联苯类共轭分子构型与电子结构的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
联苯是很多有机π-共轭聚合物/齐聚物的结构基元和连接载体,对有机共轭材料的光电性能起到了重要的作用,这主要与联苯的结构特点密切相关,因此无论是实验化学还是理论化学,联苯基元的结构与材料性能的关系都是一个重要的研究课题。本论文应用Gaussian03量子化学程序对联苯类有机共轭分子的构型与电子结构进行了深入地研究,揭示了联苯单元的刚性与柔性特征及其对有机π-共轭分子光电性质的影响。
     联苯的构象具有多样性,取代联苯的构象更加复杂。我们研究了对联苯构象影响较大的邻位二取代联苯的优势构象与旋转能垒随各类不同取代基的变化。结果表明,邻位取代基对联苯构象和旋转能垒的影响最大的因素是取代基的空间位阻作用,而取代基的吸、推电子能力及共轭作用的影响相对较小。
     联苯基元的优势构象使两个苯环间形成一定的交叉二面角,利用这个特点,通过联苯桥将平面的有机共轭分子连接起来,可以比较容易的构筑一类十字交叉的分子体系——聚对苯乙烯撑的齐聚物,理论计算的结果显示,这类分子具有交叉扭曲的空间结构,这样的结构有效的抑制了分子在形成固体时生色团之间平行的π-π堆积而引起的荧光猝灭作用,进而提高了发光效率。此外,理论研究还证实了进一步通过联苯桥键增加生色团的数目以实现对材料体系的拓展,是提高光电性能的有效手段。
     联苯键具有一定的柔性,可以在一定的范围内旋转,当这种旋转达到一定程度时,甚至可以引发化学反应,实验中我们就观察到了一类由此产生的环加成反应。通过理论计算我们发现,引起这类反应的重要原因之一就是联苯键相对自由的旋转使原本处于分子两侧的双键转至同侧,并在逐步靠近的过程中发生了环加成反应。
     强的空间位阻作用有时也会使联苯键表现出较强的刚性,例如在蒽分子中心苯环上直接偶联上苯单元形成的联苯键就表现出很强的刚性特征,联苯单元的扭转二面角接近90°,这与蒽分子中两侧苯环上的氢原子产生了较大的空间位阻作用有关。这类分子通常具有很好的光电性能,其原因之一就是生色团被正交构象的联苯单元有效的保护。
Biphenyl is the important structural elements of multifariousπ-conjugated polymers. In the recent 20 years, many of the organic conjugated molecules which are composed of biphenyl units or biphenyl likeness has been designed and exploited, such as poly-p-phenylene (PPP), polyfluorene (PF), polythiophene (PTh), ladder-type poly-p-phenylene (LPPP) and so on. Theseπ-conjugated polymers and their oligomers are the important members of the organic photoelectric function materials. As the characterization of the molecular structures, the conformation of the biphenyl units put up significant effect including solid emitting efficiency, charge carrier transport property, molecular recognition and sensor. So the investigates on the relation between chemical structures and photoelectric properties of the biphenyl derivate conjugated molecules, especially for the conformational diversifications of the biphenyl units affect to material properties, have very important significance. As the basilica instrument for investigating the relation of material structures and properties, quantum chemistry technique has been widely applied to modern chemistry, material science and correlative fields. In this thesis, we have studied configurations and electronic structures of several kinds of biphenyl derivate conjugated molecules using Gaussian 03 quantum chemistry program package, especially discussed that the rigidity and flexibility of biphenyl unit impacted photoelectric properties and reactive action of the material system.
     In different surroundings and conditions, the conformations of biphenyl exhibit multiformities. The experimental data show that the torsional angle of biphenyl has about 44°in gas phase, it ascribe conjunct results both of complanate conjugation effect and crossed steric hindrance effect between the ortho position hydrogen. In the crystalline state, however, biphenyl is almost coplanar molecules, which is claimed to be the result of flexible single bond between the benzene rings circumvolving to be propitious to stacking. In solution, biphenyl is found twisted conformations 0~45°depending on different solvent and temperature and for a melt of biphenyl the dihedral angle is 32±4°.
