular sieves [J]. Nature, 1991, 349(7) : 508-510.
    [65]于龙,吉林大学博士学位论文,1990.
    [66]Guo M, Yu J.H, Li J.Y, et al. Syntheses and Structures of Two Low-Dimensional Beryllium Phosphate Compounds: [C5H14N2]2[Be3(HPO4)5]·H2O and [C6H18N2]0.5[Be2(PO4)(HPO4)OH]·0.5H2O [J]. Inorg. Chem, 2006, 45: 3281.
    [67]Natarajan S., Attfield M.P., Cheetham A.K., [H3N(CH2)2NH3]0.52+[Sn4P3O12]-: An Open-Framework Tin(II) Phosphate [J]. Angew. Chem. Int. Ed. Engl. 1997, 36 : 978-980.
    [68]Natarajan S., Ayyappan S., Cheetham A.K., et al. Novel Open-Framework Tin(II) Phosphate Materials Containing Sn?O?Sn Linkages and Three-Coordinated Oxygens [J]. Chem. Mater., 1998, 10:1627-1631.
    [69]Harrison W.T.A., Gier T.E., Moran K.L., et al. Structures and properties of new zeolite X-type zincophosphate and beryllophosphate molecular sieves [J]. Chem. Mater., 1991, 3: 27.
    [70]Harrison W.T.A., Phillips M.L.F., Hydrothermal Syntheses and Single-Crystal Structures of Some Novel Guanidinium-Zinc-Phosphates [J]. Chem.Mater., 1997, 9: 1837.
    [71]Yang G.Y., Sevov S.C., Zinc Phosphate with Gigantic Pores of 24 Tetrahedra [J]. J. Am. Chem. Soc., 1999, 121: 8389-8390.
    [72]Zhu J., Bu X.H., Feng P.Y., Stucky G.D., An Open-Framework Material with Dangling Organic Functional Groups in 24-Ring Channels [J]. J. Am. Chem. Soc. 2000, 122:11563-11564.
    [73]Rodgers J.A., Harrison W.T.A., H3N(CH2)6NH3·Zn4(PO4)2(HPO4)2·3H2O: a novel three-dimensional zinc phosphate framework containing 5- and 20-rings[J]. J. Mater. Chem., 2000, 10 : 2853.
    [74]Harrison W.T.A., NaZnPO4·H2O, an Open-Framework Sodium Zinco phosphate with a New Chiral Tetrahedral Framework Topology [J]. Chem. Mater., 1996, 8: 145-151.
    [75]Neeraj, Nataraja S., Rao C.N.R., A novel open-framework zinc phosphate with intersecting helical channels [J]. Chem. Commun., 1999, 165.
    [76]Lin Z.E., Yao Y.W., Zhang J., et al. Synthesis and Structure of a Novel Open-Framework Zincophosphate with Intersecting Three-Dimensional Helical Channels [J]. J. Chem. Soc., Dalton Trans., 2002, 4527.
    [77]Effenberger H., Parik R., Pertlik F., et al. Zeitschrift fur Kristallographic, 1991, 194: 199.
    [78]Chen J., Jones R.H.. Natarajan S., et al. A Novel Open-Framework Cobalt Phosphate Containing a Tetrahedrally Coordinated Cobalt(II) Center: CoPO4·0.5 C2H10N2 [J]. Angew. Chem. Int. Ed. Engl., 1994, 33: 639-640.
    [79]袁宏明,手性模板剂与金属磷酸盐的形成[D].长春:吉林大学博士学位论文,2000.
    [80]Soghomonian V., Chen Q., Haushalter R.C., et al. An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O [J]. Science, 1993, 259 : 1596-1599.
    [81]DeBord J.R.D., Reiff W.M., Warren C.J., et al. A 3-D Organically Templated Mixed Valence (Fe2+/Fe3+) Iron Phosphate with Oxide-Centered Fe4O(PO4)4 Cubes: Hydrothermal Synthesis, Crystal Structure, Magnetic Susceptibility, and M?ssbauer Spectroscopy of [H3NCH2CH2NH3]2[Fe4O(PO4)4]·H2O [J]. Chem. Mater., 1997, 9: 1994.
    [82]Lin H., Lii K., Jiang Y., et al. Organically Templated Inorganic/Organic Hybrid Materials: Synthesis and Structures of (C4H12N2)[FeII4(C2O4)3(HPO4)2] and (C5H14N2)[FeIII2(C2O4)(HPO4)3] [J]. Chem. Mater., 1999, 11: 519.
    [83]Lii K., Huang Y., Ziam V., et al. Syntheses and Structures of Organically Templated Iron Phosphates [J]. Chem. Mater., 1998, 10 : 2599 and references therein.
    [84]Cavellec M., Riou D., Greneche J.M., et al. Hydrothermal synthesis, structure and magnetic properties of [Fe3(PO4)3F2H3N(CH2)4NH3]: The analog of the three-dimensional gallophosphate structure-type ULM-3 [J]. J. Magn. Mater., 1996, 163:173.
    [85]M. Cavellec, D. Riou, J.M. Greneche, et al.Hydrothermal Synthesis, Structure, and Magnetic Properties of a Novel Mono-dimensional Iron Phosphate: [FeF(HPO4)2N2C3H12(H2O)x] (ULM-14) [J]. Inorg. Chem., 1997, 36, 2187.
    [86]E. Kemnitz, M. Wloka, S.I. Trojanov, A. Stiewe, (enH2)0.5[Zr2(PO4)2(HPO4)F]·H2O ein neuartiges Zirconiumfluoridphosphat mit Hohlraumstruktur [J]. Angew. Chem. 1996,108, 2809; Angew. Chem. Int. Ed. Engl. 1996, 35, 2667
    [87]Wloka M., Trojanov S. I., Kemnitz E., New Zirconium Phosphate Fluorides: Hydrothermal Synthesis and Crystal Structures [J]. J. Solid State Chem., 1998, 135: 293.
    [88]Ekambaram S., Sevov S., Organically Templated Mixed-Valent TiIII/TiIV Phosphate with an Octahedral- Tetrahedral Open Framework [J]. Angew. Chem.Int. Ed., 1999, 38: 372.
    [89]Serre C., Guillou N., Ferey G., Hydrothermal synthesis and ab initio structure determination from powder data of a new three-dimensional mixed valence oxyfluorinated titanium phosphate with an open structure: TiIIITiIVF(PO4)2·2H2O or MIL-15 [J]. J. Mater. Chem. 1999, 9: 1185.
    [90]Escobal J., Rojo T. et al., A New Manganese(II) Phosphate Templated by Ethylenediamine: (C2H10N2)[Mn2(HPO4)3(H2O)] Hydrothermal Synthesis, Crystal Structure and Spectroscopic and Magnetic Properties [J]. Chem. Mater., 2000, 12: 376.
    [91]Natarajan S., Proc. Inian Acad. Sci., 2000, 112: 249.
    [92]Tsai Y.M, Wang S.L, Huang C.H, et al. Synthesis and Structural Characterization of the First Organically Templated Vanadyl(IV) Arsenato- and Phosphato-oxalates: (C4H12N2)[VO(C2O4)HXO4](X = As, P) [J]. Inorg. Chem. 1999, 38: 4183-4187.
    [93]Lightfoot P, Lethbridge Z.A.D., Morris R.E., et al. Synthesis and Structure of an Unusual New Layered Aluminophosphate Containing OxalateGroups, [NH3CH2CH2NH3]2.5[Al4H(HPO4)4(H2PO4)2(C2O4)4] [J]. J. Solid State Chem, 1999, 143: 74-76.
    [94]Peng L, Li J.Y, Yu J.H, et al. [H3N(CH2)4NH3]2 [Al4(C2O4)(H2PO4)2(PO4)4]·4 [H2O]: A new layered aluminum phosphate-oxalate [J]. J. Solid State Chem, 2005, 178: 2686–2691.
    [95]Jiang Y.C, Wang S.L, Lee S.F, et al. Novel Transition Metal Oxalatophosphates with a Two-Dimensional Honeycomb Structure: (H3TREN) [M2(HPO4) (C2O4)2.5]·3H2O ( M = MnII and FeII, TREN = Tris(2-aminoethyl) amine) [J]. Inorg. Chem. 2003, 42: 6154?6156.
    [96]Mrak M, Kolitsch U, Lengauer C, et al. Synthesis, Structural and Spectroscopic Properties of Two New Ethylenediamine-Templated Gallophosphate?Oxalate Layered Materials [J]. Inorg. Chem. 2003, 42: 598?604.
    [97]Lii K.H, Chen C.Y, Synthesis and Characterization of (R-C5H14N2)2[Ga4(C2O4) (H2PO4)2(PO4)4]·2H2O, a Layered Gallium Phosphatooxalate Containing a Chiral Amine [J]. Inorg. Chem. 2000, 39: 3374-3378.
    [98]Chen Z.X, Tan S.L, Weng L.H, et al. New organically templated gallium oxalate-phosphate structures based on Ga4(PO4)4(C2O4) building unit [J]. J. Solid State Chem, 2006, 179:1931–1937.