     The substituent biphenyl has more complicated conformation compared with biphenyl and the structures of biphenyl unit and molecules properties are also different following the changes of substituent type, amount and position. Among these, the substituent position is the most important factor to affect the preponderant conformations and rotary energy barriers of the biphenyl unit. The investigation indicate that the substitutes at meta or para position of the biphenyl bond has slight impact for the conformation of biphenyl unit, while the ortho position substitutes will bring obvious action for the torsional angle and rotary energy barrier of the biphenyl unit. In addition, if the number of substituent varies, the conformation of biphenyl unit also differs and that the most representative system is ortho disubstituted biphenyl because these types of molecules can represent all kinds of effects between different groups. Therefore, we used several theories and calculative methods to investigate the mutative rules about the preponderant conformations and rotary energy barriers of ortho position disubstituted at ground and excited states. Then we discussed respectively pull, push electronic and conjugated substitutes to contribute the conformation of the biphenyl unit. The calculated results reveal that the most important impact factor to the preponderant conformations and rotary energy barriers in the orhto position disubstituted biphenyl is effective steric hindrance effect, while the pull, push electronic power and the conjugated function of the substituent groups are relatively piddling. At the same time, the different effective steric hindrance effect can make the biphenyl unit possess the difference of rigidity and flexibility.
     It has been forecast in theory that the properties of the dipoles across stacking (X aggregate) between the conjugated molecules are close to the single molecule, and its photoelectric properties in solid state excelled familiar parallel stacking (H aggregate) and interlaced stacking (J aggregate). However, there are usually stronger intermolecular repulsion and higher total energy in the X aggregate so that it can hardly be formed. Whereas, using the certain torsional angle between the two benzene rings in the biphenyl unit, the flat conjugated molecules could be bridging with biphenyl bond, and it can easier to build up a type of decussate molecules to form X aggregate material which can improve the photoelectric properties. Such as, the center benzene ring of a type of PPV oligomer 1,4-distyrylbenzene (DSB) connects together directly using biphenyl bond to conform the compound 2,5,2',5'-Tetrastyrylbiphenyl (TSB). The experimental data show that TSB have a obviously higher fluorescence quantum efficiency (11%) in solid than DSB (5%). And then imported two biphenyl-bridges to get the compound 2,5,2',5',2'',5''-hexastyryl-[1,1';4',1'']-terphenyl (HSTP) has a further improvement on solid state fluorescence quantum efficiency (32%). Meanwhile, thermal analysis confirms that from DSB to TSB, the solid aggregation change from crystal state to semi-crystal state, while for HSTP the solid is completely exhibit as amorphous state, which indicates better and better machinable ability during the process of prepared thin film. By theoretical calculations, TSB and HSTP are indicated a cross and twist configuration between the two neighboring DSB chains. In gas phase, the biphenyl units of TSB and HSTP can swing in a large range and the molecules present obvious flexibility characters. When the molecules of this type of cross and twist structure come into solid state, the distance between the two chromophores (DSB units) can be drawn away effectively, it can suppress the parallelπ-πstacking which quenching fluorescence for the light-emitting efficiency enhancing, as well as keeping the flexibility characters for filming. The calculations on the electronic structure, absorption and emission character of TSB and HSTP indicate the photoelectric properties of this type of PPV oligomers with biphenyl-bridge are all similar as DSB and the effect of each chromophore is limited. Over here, the results of theoretical calculation are coinciding with the experimental data. In addition, the theoretical investigations have also confirmed that increasing the biphenyl units to expand this type of bridging PPV oligomers system is an effective strategy to achieve the light-emitting efficiency improvement and processing properties melioration that have similar photophysical properties.
     The biphenyl units of the PPV oligomers with biphenyl-bridged have typical flexibility characters because of the total energy among the various conformations closer and the rotary energy barriers lower so that the biphenyl bond can be relatively free swing at room temperature conditions. While the swing achieves a certain degree, it can even trigger a chemical reaction. For example, in experiments we found that 2,5,2',5'-tetra(4-N,N-diphenylamino)styrylbiphenyl (DPA-TSB) and its analogues could easily occur intramolecular [2+2] cycloaddition reaction at room temperature in the dark. This confirmed a good response on the biphenyl bond flexibility. The theoretical analysis and calculation show that the biphenyl bonds relatively free swing make the original further distance of the two active double bonds circumvolve to ipsilateral of the biphenyl bond a relatively closer distance at room temperature, so it is the key step to trigger such type of intramolecular double bonds [2+2] cycloaddition reaction. Further we carried out theoretical research for the reaction mechanism. As a result of the cycloaddition reaction can be completed in the dark and the products even show a typical stereospecific characters, which determines the reaction mechanism can only be thermal concerted process or two-step rapid reaction process. We respectively calculated the two possible mechanism in detail using quantum chemistry methods, the results show that the thermal concerted mechanism has a larger activity energy and occurs the reaction difficultly, while the two-step rapid reaction mechanism complete the process relatively easy. Therefore, we believe that this type of thermal [2+2] cycloaddition reaction is most likely based on the two-step rapid reaction mechanism.
     Sometimes the larger steric hindrance effect can also bring the biphenyl unit a very strong rigidity. Here we studied the central benzene ring of anthracene molecule directly couple benzene units to conform a series of anthracene derivatives: 9-(3',5'-diphenylbiphenyl-4-yl)-10-(3,5-diphenylphenyl)anthracene (DPB-DPPA), 9,10-bis(3',5'-diphenylbiphenyl-4-yl)anthracene (BDPBA), 4-(10-(3,5-diphenylphenyl) anthracen-9-yl)-N,N-diphenylaniline (TPA-DPPA) and 4-(10-(3',5'-diphenylbiphenyl- 4-yl)anthracen-9-yl)-N,N-diphenylaniline (TPA-DPBA). In thus series of anthracene derivatives molecules, the torsional dihedral angle of biphenyl units are all confined to the vicinity of 90°smaller scope, the biphenyl bonds show a very strong rigidity because of the larger steric hindrance effect of hydrogen atoms on both sides of the benzene ring of anthracene molecules. Owing to the series of anthracene derivatives form orthogonal conformation, the conjugation between groups are interrupted and independent of each other, so all the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are localized in certain group. Herein the HOMO and LUMO of full-phenyl-substituted DPB-DPPA and BDPBA are localized in the anthracene unit; while the molecules coupled triphenyl amine groups TPA-DPPA and TPA-DPBA take place the HOMO and LUMO separation, that is, HOMO is located in triphenylamine unit and the LUMO in anthracene unit. The reason of such electronic structure formation is orthogonal molecule conformation to interrupt conjugation and the frontier molecular orbitals energy levels show the characters of their own conjugate unit. In the meanwhile, such series of molecules show very good photoelectric properties on solid fluorescence quantum efficiency and stability, and its essence is that the chromophore (anthracene unit) is effectively protected by peripheral groups of orthogonal biphenyl bond coupled. In addition, the calculations of reorganization energy show that these anthracene derivatives have a smaller reorganization energy of hole transport, so the rate of hole transport is faster than the electron transport. But relatively speaking, the derivatives introduced triphenylamine unit (TPA-DPPA and TPA-DPBA) have the balance on both kinds of charge transfer rate. Such change has played an important role to improve the light-emitting efficiency and stability of organic light-emitting diodes (OLED).
引文
[1] M. Pope, H. P. Kallmann, P. Magnante, "Electroluminescence in Organic Crystals", J. Chem. Phys. [J], 1963, 38: 2042-2043.
    [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Homes, "Light-emitting Diodes Based on Conjugated Polymers", Nature [J], 1990, 347: 539-541.
    [3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. L?gdlund, W. R. Salaneck, "Electroluminescence in Conjugated Polymers", Nature [J], 1999, 397: 121-128.
    [4] D. Braun, "Semiconducting Polymer LEDs", Mater. Today [J], 2002, 5: 32-39.
    [5] Y. G. Ma , C. M. Che, H. Y. Chao, X. M. Zhou, W. H. Chan, J. C. Shen, "High Luminescence Gold(I) and Copper(I) Complexes with a Triplet Excited State for Use in Light-Emitting Diodes", Adv. Mater. [J], 1999, 11: 852-857.
    [6] C. D. Dimitrakopoulos, P. R. L. Malenfant, "Organic Thin Film Transistors for Large Area Electronics", Adv. Mater. [J], 2002, 14: 99-117.
    [7] V. A. L. Roy, Y. G. Zhi, Z. X. Xu, S. C. Yu, P. W. Chan, C. M. Che, "Functionalized Arylacetylene Oligomers for Organic Thin-Film-Transistors (OFETs) ", Adv. Mater. [J], 2005, 17: 1258-1261.
    [8] H. Sirringhaus, "Device Physics of Solution-Processed Organic Field-Effect Transistors", Adv. Mater. [J], 2005, 17: 2411-2425.