    [99]Colin J.F., Bataille T., Ashbrook S.E., et al. Na2[(VO)2(HPO4)2C2O4]·2H2O: Crystal Structure Determination from Combined Powder Diffraction and Solid-State NMR [J]. Inorg. Chem. 2006, 45: 6034?6040.
    [100]Do J, Bontchev R.P., Jacobson A.J., A Hydrothermal Investigation of the V2O5-H2C2O4/H3PO4/NH4OH System: Synthesis and Structures of (NH4)VOPO4·1.5H2O, (NH4)0.5VOPO4·1.5H2O, (NH4)2[VO(H2O)3]2[VO(H2O)] [VO(PO4)2]2·3 H2O, and (NH4)2[VO(HPO4)]2(C2O4) 5H2O [J]. Inorg. Chem. 2000, 39: 3230-3237.
    [101]Tang M.F, Lii K.H, Synthesis and structural characterization of (H4APPIP)[V3(C2O4)2(HPO4)3(PO4)(H2O)]·6H2O(APPIP=1,4-bis(3-aminopropyl)pip-erazine), a layered vanadium oxalatophosphate containing double 6-ring units [J]. J. Solid State Chem, 2004, 177: 1912–1918.
    [102]Do J, Bontchev R.P., Jacobson A.J., Vanadyl Oxalatophosphate Compounds (C2H10N2)[VO(HPO4)]2(C2O4) and (CH6N3)2[[VO(HPO4)]2(C2O4) and Their Thermal Transformation to (VO)2P2O7 via VOHPO4 [J]. Chem. Mater. 2001, 13: 2601-2607.
    [103]Kedarnath K., Choudhury A, Natarajan S, A Hybrid Open-Framework Aluminum Phosphate-Oxalate Possessing Large Circular 12-Membered Channels [J]. J. Solid State Chem, 2000,150: 324-329.
    [104]Rajic N, Logar N.Z, Mali G, et al. New Inorganic Organic Hybrid: Synthesis and Structural Characterization of an Alumino(oxalato)phosphate [J]. Chem. Mater. 2003, 15 : 1734-1738.
    [105]Choudhury A, Natarajan S, Inorganic hybrid open-framework structures: synthesis andstructure of a cobalt phosphate-oxalate, [C4N2H12]0.5[Co2(HPO4) (C2O4)1.5] [J]. Solid State Sci, 2000, 2: 365–372.
    [106]Huang T, Vanchura B.A., Shan Y, Huang S.D., Na(H3NCH2CH2NH3)0.5[Co(C2 O4)(HPO4)]: A novel phosphoxalate open-framework compound incorporating both an alkali cation and an organic template in the structural tunnels [J]. J. Solid State Chem, 2007, 180 : 2110–2115.
    [107]Lin H. M, Lii K.H, Jiang Y.C, et al. Organically Templated Inorganic/Organic Hybrid Materials: Synthesis and Structures of (C4H12N2)[FeII4(C2O4)3(HPO4)2] and (C5H14N2)[FeIII2(C2O4)(HPO4)3] [J]. Chem. Mater., 1999, 11: 519.
    [108]Jiang Y.C, Wang S.L, Lii K.H, Synthesis, Crystal Structure, Magnetic Susceptibility, and Mossbauer Spectroscopy of a Mixed-Valence Organic Inorganic Hybrid Compound: (H3DETA)[Fe3(C2O4)2(HPO4)2(PO4)] (DETA = diethylenetri amine) [J]. Chem. Mater. 2003, 15: 1633-1638.
    [109]Chang W.J, Lin H.M, Lii K.H, Synthesis and Characterization of New Iron Phosphatooxalates: [(S)-C5H14N2][Fe4(C2O4)3(HPO4)2(H2O)2] and [(S)-C5H14N2] [Fe4(C2O4)3(HPO4)2] [J]. J. Solid State Chem, 2001, 157: 233-239.
    [110]Choudhury A, Natarajan S, A hybrid open-framework structure: synthesis and structure of an iron phosphate oxalate, [C10N4H28][Fe2(HPO4)3(C2O4)]2 [J]. J. Mater. Chem., 1999, 9 : 3113-3117.
    [111]Sheu C.Y, Lee S.F, Lii K.H, Ionic Liquid of Choline Chloride/Malonic Acid as a Solvent in the Synthesis of Open-Framework Iron Oxalatophosphates [J]. Inorg. Chem. 2006, 45 : 1891?1893.
    [112]Lethbridge Z.A.D., Lightfoot P, Mixed Inorganic-Organic Anion Frameworks: Synthesis and Crystal Structure of Fe4(PO4)2(C2O4)(H2O)2 [J]. J. Solid State Chem, 1999, 143: 58-61.
    [113]Choudhury A, Natarajan S, Rao C.N.R., Hybrid Open-Framework Iron Phosphate -Oxalates Demonstrating a Dual Role of the Oxalate Unit [J]. Chem. Eur. J. 2000, 6: 1168.
    [114]Choudhury A, Natarajan S, Rao C.N.R., A Hybrid Open-Framework Iron Phosphate Oxalate with a Large Unidimensional Channel, Showing Reversible Hydration [J]. Chem. Mater. 1999, 11: 2316-2318.
    [115]Meng H, Li G. H, Xing Y, et al. Hydrothermal synthesis and characterization of a new 3D iron phosphatooxalate templated by organo-amine [J]. Polyhedron, 2004, 23: 2357–2362.
    [116]Choudhury A, Natarajan S, Rao C.N.R., Hybrid Framework Iron(II)Phosphate-Oxalates [J]. J. Solid State Chem, 1999, 146: 538-545.
    [117]Hung L.C, Kao H.M, Lii K.H, Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of K2[Ga4(C2O4)(PO4)4] 2H2O, a New Gallium Phosphatooxalate with an Intersecting Tunnel Structure [J]. Chem. Mater. 2000, 12: 2411-2417.
    [118]Choi C.T.S., Anokhina E.V., Day C.S., et al. Novel Gallium Phosphatooxalate with Pendant Oxalate Ligands: Preparation, Crystal Structure, NMR Spectroscopy, and Thermal Stability [J]. Chem. Mater. 2002, 14: 4096-4103.
    [119]Chen C.Y, Chu P.P., Lii K.H, Synthesis, crystal structure and 71Ga MASNMR spectroscopy of a novel gallium phosphatooxalate: [Ga5(OH)2(C10H9N2) (C2O4) (PO4) 4]·2H2O [J]. Chem. Commun., 1999, 1473–1474.
    [120]Loiseau T, Férey G, Haouas M, et al. Structural Analysis of F/OH Distribution in a Hybrid Open-Framework Fluorinated Gallium Oxalate Phosphate Templated by 1,3-Diaminopropane (MIL-90) [J]. Chem. Mater. 2004, 16: 5318-5326.
    [121]Huang Y.F, Lii K.H, Organically templated inorganic/organic hybrid materials: hydrothermal synthesis and structural characterization of [C4H12N2] [In2(C2O4) (HPO4)3]·H2O [J]. J. Chem. Soc., Dalton Trans., 1998, 4085–4086.
    [122]Lethbridge Z.A.D., Smith M.J., Tiwary S.K., et al. Synthesis of Hybrid Framework Materials under“Dry”Hydrothermal Conditions: Crystal Structure and Magnetic Properties of Mn2(H2PO4)2(C2O4) [J]. Inorg. Chem. 2004, 43: 11?13.
    [123]Yu R.B, Xing X.R, Saito T, et al. A novel organically templated hybrid open-framework manganese phosphate–oxalate [J]. Solid State Sci, 2005, 7 : 221–226.
    [124]Lethbridge Z.A.D., Tiwary S.K., Harrison A, et al. Synthesis, structural relationships and magnetic properties of new amine-templated manganese(II) phosphate oxalate framework materials [J]. J. Chem. Soc., Dalton Trans., 2001, 1904–1910.
    [125]Lethbridge Z.A.D., Hillier A.D., Cywinski R., et al. Mixed inorganic–organic anion frameworks: synthesis and characterisation of [Mn4(PO4)2(C2O4)(H2O)2] and [H3N(CH2)3NH3][Mn2(HPO4)2(C2O4)(H2O)2] [J]. J. Chem. Soc., Dalton Trans., 2000, 1595–1599.
    [126]Natarajan S, Synthesis and Structure of a Tin(II) Phosphatooxalate, Sn2(PO4)[C 2O4]0.5, Containing One-Dimensional Tin Phosphate Chains [J]. J. Solid State Chem, 1998, 139: 200-203.
    [127]Neeraj S., Natarajan S, Rao C.N.R., A zinc phosphate oxalate with phosphate layers pillared by the oxalate units [J]. J. Chem. Soc., Dalton Trans., 2001, 289–291.
    [128]Fu Z.Y, Dai J.C, Zhang J.J, et al. Synthesis, structure of a coordination polymer: {Na2[Zn(C2O4)1.5H2PO4]·2H2O}n [J]. Inorg. Chem. Commun, 2003, 6 : 919–921.
    [129]Chang W.M, Wang S.L, New Series of Oxalato-Gallophosphate Structures Containing Transition Metal Centers [J]. Chem. Mater. 2005, 17: 74-80.