    [9] W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, K. Müllen, "Fabrication of Field-Effect Transistors Based on Discotic Hexa-peri-hexabenzocoronene", Adv. Mater. [J] 2005, 17: 684-689.
    [10] C. J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, "Organic Photovoltaics Concepts and Realization" [M], Springer-Verlag: London, 2003.
    [11] K. M. Coakley, M. D. McGehee, "Conjugated Polymer Photovoltaic Cells", Chem. Mater. [J], 2004, 16: 4533-4542.
    [12] J. H. Hou, Z. A. Tan, Y. Yan, Y. J. He, C. H. Yang, Y. F. Li, "Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains", J. Am. Chem. Soc. [J], 2006, 128: 4911-4916.
    [13] J. Nelson, "Organic Photovoltaic Films", Current Opinion in Solid State and Materials Science [J], 2002, 6: 87-95.
    [14] H. Yanagi, T. Ohara, T. Morikawa, "Self-waveguided gain-narrowing of blue light emission from epitaxially oriented p-Sexiphenyl crystals", Adv. Mater. [J], 2001, 13: 1452-1455.
    [15] M. Nagawa, R. Hibino, S. Hotta, H. Yanagi, M. Ichikawa, T. Koyama, Y. Taniguchi, "Emission gain narrowing from single crystals of a thiophene/phenylene co-oligomer", Appl. Phys. Lett. [J], 2002, 80: 544-546.
    [16] M. Ichikawa, R. Hibino, S. Hotta, Y. Taniguchi, "Improved crystal-growth and emission gain-narrowing of thiophene/phenylene co-oligomers", Adv. Mater. [J], 2003, 15: 213-217.
    [17] M. Ichikawa, R. Hibino, S. Hotta, Y. Taniguchi, "Laser oscillation in monolithic molecular single crystals", Adv. Mater. [J], 2005, 17, 2073-2077.
    [18] A. O. Patil, A. J. Heeger, F. Wudl, "Optical properties of conducting polymers", Chem. Rev. [J], 1988, 88: 183-200.
    [19] M. Belletete, S. Beaupre, J. Bouchard, P. Blondin, M. Leclerc, G. Durocher, "Theoretical and Experimental Investigations of the Spectroscopic and Photophysical Properties of Fluorene-Phenylene and Fluorene-Thiophene Derivatives: Precursors of Light-Emitting Polymers", J. Phys. Chem. B [J], 2000, 104: 9118-9125.
    [20] J. Pei, W. L. Yu, W. Huang, A. J. Heeger, "A Novel Series of Efficient Thiophene-Based Light-Emitting Conjugated Polymers and Application in Polymer Light-Emitting Diodes", Macromolecules [J], 2000, 33: 2462-2471.
    [21] S. H. Jin, H. J. Park, J. Y. Kim, K. Lee, S. P. Lee, D. K. Moon, H. J. Lee, Y. S.Gal, "Poly(fluorenevinylene) Derivative by Gilch Polymerization for Light-Emitting Diode Applications", Macromolecules [J], 2002, 35: 7532-7534.
    [22] S. H. Lee, T. Nakamura, T. Tsutsui, "Synthesis and Characterization of Oligo(9,9-dihexyl-2,7-fluorene ethynylene)s: For Application as Blue Light-Emitting Diode", Organic Letter [J], 2001, 3: 2005-2007.
    [23] R. Rathore, S. H. Abdelwahed, I. A. Guzei, "Synthesis, Structure, and Evaluation of the Effect of Multiple Stacking on the Electron-Donor Properties ofπ-Stacked Polyfluorenes", J. Am. Chem. Soc. [J], 2003, 125: 8712-8713.
    [24] M. F. Pepitone, K. Eaiprasertsak, S. S. Hardaker, R. V. Gregory, "Synthesis of 2,5-Bis[(3,4-ethylenedioxy)thien-2-yl]-3-Substituted Thiophenes", Organic Letter [J], 2003, 5: 3229-3232.
    [25] A. D. Bouillud, I. Levesque, Y. Tao, M. D. Iorio, S. Beaupre, P. Blondin, M. Ranger, J. Bouchard, M. Leclerc, "Light-Emitting Diodes from Fluorene- Basedπ-Conjugated Polymers", Chem. Mater. [J], 2000, 12: 1931-1936.