    [130]Liang J, Li J. Y, Yu J.H, et al. An Open-Framework Zinc Phosphite Containing Extra-Large 24-Ring Channels [J]. Angew. Chem. Int. Ed., 2006, 45: 2546.
    [131]Yi Z, Chen C, Li S.G, et al. Hydrothermal Synthesis and Structural Characterization of the First Indium Phosphite In2(HPO3)3(H2O) [J]. Inorg. Chem.Commun., 2005, 8: 166.
    [132]Wang L, Shi S.H, Ye J.W, et al. (H3NC2H4NH3)[In(OH)3(HPO3)]: The First Organically Templated Indium Phosphate [J]. Inorg. Chem. Commun., 2005, 8: 271.
    [133]Wang L, Song T.Y, Xu J.N, et al. Synthesis and Characterization of Two New Organically Templated Indium Phosphites Built from One-Dimensional Ladders [J]. Micro. Meso. Mater., 2006, 96: 287.
    [134]Li N, Xiang S.H, Hydrothermal synthesis and crystal structure of two novel aluminophosphites containing infinite Al–O–Al chains [J]. J. Mater. Chem., 2002, 12: 1397–1400.
    [135]Fu W.S, Wang L, Shi Z, et al. The First Organically Templated Beryllium Phosphite [NH3(CH2)3NH3]·Be3(HPO3)4: Hydrothermal Synthesisand X-ray Crystal Structure [J]. Crystal Growth & Design, 2004, 4: 297.
    [136]Fernández S., Pizarro J.L., Mesa J.L., et al. Hydrothermal synthesis of a new layered inorganic–organic hybrid cobalt(II) phosphite: (C2H10N2)[Co (HPO3)4] Crystal structure and spectroscopic and magnetic properties [J]. Int. J. Inorg. Mater. 2001, 3: 331-316.
    [137]Fernández S., Mesa J.L., Pizarro J.L., et al. (C2H10N2)[Cr(HPO3)F3]: The First Organically Templated Fluorochromium(III) Phosphite [J]. Angew. Chem. Int. Ed. 2002, 41: 3683-3685.
    [138]Fernández S., Pizarro J.L., Mesa J.L., et al. Hydrothermal Synthesis and Structural Characterization of the (CnH2n+6N2)[Mn3(HPO3)4] (n = 3?8) New Layered Inorganic?Organic Hybrid Manganese(II) Phosphites. Crystal Structure and Spectroscopic and Magnetic Properties of (C3H12N2)[Mn3(HPO3)4] [J]. Inorg. Chem. 2001, 40 : 3476-3483.
    [139]Fernández S., Mesa J.L., Pizarro J.L., et al. A New Layered Inorganic? Organic Hybrid Manganese(II) Phosphite: (C2H10N2)[Mn3(HPO3)4]. Hydrothermal Synthesis, Crystal Structure, and Spectroscopic and Magnetic Properties [J]. Chem. Mater. 2000, 12 : 2092-2098.
    [140]Chung U., Mesa J.L., Pizarro J.L.,et al. A new layered organically templated iron(II) phosphite,(C2H10N2)[Fe3(HPO3)4]: Hydrothermal synthesis, crystal structure and spectroscopic and magnetic properties [J]. J.Solid State Chem., 2004, 177 : 2705.
    [141]Shi Z., Li G.H., Zhang D., et al. A Vanadium(IV) Phosphite with a Pillared Layered Structure: Hydrothermal Synthesis and Characterization of (VO)4(4,4’-bpy)2(HPO3)4 [J]. Inorg. Chem. 2003, 42: 2357-2361.
    [142]Shi Z., Zhang D., Li G.H., et al. Hydrothermal synthesis and characterization of layered vanadium phosphite: [HN(C2H4)3N][(VO)2(HPO3)2(OH)(H2O)]·H2O [J]. J. Solid State Chem. 2003, 172: 464-470.
    [143]Harrison W.T.A., (CN3H6)2·(VO)3(H2O)3(HPO3)4·3H2O, a guanidinium vanadium phosphite hydrate based on a (3,4) connected net: an“Orthogonal Templating”effect? [J]. Solid State Sci. 2003, 5: 297-302.
    [144]Harrison W.T.A., H3N(CH2)NH3Zn(HPO3)2 containing four-ring chains of ZnO4 tetrahedra and HPO3 pseudo pyramids [J]. Int. J. Inorg. Mater. 2001, 3:187-189.
    [145]Rodgers J.A., Harrison W.T.A., Ethylenediamine zinc hydrogen phosphite, [H2N(CH2)2NH2]0.5·ZnHPO3, containing two independent, interpenetrating,mixed inorganic/organic networks [J]. J. Chem. Soc. Chem. Commun. 2000, 2385.
    [146]Liang J., Wang Y., Yu J.H., et al. Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains [J]. J. Chem. Soc. Chem. Commun. 2003, 882.
    [147]Dong W.J., Li G.H., Shi Z., et al. Hydrothermal synthesis and structural characterization of an organically-templated zincophosphite: [C4N2H12]0.5·[Zn3 (HPO3)4]·H3O [J]. Inorg. Chem. Commun. 2003, 6: 776-780.
    [148]Yamanaka S., Koizumi M., Structural Consideration of Zirconium Phosphate and its Organic Complexes [J]. Clay Miner, 1975, 23: 477-478.
    [149]Alberti G., Constantion U., Allulli S., et al. Inorg. Nucl. Chem, 1978, 40: 1113-1117.
    [150]Clearfield A., Progress in Inorganic Chemistry; K. D. Karlin, Ed.; John Wiley & Sons: New York, 1998.
    [151]Kong D., Clearfield A., Novel copper macrocyclic leaflet with N-phosphonome thyl-monoaza-18-crown-6 [J]. Chem. Commun., 2005, 1005–1006.
    [152]Shi X., Zhu G., Qiu, S. Huang K., et al. Zn2[(S)-O3PCH2NHC4H7CO2]2: A Homochiral 3D Zinc Phosphonate with Helical Channels [J]. Angew. Chem. Int. Ed. 2004, 43, 6482–6485.
    [153]Choudhury A., Krishnamoorthy J., Rao C.N.R.. An approach to the synthesis of organically templated open-framework metal sulfates by the amine–sulfate route [J]. Chem. Commun, 2001, 24: 2610–2611.
    [154]Paul G., Choudhury A., Sampathkumaran E.V., et al. Organically Templated Mixed-Valent Iron Sulfates Possessing Kagom? and Other Types of Layered Networks [J]. Angew. Chem. Int. Ed. 2002, 41: 4297.
    [155]Paul G., Choudhury A., Rao C.N.R. An organically templated iron sulfate with a distorted Kagome lattice exhibiting unusual magnetic properties [J]. Chem. Commun. , 2002, 1904–1905.
    [156]Paul G., Choudhury A., Rao C.N.R., Organically Templated Linear and Layered Iron Sulfates [J]. Chem. Mater. 2003, 15, 1174-1180.
    [157]Fu Y.L., Xu Z.W., Ren J. L., et al. Organically Directed Iron Sulfate Chains: Structural Diversity Based onHydrogen Bonding Interactions [J]. Inorg. Chem. 2006, 45: 8452?8458.
    [158]Rao C.N.R., Sampathkumaran E.V., Nagarajan R., et al. Synthesis, Structure, and the Unusual Magnetic Properties of an Amine-Templated Iron(II) Sulfate Possessing the KagoméLattice [J]. Chem. Mater. 2004, 16: 1441-1446.
    [159]Samia Y., Walid R., Houcine N., et al. Synthesis, crystal structures, phase transition characterization and thermal decomposition of a new dabcodiium hexaaquairon(II) bis(sulfate):(C6H14N2)[Fe(H2O)6](SO4)2 [J]. J. Solid State Chem, 2007, 180: 3560–3570.
    [160]Apinpus R., Cameron J.K., John B.C., et al. Layered Cobalt Hydroxysulfates with Both Rigid and Flexible Organic Pillars: Synthesis, Structure, Porosity, and Cooperative Magnetism [J]. J. Am. Chem. Soc. 2001, 123: 10584-10594.
    [161]Robert L.L., Matthew P.D., Randy S.R.J., et al. Hydrothermal Synthesis, Solid State Structure, and Thermal Properties of a Family of Isomorphous 1-D Coordination Polymers Aggregated by Extensive Hydrogen Bonding:{[M(3,3’-bpy)(H2O)4](SO4)·2H2O} (M=Co, Ni, Zn) [J]. Z. Anorg. Allg. Chem. 2006, 449-453.
    [162]Mohsen B.S., Serge V. Nuclear and Magnetic Structures and Magnetic Properties of Co3(OH)2(SO4)2(H2O)2 comparison to the Mn and Ni Analogues [J]. Chem. Mater. 2005, 17: 2612-2621.
    [163]Behera J.N., Paul G, Choudhury A., et al. An organically templated Co(II) sulfate with the kagome lattice [J]. Chem. Commun., 2004, 456–457.
    [164]Mohsen, Ben S., Serge V., et al. CoII5(OH)6(SO4)2(H2O)4: the first ferromagnet based on a layered cobalt–hydroxide pillared by inorganic…OSO3–Co(H2O)4– O3SO…[J]. Chem. Commun., 2004, 2548–2549.
    [165]Behera J.N., Rao C.N.R.. A Ni+2 (S = 1) Kagome Compound Templated by 1,8-Diazacubane [J]. J. Am. Chem. Soc. 2006, 128, 9334-9335.
    [166]Behera J.N., Gopalkrishnan K.V., Rao C.N.R, et al. Synthesis, Structure, and Magnetic Properties of Amine-Templated Open-Framework Nickel(II) Sulfates [J]. Inorg. Chem. 2004, 43: 2636?2642.
    [167]Paul G., Choudhury A., Nagarajan R., et al. Amine-Templated Linear Vanadium Sulfates with Different Chain Structures [J]. Inorg. Chem. 2003, 42: 2004?2013.
    [168]Khan M.I., Cevika S., Doedens R.J., Inorganic–organic hybrids derived from oxovanadium sulfate motifs: synthesis and characterization of [VIVO( 3-SO4)(2,2’-bpy)] [J]. Chem. Commun., 2001, 1930–1931.
    [169]Khan M.I., Cevik S., Doedens R.J., Hydrothermal synthesis and characterization of a new vanadyl sulfate compound: crystal structure of [V(IV)OSO4(H2O)4]·SO4·[H2N(C2H4)2NH2] [J]. Inorg. Chimi. Acta, 1999, 292: 112–116.
    [170]Behera J.N., Rao C.N.R. Organically-Templated Zinc and Thorium Sulfates with Chain and LayeredStructures [J]. Z. Anorg. Allg. Chem. 2005, 631: 3030-3036.
    [171]Fan Y., Li G.H., Yang L., et al. Synthesis, Crystal Structure, and Magnetic Properties of a Three-Dimensio Hydroxide Sulfate: Mn5(OH)8SO4 [J]. Eur. J. Inorg. Chem. 2005, 3359–3364.
    [172]Walid R., Houcine N., Tahar M., et al. A new dabco templated metal sulfate, (C6H14N2)[Mn(H2O)6](SO4)2. Chemical preparation, hydrogen-bonded structure and thermal decomposition [J]. J. Chem. Crystallography, 2007, 7: 147.
    [173]Bull I., Wheatley P.S., Lightfoot P., et al. Synthesis and crystal structure of the first scandium-containing open framework solid [J]. Chem. Commun., 2002, 11: 1180.
    [174]Norquist A.J., Doran M.B., O’Hare D., The Role of Amine Sulfates in Hydrothermal Uranium Chemistry [J]. Inorg. Chem. 2005, 44: 3837?3843.
    [175]Norquist A.J., Paul M.T., Michael B. D., et al. Synthesis of Cyclical Diamine Templated Uranium Sulfates [J]. Chem. Mater. 2002, 14: 5179-5184.
    [176]Norquist A.J., Doran M.B., Thomas P.M., et al. Structural diversity in organically templated uranium sulfates [J]. Dalton Trans., 2003, 1168–1175.
    [177]Paul G., Choudhury A., Rao C.N.R.. Organically templated linear and layered cadmium sulfates [J]. J. Chem. Soc., Dalton Trans., 2002, 20: 3859–3867
    [178]Bataille T., Louer D., Two new diamine templated lanthanum sulfates, La2(H2O)2(C4H12N2)(SO4)4 and La2(H2O)2(C2H10N2)3(SO4)6·4H2O, with 3D and 2D crystal structures [J]. J. Mater. Chem., 2002, 12: 3487.
    [179]Wang D., Yu R., Xu Y., et al. The First Organically Templated Layered Cerium Phosphate-Hydrogen Sulfate: [enH2]0.5[CeIII(PO4)(HSO4)(OH2)] [J]. Chem. Lett., 2002, 11: 1120.
    [180]Dan M, Behera J.N., Rao C.N.R., Organically templated rare earth sulfates with three-dimensional and layered structures [J]. J. Mater. Chem., 2004, 14 : 1257–1265.
    [181]Xing Y., Liu Y.L., Shi Z., et al. Synthesis and structure of organically templated lanthanum sulfate [C4N3H16][La(SO4)3] H2O [J]. J.Solid State Chem., 2003, 174 : 381-385.
    [182]Xing Y., Shi Z., Li G. H., et al. Hydrothermal synthesis and structure of [C2N2H10][La2(H2O)4(SO4)4]·2H2O, a new organically templated rare earth sulfate with a layer structure [J]. J. Chem. Soc., Dalton Trans., 2003, 174: 940-943.
    [183]Detkov D.G., Gorbunova Y.E., Kazarinova A.S., et al. Polymeric Tin(II) Complexes with Dibasic Nitrogen-Containing Organic Cations. Synthesis and Crystal Structure of (C10H10N2)0.5[SnF(SO4)] [J]. Russian Journal of Coordination Chem, 2003, 29: 451–454.
    [184]Wang Y., Xu J.N., Sun J.Y., et al. Synthesis and structure of the first organic–inorganic hybrid tin (II) chlorosulfate: [C6N2H14][SnCl2SO4] [J]. J. Molecular Struct, 2006, 797: 140–143.
    [185]Casey W.H., Olmstead M.M., Phillips B.L., A New Aluminum Hydroxide Octamer, [Al8(OH)14(H2O)18](SO4)5·16H2O [J]. Inorg. Chem. 2005, 44: 4888?4890.
    [186]Li H., Eddaoudi M., O’keeffe M., Yaghi O.M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402 : 276.
    [187]Chui S.S.Y., Lo S.M.F., Charmant J.P.H., et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283:1148-1150.
    [188]储德清,过渡金属配位聚合物的合成、结构与性能研究[D].长春:吉林大学博士学位论文,2001.
    [189]张丽娟,多羧酸-过渡金属配位聚合物的合成、结构与性能的研究[D].长春:吉林大学博士学位论文,2003
    [190]Forster P.M., Cheetha A.K., Open-Framework Nickel Succinate, [Ni7(C4H4O4) 6(OH)2(H2O)2]·2H2O: A New Hybrid Material with Three-dimensional Ni-O-Ni Connectivity [J]. Angew. Chem. Int. Ed,. 2002, 41: 457-459.
    [191]MacGillivray L.R., Subramanian S., Zaworotko M.J., Interwoven two- and three-dimensional coordination polymers through self-assembly of CuI cations with linear bidentate ligands [J]. Chem.Commun., 1994, 1325-1326.
    [192]Lloret, DeMunno G., Julve M., et al. Spin polarization and ferromagnetism in two-simensional sheetlike cobalt(II) polymers: [Co(L)2(NCS)2] (L = Pyrimidine or Pyrazine) [J]. Angew. Chem. Int. Ed., 1998, 37: 135-138.
    [193]Yaghi M., Li H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels [J]. J. Am. Chem. Soc., 1995, 117: 10401-10402.
    [194]Yaghi M., Li G.M., Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4 -bpy)Cl] [J]. Angew. Chem. Int. Ed,. 1995, 34:207-209.
    [195]Losier P., Zaworotko M.J., A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities [J]. Angew. Chem. Int. Ed.., 1996, 35: 2779-2782.
    [196]Yaghi M., Li H., Groy T.L., A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4’-bpy)2.5(H2O)2(ClO4)2·1.5(4,4’-bpy)·2H2O [J]. Inorg. Chem., 1997, 36: 4292-4293.
    [197]Hoskins F., Robson R., Infinite polymeric frameworks consisting of three-dimensionally linked rod-like segments [J]. J. Am. Chem. Soc., 1989, 111: 5962-5964.
    [198]Li L., Liu Z., Turner S.S., et al. The first one-dimensional copper(II)-radical system with alternating double end-on and end-to-end azido bridges [J]. New J. Chem., 2003, 27: 752-755.
    [199]Ali M., Ray A., Sheldrick W.S., et al. Synthesis, crystal structure, EPR and magnetic properyies of a cyano-bridged CuII-NiII heterobimetallic comples: an unusual structure with long-range ferromagnetic exchange through hydrogen bonding [J]. New J. Chem., 2004, 28: 412-417.
    [200]Shek Y., Wong W.T., Gao S., et al. A novel one-dimensional Ni(II)–Fe(II) polymer containingμ3-cyanides: [Ni(cyclen)]2[Fe(CN)6]?8H2O [J], New J. Chem., 2002, 26 : 1099-1101.
    [201]Harrison W.T.A., Phillips M.L.F., Stanchfield J.,et al. (CN3H6)4[Zn3(SeO3)5]: The First Organically Templated Selenite [J]. Angew. Chem. Int. Ed., 2000, 39: 3808.
    [202]Choudhury A., Udayakumar D., Rao C.N.R., Three-Dimensional Organically Templated Open-Framework Transition Metal Selenites [J]. Angew. Chem. Int. Ed., 2002, 41: 158.
    [203]Udayakumar D., Rao C.N.R., Organically templated three-dimensional open framework metal selenites with a diamondoid network organically templated three dimensional open-framework metal selenites with a diamondoid network [J]. J. Mater. Chem., 2003, 13: 1635.