    [26] J. M. Tour, R. Wu, "Synthesis and UV-visible Properties of Solubleα-Thiophene Oligomers: Monomer to octamer", Macromolecules [J], 1992, 25: 1901-1907.
    [27] Y. H. Geng, S. W. Culligan, A. Trajkovska, J. U. Wallace, S. H. Chen, "Monodisperse Oligofluorenes Forming Glassy-Nematic Films for Polarized Blue Emission", Chem. Mater. [J], 2003, 15: 542-549.
    [28] H. Meng, Z. Bao, A. J. Lovinger, B. C. Wang, A. M. Mujsce, "High Field-Effect Mobility Oligofluorene Derivatives with High Environmental Stability", J. Am. Chem. Soc. [J], 2001, 123: 9214-9215.
    [29] J. Salbeck, B. Bunsenges, "HSplitting of 2D Waves of Excitation in a Direct Current Electric FieldH", J. Phys. Chem. [J], 1996, 100: 1666-1675.
    [30] W. R. Salaneck, S. Stafstrom, J. L. Bredas, "Conjugated Polymer Surfaces and Interfaces" [M], Cambridge University Press, Cambridge, 1996.
    [31] S. Tirapattur, M. Belletete, N. Drolet, M. Leclerc, G. Durocher, "Spectral and Photophysical Properties of Fluorene-Based Polyesters in Solution and in theSolid State", Macromolecules [J], 2002, 35: 8889-8895.
    [32] S. Y. Hong, D. Y. Kim, C. Y. Kim, R. Hoffmann, "Origin of the Broken Conjugation in m-Phenylene Linked Conjugated Polymers", Macromolecules [J], 2001, 34: 6474-6481.
    [33] B. H. Wang, J. Yin, M. Z. Xue, J. L. Wang, G. Y. Zhong, X. M. Ding, "Dibenzothiophene-5,5-dioxide-containing PPV based copolymer as green- blue electroluminescent material", Synthetic Metals [J], 2003, 132:191-195.
    [34] E. Lim, B. J. Jung, H. K. Shim, "Synthesis and Characterization of a New Light-Emitting Fluorene-Thieno[3,2-b]thiophene-Based Conjugated Copolymer", Macromolecules [J], 2003, 36: 4288-4293.
    [35] R. H. Friend, G. J. Denton, J. J. M. Halls, N. T. Harrison, A. B. Holmes, A. K?hler, A. Lux, S. C. Moratti, K. Pichler, N. Tessler, K. Towns, "Electronic Processes of Conjugated Polymers in Semiconductor Device Structures", Synth. Met. [J], 1997, 84: 463-470.
    [36] M. A. D. García, F. Hide, B. J. Schwartz, M. R. Andersson, Q. Pei, A. J. Heeger, "Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials", Synth. Met. [J], 1997, 84: 455-462.
    [37] G. Zeng, W. L. Yu, S. J. Chua, W. Huang, "Spectral and Thermal Spectral Stability Study for Fluorene-Based Conjugated Polymers", Macromolecules [J], 2002, 35: 6907-6914.
    [38] S. Yamaguchi, K. Tamao, "Cross-coupling Reactions in the Chemistry of Silole-containing Pi-conjugated Oligomers and Polymers", Journal of Organometallic Chemistry [J], 2002, 653: 223-228.
    [39] L. M. Hayden, W. K. Kim, A. P. Chafin, G. A. Lindsay, "Synthesis and Nonlinear Optical Properties of a New Syndioregic Main-Chain Hydrazone Polymer", Macromolecules [J], 2001, 34: 1493-1495.
    [40] M. Mitsuishi, T. Tanuma, J. Matsui, J. Chen, T. Miyashita, "In Situ Monitoring of Photo-Cross-Linking Reaction of Anthracene Chromophores in Polymer Langmuir?Blodgett Films by an Integrated Optical Waveguide Technique", Langmuir [J], 2001, 17: 7449-7451.
    [41] S. Qiu, P. Lu, X. Liu, F. Z. Shen, L. L. Liu, Y. G. Ma, J. C. Shen, "New Ladder-Type Poly(p-phenylene)s Containing Fluorene Unit Exhibiting High Efficient Electroluminescence", Macromolecules [J], 2003, 36: 9823-9829.
    [42] S. Qiu, L. L. Liu, B. L. Wang, F. Z. Shen, W. Zhang, M. Li, Y. G. Ma, "Facile Synthesis of Carbazole-Containing Semiladder Polyphenylenes for Pure-Blue Electroluminescence", Macromolecules [J], 2005, 38: 6782-6788.
    [43] B. L. Wang, F. Z. Shen, P. Lu, S. Tang, W. Zhang, S. W. Pan, M. R. Liu, L. L. Liu, S. Qiu, Y. G. Ma, "New Ladder-type Conjugated Polymer Containing Carbazole and Fluorene Units in Backbone: Synthesis, Optical, and Electrochemistry Properties", J. Polym. Sci. Part A: Polym. Chem. [J], 2008, 46: 3120-3127.
    [44] R. Ramaekers, J. Pajak, G. Maes, Z. Pawelka, "Solvent Influence on the Conformation of 2,2′-Dinitrobiphenyl", Chem. Phys. Lett. [J], 2006, 418: 148-151.
    [45] A. Pogantsch, F. P. Wenzl, E. J. W. List, G. Leising, A. C. Grimsdale, K. Mullen, "Polyfluorenes with Dendron Side Chains as the Active Materials for Polymer Light-emitting Devices", Adv. Mater. [J], 2002, 14: 1061-1064.
    [46] J. Jacob, L. Oldridge, J. Zhang, M. Gaal, E. J. W. List, A. C. Grimsdale, K. Mullen, "Progress Towards Stable Blue Light-emitting Polymers", Applied Physics [J], 2004, 4: 339-342.
    [47] M. Pope, H. P Kallmann, P. magnante, "Electroluminescence in Organic Crystals", J. Chem. Phys. [J], 1963, 38: 2042-2043.
    [48] M. Sano, M. Pope, and H. Kallman, "Electroluminescence and Band Gap in Anthracene", J. Chem. Phys. [J], 1965, 43: 2920-2921. .
    [49] K. Danel, T. H. Huang, J. T. Lin, Y. T. Tao, C. H. Chuen, "Blue-Emitting Anthracenes with End-Capping Diarylamines", Chem. Mater. [J], 2002, 14: 3860-3865.
    [50] S. W. Culligan, A. C. A. Chen, J. U. Wallace, K. P. Klubek, C. W. Tang, S. H. Chen, "Effect of Hole Mobility Through Emissive Layer on Temporal Stabilityof Blue Organic Light-emitting Diodes", Adv. Funct. Mater. [J], 2006, 16: 1481-1487.
    [51] S. Y. Zheng, J. M. Shi, "Novel Blue-Light-Emitting Polymers Containing Dinaphthylanthracene Moiety", Chem. Mater. [J], 2001, 13: 4405-4407.
    [52] H. Benmansour, T. Shiya, Y. Sato, G. C. Bazan, "Anthracene-containing Binaphthol Chromophores for Light-emitting Diode (LED) Fabrication", Adv. Funct. Mater. [J], 2003, 13: 883-886.
    [53] Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae, S. K. Kwon, "Novel Blue Emitting Material with High Color Purity", Adv. Mater. [J], 2001, 13: 1690-1693.
    [54] Y. H. Kim, H. C. Jeong, S. H. Kim, K. Yang, S. K. Kwon, "High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene ", Adv. Funct. Mater. [J], 2005, 15: 1799-1805.
    [55] M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, "Highly Efficient, Deep-Blue Doped Organic Light-Emitting Devices", Adv. Mater. [J], 2005, 17: 2493-2497.
    [56] M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, C. H. Chen, "Stable Styrylamine-doped Blue Organic Electroluminescent Device Based on 2-Methyl-9,10-di(2-naphthyl)anthracene", Appl. Phys. Lett. [J], 2004, 85: 3301-3303.
    [57] Z. Q. Gao, B. X. Mi, C. H. Chen, K. W. Cheah, Y. K. Cheng, W. S. Wen, "High-Efficiency Deep Blue Host for Organic Light-Emitting Devices", Appl. Phys. Lett. [J], 2007, 90: 123506-123508.
    [58] M. H. Ho, Y. S. Wu, S. Wen, M. T. Lee, T. M. Chen, C. H. Chen, K. C. Kwok, S. K. So, K.T. Yeung, Y. K. Cheng, Z.Q. Gao, "Highly Efficient Deep Blue Organic Electroluminescent Device Based on 1-Methyl-9,10-di(1-naphthyl) anthracene", Appl. Phys. Lett. [J], 2006, 89: 252903-252905.