    [204]Li S., Xu R., Lu Y., Xu Y., in Proceedings of 9th IZC, Montreal, 1992, 345.
    [205]Bu X., Feng P., Stucky G.D., Isolation of Germanate Sheets with Three Membered Rings: A Possible Precursor to Three-Dimensional Zeolite-Type Germanates [J]. Chem. Mater., 1999, 11: 3423.
    [206]Dadachov M.S., Sun K., Conradsson T., et al. The First Templated Borogermanate (C2N2H10)2[(BO2.5)2(GeO2)3]: Linkage of Tetrahedra of Significantly Different Sizes [J]. Angew. Chem., Int. Ed., 2000, 39: 3674.
    [207]Zhou Y., Zhu H., Chen Z., et al. A Large 24-Membered-Ring Germanate Zeolite-Type Open-Framework Structure with Three-Dimensional Intersecting Channels [J]. Angew. Chem., Int. Ed., 2001, 40: 2166.
    [208]Li H., Eddaoudi M., Yaghi O.M., An Open-Framework Germanate with Poly- cubane Like Topology [J]. Angew. Chem., Int. Ed.,1999, 38 : 653.
    [209]Julius N.N., Choudhury A., Rao C.N.R., An organically templated open framework cobalt germinate [J]. J. Solid State Chem., 2003, 170 : 124.
    [210]陈接胜,吉林大学博士学位论文,1989.
    [211]Gier T.E., Bu X., Feng P., Stucky G.D., Synthesis and organization of zeolite- like materials with three-dimensional helical pores [J]. Nature, 1998, 395: 154.
    [212]Chakrabarti S., Natarajan S., Solution mediated synthesis and structure of a three-dimensional zinc arsenate, [NH3(CH2)3NH2(CH2)2NH3][Zn4(AsO4)3(Has O4)]H2O, with intersecting helical channels [J]. J. Chem. Soc., Dalton Trans., 2002, 20 : 3874.
    [213]Johnson C.D., Skakle J.M.S., Johnston M.G., et al. Hydrothermal synthesis, crystal structure and aqueous stability of two cadmium arsenate phases, CdNH4(HAsO4)OH and Cd5H2(AsO4)44H2O [J]. J. Mater. Chem., 2003, 13: 1429.
    [214]于吉红,吉林大学博士学位论文, 1995.
    [215]Roberts M.A., Sankar G., Thomas J.M., et al. Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium [J]. Nature, 1996, 381 : 401.
    [216]Vaidhyanathan R., Neeraj S., Prasad P.A., et al. Fascinating Alkali Halide Structures of Different Dimensionalities Incorporated in Host Lattices [J]. Angew. Chem. Int. Ed., 2000, 39 : 3470.
    [217]Vaidhyanathan R., Natarajan S., Rao C.N.R., Hybrid Inorganic-Organic Host-Guest Compounds: Open-Framework Cadmium Oxalates Incorporating Novel Extended Structures of Alkali Halides [J]. Chem. Mater., 2001, 13 : 3524.
    [218]Li H., Laine A., O’Keeffe M., Yaghi O.M., Supertetrahedral Sulfide Crystals with Giant Cavities and Channels [J]. Science, 1999, 283 : 1145-1147.
    [219]Zheng N., Bu X., Wang B., Feng P., Microporous and Photoluminescent Chalcogenide Zeolite Analogs [J]. Science, 2002, 298 : 2366-2369.
    [220]Rabenau A., The Role of Hydrothermal Synthesis in Preparative Chemistry [J]. Angew. Chem. Int. Ed., 1985, 24 : 1026-1040.
    [221]Schafer H., Chem. Trans. Reactions, Academic Press, New York, 1964.
    [222]Bibby D.M., Dale M.P., Nature, 1985, 317 : 153.
    [223]Sugimoto M., Takatsu K., Kawata N., et al. Proc. of 7th International Zeolite Conference, Tokyo, 1986, 193.
    [224]Kouwenhoven H.W., Nanne J.M., Zeolite synthesis in non-aqueous solvents [J]. Zeolites, 1987, 7 : 286.
    [225]Feng S., Xu J., Xu R., et al. Chem. J. Chinese Univ. 1988, 4: 9.
    [226]Xu W., Dou T., Liu S., Chinese Patent, CN 88100228A. 1988.
    [227]Liu C., Li S., Tu K.,et al. Synthesis of cancrinite in a butane-1,3-diol systems [J]. J. Chem. Soc. Chem. Commun., 1993, 1645.
    [228]Xie Y., Qian Y., Wang W., et al. A Benzene-Thermal Synthetic Route to Nanocrystalline GaN [J]. Science, 1996, 272 : 1926-1927.
    [229]Gao Q., Li B., Chen J., et al. Nonaqueous Synthesis and Characterization of a New 2-Dimensional Layered Aluminophosphate [Al3P4O16]3?·3[CH3CH2NH3]+ [J]. J. Solid. State. Chem., 1997, 129 : 37-44.
    [230]Zhao Y., Zhu G., Jiao X., et al. Template synthesis and characterization of a new 2D layered titanium phosphate [J]. J. Mater. Chem., 2000, 10 : 463.
    [231]Huo Q., Xu R., Li S., et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20 [J]. J. Chem. Soc. Chem. Commun., 1992, 875.
    [232]Chu P., Dwyer F. G., Clarke V. J., Eur. Pat., 1990, 35 : 8827.
    [233]Arafat A., Jansen J.C., Ebaid A.R., et al. Microwave preparation of zeolite Y andZSM-5 [J]. Zeolites, 1993, 13 : 162.
    [234]Girnus I., Jancke K., Vetter R.,et al. Large AlPO4-5 crystals by microwave heating [J]. Zeolites, 1995, 15 : 33-39.
    [235]Fang M., Du H., Xu W., et al. Microwave preparation of molecular sieve AlPO4-5 with nanometer sizes [J]. Micro. Mater., 1997, 9 : 59.
    [236]Han Y., Ma H., Qiu S., et al. Preparation of zeolite A membranes by microwave heating [J]. Micro. Meso. Mater., 1999, 30 : 321.
    [237]Veda S., Fudushima T., Koizumi M., Journal of Clay Science Society of Japan, 1982, 23 : 18.
    [238]Goor G., Behrens P., Felsche J., Micro. Mater., 1994, 2 : 493.
    [239]Lin W., Chen J., Sun Y., et al. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel [J]. J. Chem. Soc., Chem. Commun., 1995, 2367.
    [240]徐文旸,董晋湘,窦涛,李建权,中国专利,89108240.9[P]. 1989.
    [241]徐文旸,李建权,中国专利,88106196[P]. 41988.
    [242]李国文,庞文琴,中国专利,1987.
    [243]周群,李宝宗,裘式纶,庞文琴,高等学校化学学报,1999, 20 : 693.
    [244]周群,庞文琴,裘式纶,贾明君,中国专利,ZL 93 1 17593.3 [P]. 1996.
    [245]Sun Y., Qiu S., Song T., et al. Synthesis of mordenite single crystals using two silica sources [J]. Zeolites, 1995, 15 : 745.
    [246]林文勇,吉林大学博士学位论文,1999.
    [247]Schreyeck L., Caullet P., Mougenel J.C., et al. A layered microporous aluminosilicate precursor of FER-type zeolite [J]. J. Chem. Soc., Chem. Commun., 1995, 2187.
    [248]Yanagisawa T., Shimizu T., Kuroda K., et al. Bull Chem Soc Jpn, 1990, 63 : 988.
    [249]Barrer R.M., Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
    [250]Loiseau T., Ferey G., Synthesis and X-ray structural characterization of a novel oxyfluorinated microporous gallium phosphate with encapsulated 1,4-diazabicyclo[2.2.2]octane as the template: Ga3(PO4)(HPO4)2F3(OH)·C6N2H14·0.5 H2O [J]. J. Chem. Soc., Chem. Commun., 1992, 1197.
    [251]Guth J.L., Kessler H., Wey R., Stud Surf. Sci Catal., 1986, 28 : 121.
    [252]Kessler H., Stud. Surf. Sci. Catal., 1989, 52 : 17.
    [253]Qiu S., Yu J., Zhu G., et al. Strategies for the synthesis of large zeolite single crystals [J]. Micro. Meso. Mater., 1998, 21 : 245.
    [254]Qiu S., Pang W., Kessler H., et al. Synthesis and structure of the [AlPO4]12 -Pr4NF molecular sieve with AFI structure [J]. Zeolites, 1989, 9 : 440.
    [255]Qiu S., Tian W., Pang W., et al. Synthesis and characterization of single crystals of SAPO-5, BAPO-5, and LiAPO-5 molecular sieves [J]. Zeolites, 1991, 11: 371.
    [256]Coker E.N., The synthesis of zeolites under microgravity conditions [J], Micro. Meso. Mater., 1998, 23 : 119.
    [257]Merrifield R. B. J., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide [J]. J. Am. Chem. Soc., 1963, 85 : 2149.
    [258]Akporiaye D., Dahl I., Kaclsson A., et al. Combinatorial Methods for theSynthesis of Aluminophosphate Molecular Sieves, Angew. Chem. Int. Ed. 1999, 38 : 2891.
    [259]宋宇,水热/溶剂热组合合成技术在无机微孔化合物合成中的应用[D].长春:吉林大学博士学位论文,2005.
    [260]Breck D.W., Flanigen E.M., Molecular Sieves [J]. Academic Press, 1968, 49.
    [261](a)Kerr G.T., J. Phys. Chem., 1966, 70 : 1047. (b)Ciric J., J. Colloidal Interface Sci, 1968, 28 : 315. (c)Zhdanov S. P., Adv. Chem. Ser., 1971, 101: 120.
    [262]Gabelica Z., Blom N., Derouane E.G., Appl. Catal., 1983, 5 : 227.
    [263]Smith, J.V. Chem. Rev. 1988, 88 : 149. Zeolites: Facts, Figures, Future; Jacobs, P. A., Eds.; van Santen, Elsevier Science Publishers B. V.: Amsterdam, 1989, 29.
    [264]Akporiaye, D.E, Price, G.D. Systematic enumeration of zeolite frameworks [J]. Zeolites. 1989, 9 : 23.
    [265]Deem M.W, Newsam J. Determination of 4-connected framework crystal structures by simulated annealing [J]. Nature 1989, 342 : 260.
    [266]Draznieks C.M., Newsam, J.M., Gorman, A.M, et al. De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method) [J]. Angew. Chem., Int. Ed. 2000, 39 : 2270.
    [267](a)Li J., Yu J., Yan W., et al. Structures and Templating Effect in the Formation of 2D Layered Aluminophosphates with Al3P4O163- Stoichiometry [J]. Chem. Mater., 1999, 11 : 2600. (b)Yu J., Li J., Wang K., et al. Rational Synthesis of Microporous Aluminophosphates with an Inorganic Open Framework Analogous to Al4P5O20H·C6H18N2 [J]. Chem. Mater., 2000, 12 : 3783-3787.
    [268]Moore P.B., Shen J., An X-ray structural study of cacoxenite, a mineral phosphate [J]. Nature 1983, 306 : 356.
    [269]He J., Yang X., Evans D.G., et al. New methods to remove organic templates from porous materials [J]. Mater. Chem. Phys., 2002, 77 : 270.
    [270]Keene M.T.J., Denoyel R., Llewellyn P. L., Ozone treatment for the removal of surfactant to form MCM-41 type materials [J]. Chem. Commun., 1998, 2203.
    [271]Davis M.E. et al., Organic-functionalized molecular sieves as shape-selective catalysts [J]. Nature, 1998, 393 : 52.
    [272]Ozin G.A., Kuperman A, Stein A., Advanced Zeolite, Materials Science [J]. Angew. Chem. Int. Ed. Engl., 1989, 28 : 359-376.
    [273]Codghlin P.K, Mercer W.C., Flanigen E.M., U Spat. 1990, 492 : 7768.
    [274]Alberti K., Haaw J., Plog C., et al. Catal. Today, 1991, 8 : 509.
    [275]Demuth D., Unger K.K., Stucky G.D., Adv. Mater., 1994, 642 : 931.
    [276]Forrest S.R.. Solid-state lasers: Lasing from a molecular sieve [J]. Nature, 1999, 397 : 294.
    [277]Li C.J, Chan T.H . Tetrahedron Lett , 1991 , 32: 701.
    [278]Gomez-Lor B., Gutiérrez-Puebla E., Iglesias M., et al. In2(OH)3(BDC)1.5 (BDC=1,4-Benzendicarboxylate): An In(III) Supramolecular 3D Framework with Catalytic Activity [J]. Inorg. Chem. 2002, 41: 2429?2432.
    [279]Gómez-Lor B., Gutiérrez-Puebla E., Iglesias M., et al. Novel 2D and 3D Indium Metal-Organic Frameworks: Topology and Catalytic Properties [J]. Chem. Mater. 2005, 17 : 2568-2573.
    [280](a)Cheetham A.K., Férey G., Loiseau T., Open-Framework Inorganic Materials [J]. Angew. Chem. Int. Ed., 1999, 38: 3268. (b)Feng S. H., Xu R. R., NewMaterials in Hydrothermal Synthesis [J]. Acc. Chem. Res., 2001, 34 : 239.
    [281](a)Nina L., Ivan L., Polymeric monovalent and divalent copper sulfates with 4,4’-bipyridine: [Cu2(SO4)(4,4’-bipy)2.6H2O]n and [Cu(SO4)(4,4’-bipy) (H2O) 0.5H2O]n [J]. Inorg. Chem. Commun, 2006, 9 : 42–45. (b)Xu L., Wang E. B., Peng J., et al. A novel coordination polymer with double chains structure: hydrothermal syntheses, structures and magnetic properties of [Cu(phen)(H2O)2SO4]n (phen=1,10-phenanthroline) [J]. Inorg. Chem. Commun, 2003, 6 : 740–743.
    [282]Fu Y.L., Xu Z.W., Zhang F.F., New inorganic discrete 8-membered wheel clusters: Organically directed titanium sulfate supermolecules [J]. J. Mole. Struct, 2008, 873 : 168–172.
    [283]Xing Y., Liu Y.L., Shi Z., et al. Hydrothermal synthesis and structure of [C2N2H10][La2(H2O)4(SO4)4]·2H2O, a new organically templated rare earth sulfate with a layer structure [J]. Dalton Trans, 2003, 940.
    [284](a)Fu Y.L. , Xu Z.W., Ren J.L., Two new 3D organically templated cerium sulfates, hydrothermal synthesis and structural characterization [J]. J. Mole. Struct, 2006, 788 : 190–193. (b)XIN Ming-Hong(辛明红), WANG Ying(王瑛), ZHU Guang-Shan(朱广山), et al..二维层状水合酸式硫酸铈H3O[Ce(SO4)2·(H2O)3] H2O的水热合成与结构表征[J]. Chem,J. Chinese Universities.(高等化学学报), 2005, 26 (11): 2007–2009.
    [285]Fafani L., Nunzi A., Zanazzi P. F., Am. Mineral. 1971, 56 : 751.
    [286]Ferguson S.B., Sanford E.M., Seward E.M., et al. Cyclophane-arene inclusion complexation in protic solvents: solvent effects versus electron donor-acceptor interactions [J]. J. Am. Chem. Soc. 1991, 113 : 5410-5419.
    [287]Yu J.H., Sung H.H.Y., Williams I.D., A Two-Dimensional Mixed-Metal Phosphate Templated by Ethylene Diamine, [enH2][CoIn(PO4)2H(OH2)2F2] [J]. J. Solid State Chem. 1999, 142 : 241.
    [288](a)Norquist A.J., Doranb M.B., O’Hareb D., (C7H20N2)[(UO2)2(SO4)3(H2O)]: an organically templated uranium sulfate with a novel layer topology [J]. Acta Cryst, 2005, E61: m807–810. (b)Yu R.B., Wang D., Chen Y.F., et al. A Novel Open-framework Cerium Sulfate Hydrate: Synthesis and Characterization [J]. Chem. Letters, 2004, 33 : 1186–1187.
    [289]Paul G., Choudhury A., Rao C.N.R., Organically Templated Linear and Layered Iron Sulfates [J]. Chem. Mater, 2003, 15 : 1174–1180.
    [290](a)Audebrand N, Vaillant M.L, Auffrédic J.P, Open-framework structure and thermal behaviour of ammonium tin oxalate, Sn2(NH4)2(C2O4)3·3H2O[J]. Solid State Sci. 2001, 3 : 483-494. (b)Vaidhyanathan R., Natarajan S, Cheetham A.K, New open-Framework Zinc Oxalates Synthesized in the Presence of Structure-Directing Organic Amines [J]. Chem. Mater. 1999, 11: 3636-3642. (c)Prasad P.A., Neeraj S., Vaidhyanathan R., Novel Inorganic Coordination Polymers Based on Cadmium Oxalates [J]. J. Solid State Chem, 2002, 166, 128-141. (d)Cavillou F.F, Trombe J.C, Synthesis and crystal structure of La(H2O)(C2O4)2·(CN3H6) and of [Nd(H2O)]2(C2O4)4·(NH4)(CN3H6) [J]. Solid State Sci, 2002, 4 :1199–1208. (e)Vaidhyanathan R., Natarajan S, Rao C.N.R., Three-Dimensional Yttrium Oxalates Possessing Large Channels [J]. Chem. Mater. 2001, 13 : 185-191.
    [291](a)Bulc BY N, Goli? L., Structure of polymericμ-(oxalato-O1,O2:O1',O2') bis[diaqua(oxalato-O1,O2)indium]dihydrate, [In2(C2O4)3(H2O)4].2H2O [J]. Acta Crystallogn, 1983, C39, 174. (b)Bulc BY N, Goli? L, ?iftar J, Structure of ammonium and sodium bis(oxalato)indate(III) dihydrate, NH4[In(C2O4)2].2H2O and Na[In(C2O4)2].2H2O [J]. Acta Crystallogn, 1983, C39, 176. (c)Chen Z. X, Zhou Y. M, Weng L. H, Hydrothermal synthesis of two layered indium oxalates with 12-membered apertures [J]. J. Solid State Chem, 2003, 173: 435–441. (d)Yang S.H, Li G.B, Tian S. J, An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3·H2O [J]. J. Solid State Chem, 2005, 178: 3703–3707. (e)Audebrand N, Raite S, Lou?r D, The layer crystal structure of [In2(C2O4)3(H2O)3]·7H2O and microstructure of nanocrystalline In2O3 obtained from thermal decomposition [J]. Solid State Sci, 2003, 5: 783–794. (f)Cao J.J, Li G.D, Chen J.S, New indium selenite-oxalate and indium oxalate with two- and three-dimensional structures [J]. J. Solid State Chem, 2009, 182: 102–106.
    [292]Abram S, Maichle-M?ssmer C, Abram U, Mixed-ligand complexes of indium(III). Reactions of [InCl3(L1)(MeOH)] with bidentate ligands. Synthesis, characterization and X-ray structures of [In(L1)Cl(ox)(OH2)]·2H2O, [In(L1)Cl(mnt)]·MeOH and [In(pythio)3] [L1 = pyridine-2,6-bis(acetyloxime), ox2? = oxalate, mnt2? = 1,2-dicyanoethene-1,2-dithiolate, pythio? = pyridine-2-thiolate] [J]. Polyhedron. 1997, 16: 2291-2298-2298.
    [293](a)Cheetham A.K., Férey G., Loiseau T., Open-Framework Inorganic Materials [J]. Angew. Chem. Int. Ed., 1999, 38: 3268. (b)Feng S.H., Xu R.R., New Materials in Hydrothermal Synthesis [J]. Acc. Chem. Res., 2001, 34: 239.
    [294]Natarajan S., Proc. Inian Acad. Sci., 2000, 112: 249.
    [295]Scott O., Alex K., Geoffrey A.O., A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures [J]. Angew. Chem. Int. Ed. 1998, 37: 46– 62.
    [296]Rao C.N.R., Natarajan S., Choudhury A., et al. Aufbau Principle of Complex Open-Framework Structures of Metal Phosphates with Different Dimensionalities [J]. Accounts of Chemical Research, 2001, 34: 80-87.
    [297](a)Ferey G., Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry[J]. Chem. Mater. 2001, 13 : 3084-3098. (b)Ferey G., Acad Sci Paris, Ser. 11c, 1998, 1, 1.
    [298]Du Z.Y., Li X.L., Liu Q.Y., et al. Novel Cadmium(II) Phosphonato -phenylsulfonate Cluster Compounds: Syntheses, Structures, and Luminescent Properties [J]. Cryst. Growth Des, 2007, 7: 1501-1507.
    [299]Lin Z.E., Zhang J., Zheng S.T., et al. Hydrothermal synthesis and characterization of a new inorganic–organic hybrid cadmium phosphate Cd(phen)(H2PO4)2·H2O [J]. Solid State Sci, 2005, 7: 319-323.
    [300]Tian Y.P., Zhu Y.M., Zhou H.P., et al. Three Novel Functional CdII Dicarboxylates with Nanometer Channels: Hydrothermal Synthesis, Crystal Structures, and Luminescence Properties [J]. Eur. J. Inorg. Chem, 2007, 2: 345-351.
    [301](a)Tang M.F., Lii K.H., Synthesis and structural characterization of (H4APPIP) [V3(C2O4)2(HPO4)3(PO4)(H2O)]·6H2O(APPIP=1,4-bis(3-aminopropyl)piperazine), a layered vanadium oxalatophosphate containing double 6-ring units [J]. J. Solid State Chem, 2004, 177: 1912-1918. (b)Brown I.D., Altermatt D., Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database [J]. Acta Crystallogr. 1985, B41: 244-247.
    [302]Colin J.F., Bataille T., Ashbrook S.E., et al. Na2[(VO)2(HPO4)2C2O4]·2H2O: Crystal Structure Determination from Combined Powder Diffraction and Solid-State NMR [J]. Inorg. Chem, 2006, 45: 6034-6040.
    [303](a)Thomas J.M., Jones R.H., Xu R., et al. A novel porous sheet alumino phosphate: Al3P4O163– 1.5[NH3(CH2)4NH3]2+ [J]. J. Chem. Soc. Chem. Commun, 1992, 929. (b)Kuperman A., Nadimi S., Oliver S., et al. Non-aqueous synthesis of giant crystals of zeolites and molecular sieves [J]. Nature, 1993, 365: 239.
    [304]Kedarnath K., Choudhury A., Natarajan S., A Hybrid Open-Framework Aluminum Phosphate-Oxalate Possessing Large Circular 12-Membered Channels [J]. J. Solid State Chem, 2000, 150 : 324-329.
    [305]Zheng N., Bu X., Wang B., Feng P., et al. Microporous and Photoluminescent Chalcogenide Zeolite Analogs [J]. Science, 2002, 298 : 2366-2369.
    [306](a)Baerlocher C., Meier W.M., Olson D.H., Atlas of Zeolite Framework Types, 2001, Elsevier, Amsterdam. (b)Corma A., Diaz-Cabanas M.J., Martinez-Triguero J., et al. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst [J]. Nature, 2002, 418: 514.
    [307](a)Tong M.L., Chen X.M., Ye B.H., et al. Self-Assembled Three-Dimensional Coordination Polymers with Unusual Ligand-Unsupported Ag-Ag Bonds: Syntheses, Structures, and Luminescent Properties [J]. Angew. Chem. Int. Ed, 1999, 38 : 2237-2240. (b)Su W.P., Hong M.C., Weng J.B., et al. A Semiconducting Lamella Polymer [{Ag(C5H4NS)}n] with a Graphite-Like Array of Silver(i) Ions and Its Analogue with a Layered Structure [J]. Angew. Chem. Int. Ed, 2000, 39 : 2911-2914. (c)Fujita M., Ibukuro F., Yamaguchi K., et al. A Molecular Lock [J]. J. Am. Chem. Soc, 1995, 117: 4175-4176. (d)Kahn O., Chemistry and Physics of Supramolecular Magnetic Materials [J]. Acc. Chem. Res, 2000, 33: 647-657. (e)Pan L., Ching N., Huang X.Y., et al. A Reversible Structural Interconversion Involving [M(H2pdc)2(H2O)2] 2H2O (M=Mn, Fe, Co, Ni, Zn, H3pdc=3,5-pyrazoledicarboxylic acid) and the Role of A Reactive Intermediate [Co(H2pdc)2] [J]. Chem. Eur. J, 2001, 20: 4431-4437.
    [308](a)Zheng Y.Q., Sun J., Lin J.L., Synthesis, Crystal Structure, and Magnetic Properties of {[Cu(phen)]2(C4H2O4)2}·4.5H2O with C4H4O4 = Maleic Acid [J]. Z. Anorg. Allg. Chem, 2002, 628: 1397-1400. (b)Murugavel R., Krishnamurthy D., Sathiyendiran M., Anionic metal–organic and cationic organic layer alternation in the coordination polymers [{M(BTEC)(OH2)4}·{C4H12N2}·4H2O ]n(M = Co, Ni, and Zn; BTEC = 1,2,4,5-benzenetetracarboxylate) [J]. J. Chem. Soc., Dalton Trans, 2002, 34. (c)Kumagai H., Kepert C.J., Kurmoo M., Construction of Hydrogen-Bonded and Coordination-Bonded Networks of Cobalt(II) with Pyromellitate: Synthesis, Structures, and Magnetic Properties [J]. Inorg. Chem, 2002, 41: 3410-3422.
    [309]Batten S.R., Hoskins B.F., Robson R., Interdigitation, Interpenetration andIntercalation in Layered Cuprous Tricyanomethanide Derivatives [J]. Chem. Eur. J, 2000, 1: 156-161.
    [310](a)MacGillivray L.R., Groeneman R.H., Attwod J.L., Design and Self-Assembly of Cavity-Containing Rectangular Grids [J]. J. Am. Chem. Soc., 1998, 120: 2676-2677. (b)Rather B., Zawortko M.J., A 3D metal-organic network, [Cu2(glutarate)2(4,4’-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydration [J]. Chem. Commun., 2003, 830-831. (c)Prior T.J., Bradshaw D., Teat S.J., et al. Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets [J]. Chem. Commun., 2003, 500-501. (d)Choi H.J, Suh M.P., Self-Assembly of Molecular Brick Wall and Molecular Honeycomb from Nickel(II) Macrocycle and 1,3,5-Benzenetricarboxylate: Guest-Dependent Host Structures [J]. J. Am. Chem. Soc., 1998, 120: 10622-10628. (e)Lightfoot P., Snedden A., Metal–organic co-ordination frameworks based on mixed N- and O-donor ligands: crystal structures of [Co(phth)2(bipy)] and [Co2(mal)2(bipy)(H2O)2] (phth = phthalate, mal = malonate, bipy = 4,4’-bipyridine) [J]. J. Chem. Soc., Dalton Trans., 1999, 3549-3551.
    [311](a)Min K.S., Suh M.P., Self-assembly, structures, and magnetic properties of ladder-like copper(II) coordination polymers [J]. J. Solid State Chem., 2000, 152: 183. (b)Pavlishchuk V.V., Koval I.A., Goreshnik E., et al. The first example of a true“Turnbull’s blue”family compound with trapped iron oxidation states [J]. Eur. J. Inorg. Chem., 2001, 1: 297. (c)Kobel W., Hanack M., Bis axially coordinated (phthalocyaninato) ruthenium(II) compounds [J]. Inorg. Chem., 1986, 25: 103.
    [312](a)Yaghi O.M., Li H., T-shaped molecular building units in the porous structure of Ag(4,4’-bpy)·NO3 [J]. J. Am. Chem. Soc., 1996, 118 : 295. (b)Min K.S., Suh M.P., Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state [J]. J. Am. Chem. Soc., 2000, 122: 6834.
    [313]Gutschke S.O.H., Price D.J., Powell A.K, et al. Rational design of open-framework coordination solids-Synthesis and structure of [Co5(OH)2{1,2,4,5-(O2C)4C6H2}2(H2O)4] center sot xH2O [J]. Eur. J. Inorg. Chem., 2001, 11: 2739.
    [314]Yuan L.J., Sun J., Zhang K., Spectrochimica Acta, 1999, A55 : 1193.
    [315]Chu D.Q., Xu J.Q., Duan L.M., et al. Hydrothermal synthesis of a two-dimensional coordination polymer [Fe(phen)(μ6-bta)1/2]n(bta = benzene-1,2,4,5,- tetracarboxylate, phen = 1,10- phenanthroline) [J]. Eur.J. Inorg. Chem., 2001, 5: 1135.
    [316]Cao R., Sun D., Liang U., et al. Syntheses and characterizations of three-dimensional channel-like polymeric lanthanide complexes constructed by 1,2,4,5-benzenetetracarboxylic acid [J]. Inorg. Chem., 2002, 41: 2087.
    [317]Zou J.Z., Liu O., Xu Z., et al. TCB bridged binuclear and polynuclear copper(II) complexes: a novel three dimension-network structure complex [(Cudien)2(Cudien·H2O)TCB (ClO4)2·H2O]n (TCB = tetracarboxylatobenzene, DIEN = 3-azapentane-1,5-diamine) [J]. Polyhedron, 1998, 17: 1863-1869.
    [318]Chu D.Q., Xu J.Q., Cui X.B., et al. Hydrothermal synthesis of thetwo-dimensional coordination polymer {[Fe(phen)(OH)](bta)0.5)}n (phen = 1,10-phenanthroline, bta = benzene-1,2,4,5-tetracaboxylate) [J]. Mendeleev commun., 2001, 2: 66.
    [319]Plater M.J., Foreman M.R., Howie R.A., et al. Hydrothermal synthesis of polymeric metal carboxylates from benzene- 1,2,4,5-tetracarboxylic acid and benzene-1,2,4-tricarboxylic acid [J]. Inorg. Chim. Acta., 2001, 315: 126.
    [320]Wu C.D., Lu C.Z., Wu D.M., et al. Hydrothermal synthesis of two new zinc coordination polymers with mixed ligands [J]. Inorg. Chem. Commun., 2001, 4: 561.
    [321](a)Murugavel R., Krishnamurthy D., Sathiyendiran M., Anionic metal–organic and cationic organic layer alternation in the coordination polymers [{M(BTEC)(OH2)4}·{C4H12N2}·4H2O]n (M = Co, Ni, and Zn; BTEC = 1,2,4,5-benzenetetracarboxylate) [J]. J. Chem. Soc., Dalton Trans., 2002, 34. (b)Rochon F.D., Massarweh G., Study of the aqueous reactions of metallic ions withbenzenetetracarboxylate ions. Part 2. Crystal structures of compounds of the type M(H2O)5(m-C6H2(COO)4)M(H2O)5 (M = Mn and Co) and a novel mixed-metallic Mn-Co dimeric compound [J]. Inorg. Chim. Acta, 2001, 314: 163. (c)Wang S., Hu M.L., Yuan J.X., et al. Synthesis and crystal structure of polymer cobalt(II) complex, 1,2,4,5-benzenetetracarboxylate hegaimidazole tetraaqua cobalt(II) tetrahydrate [J]. Chin. J. Chem., 2000, 18: 546.
    [322]Chaudhuri P., Oder K., Wieghardt K., et al. Moderately strong intramolecular magnetic exchange ineraction between the copper(II) ions separated by 11.25.Ang. in [L2Cu2(OH2)2(.eta.-terephethalato)](ClO4)2 (L=1,4,7-trimethyl- 1,4,7- triazacyclononane) [J]. J. Am. Chem. Soc., 1988, 110: 3657.
    [323]Nectoux F., Abazli H., Jove J., et al. J. Less-Common Met., 1986, 125 : 111.
    [324]Lin Z.Z, Jiang F.L, Chen L, et al. Two Novel Inorganic-Organic Hybrid Frameworks Based on InIII-BTC and InIII-BTEC [J]. Eur. J. Inorg. Chem. 2005, 77-81.
    [325]Lin Z.Z, Jiang F.L, Chen L, et al. New 3-D Chiral Framework of Indium with 1,3,5-Benzenetricarboxylate [J]. Inorg. Chem. 2005, 44: 73?76.
    [326]Gómez-Lor B., Gutiérrez-Puebla E., Iglesias M., et al. Novel 2D and 3D Indium Metal-Organic Frameworks: Topology and Catalytic Properties [J]. Chem. Mater. 2005, 17: 2568-2573.
    [327]Lin Z.Z, Luo J.H, Hong M.C, et al. The first indium-organic two-dimensional layer network with rhombus grids [J]. J. Solid State Chem, 2004, 177: 2494–2498.
    [328]Lin Z.Z, Jiang F.L, Yuan D.Q, et al. The 3D Channel Framework Based on Indium(III)–btec, and Its Ion-Exchange Properties (btec = 1,2,4,5-benzenetetra- carboxylate) [J]. Eur. J. Inorg. Chem, 2005, 1927–1931.
    [329]Lin Z.Z, Chen L, Jiang F.L, et al. The indium–carboxylate chain structure with the rectangular tunnels [J]. Inorg. Chem. Commun, 2005, 8: 199–201.
    [330]Lin Z.Z, Chen L, Yue C.Y, et al. 3-D indium(III)-btc channel frameworks and their ion-exchange properties (btc = 1,3,5-benzenetricarboxylate) [J]. J. Solid State Chem, 2006, 179: 1154–1160.
    [331]Vougo-Zanda M, Wang X.Q, Jacobson A.J., Influence of Ligand Geometry on the Formation of In?O Chains in Metal-Oxide Organic Frameworks (MOOFs)[J]. Inorg. Chem. 2007, 46: 8819?8824.
    [332]Liu Y.L, Eubank J.F., Cairns A.J., et al. Assembly of Metal–Organic Frameworks (MOFs) Based on Indium-Trimer Building Blocks: A Porous MOF with soc Topology and High Hydrogen Storag [J]. Angew. Chem. Int. Ed. 2007, 46: 3278–3283.
    [333]Anokhina E.V., Vougo-Zanda M, Wang X.Q, et al. In(OH)BDC·0.75BDCH2 (BDC = Benzenedicarboxylate), a Hybrid Inorganic Organic Vernier Structure [J]. J. Am. Chem. Soc. 2005, 127: 15000-15001.
    [334]Su J, Wang Y.X, Yang S.H, et al. New Series of Indium Formates: Hydrothermal Synthesis, Structure and Coordination Modes [J]. Inorg. Chem. 2007, 46: 8403?8409.
    [335]Volkringer C, Loiseau T, A new indium metal-organic 3D framework with 1,3,5-benzene-tricarboxylate, MIL-96 (In), containing 3-oxo-centered trinuclear units and a hexagonal 18-ring network [J]. Materials Research Bulletin, 2006, 41: 948–954.
    [336]Sun J.Y, Weng L.H, Zhou Y.M, et al. QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology [J]. Angew. Chem. Int. Ed. 2002, 41: 4471.
    [337]Wang Y.Y., Shi Q., Shi Q.Z., et al. Syntheses, characterization and crystal structure of copper(II)α,β-unsaturated carboxylate complexes with imidazole [J]. Polyhedron, 1999, 18: 2009-2015.
    [338]Shi X., Zhu G. S., Wang X.H., et al. From a 1-D Chain, 2-D Layered Network to a 3-D Supramolecular Framework Constructed from a Metal Organic Coordination Compound [J]. Cryst. Growth Des, 2005, 5: 207-213.
    [339]Cao R., Sun D.F., Liang Y.C., et al. Syntheses and Characterizations of Three-Dimensional Channel-like Polymeric Lanthanide Complexes Constructed by 1,2,4,5-Benzenetetracarboxylic Acid [J]. Inorg. Chem, 2002, 41: 2087-2094.
    [340]Bellamy L.J., The Infrared Spectra of Complex Molecules. Wiley, New York, 1958.
    [341]Shi X., Zhu G.S., Fang Q.R., et al. Novel Supramolecular Frameworks Self-Assembled from One-Dimensional Polymeric Coordination Chains [J]. Eur. J. Inorg. Chem, 2004, 185-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700