    [59] T. H. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao, C. H. Chen, "Highly Efficient Yellow and White Organic Electroluminescent Devices Doped with2,8-Di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenylnaphthacene", Appl. Phys. Lett. [J], 2004, 85: 4304-4306.
    [60] L. Zhao, C. Li, Y. Zhang, X. H. Zhu, J. B. Peng, Y. Cao, "Anthracene-cored Dendrimer for Solution-processible Blue Emitter: Syntheses, Characterizations, Photoluminescence, and Electroluminescence", Macromol. Rapid Commun. [J], 2006, 27: 914-920.
    [61] Y. Kan, L.Wang, L. Duan, Y. Hu, G. Wu, Y. Qiu, "Highly-efficient Blue Electroluminescence Based on Two Emitter Isomers", Appl. Phys. Lett. [J], 2004, 84: 1513-1515.
    [62] Y. Kan, L. D. Wang, Y. D. Gao, L. Duan, G. S. Wu, Y. Qiu, "Highly Efficient Blue Electroluminescence Based on a New Anthracene Derivative", Synth. Met. [J], 2004, 141: 245-249.
    [63] P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, C. F. Shu, "Highly Efficient Non-doped Blue-Light-Emitting Diodes Based on an Anthrancene Derivative End-capped with Tetraphenylethylene Groups ", Adv. Funct. Mater. [J], 2007, 17: 3141-3146.
    [64] Y. H. Niu, B. Q. Chen, T. D. Kim, M. S. Liu, A. K.Y. Jen, "Efficient and Stable Blue Light-Emitting Diodes Based on an Anthracene Derivative Doped Poly(N-vinylcarbazole)", Appl. Phys. Lett. [J], 2004, 85: 5433-5436.
    [65] P. Raghunath, M. A. Reddy, C. Gouri, K. Bhanuprakash, V. J. Rao, "Electronic Properties of Anthracene Derivatives for Blue Light Emitting Electroluminescent Layers in Organic Light Emitting Diodes: A Density Functional Theory Study", J. Phys. Chem. A [J], 2006, 110: 1152-1162.
    [66] S. K. Kim, Y. Park, I. N. Kang, J. W. Park, "New Deep-blue Emitting Materials Based on Fully Substituted Ethylene Derivatives", J. Mater. Chem. [J], 2007, 17: 4670-4678.
    [67] S. K. Kim, B. Yang, Y. G. Ma, J. H. Lee, J. W. Park, "Exceedingly Efficient Deep-blue Electroluminescence from New Anthracenes Obtained Using Rational Molecular Design", J. Mater. Chem. [J], 2008, 18: 3376-3384.
    [68] K. H. Schweikart, M. Hohloch, E. Steinhuber, M. Hanack, L. Luer, J. Gierschner, H. J. Egelhaaf, D. Oelkrug, "Highly Luminescent Oligo(phenylenevinylene) films: the Stereochemical Approach", Synth. Met. [J], 2001, 121: 1641-1642.
    [69] F. He, G. Cheng, H. Q. Zhang, Y. Zheng, Z. Q. Xie, B. Yang, Y. G. Ma, S. Y. Liu, J. C. Shen, "Synthesis, Characteristics and Luminescence Properties of Oligo(phenylenevinylene) Dimers with a Biphenyl Linkage Center", Chem. Commun. [J], 2003: 2206-2207.
    [70] S. Y. Chen, X. J. Xu, Y. Q. Liu, W. F. Qiu, Gui Yu, H. P. Wang, D. B. Zhu, "New Organic Light-Emitting Materials: Synthesis, Thermal, Photophysical, Electrochemical, and Electroluminescent Properties", J. Phys. Chem. C [J], 2007, 111: 1029-1034.
    [71] P. Wei, L. Duan, D. Q. Zhang, J. Qiao, L. D. Wang, R. J. Wang, G. F. Dong, Y. Qiu, "A New Type of Light-Emitting Naphtho[2,3-c][1,2,5]thiadiazole Derivatives: Synthesis, Photophysical Characterization and Transporting Properties", J. Mater. Chem. [J], 2008, 18: 806-818.
    [72] C. J. Tonzola, A. P. Kulkarni, A. P. Gifford, W. Kaminsky, S. A. Jenekhe, "Blue-Light-Emitting Oligoquinolines: Synthesis, Properties, and High-Efficiency Blue-Light-Emitting Diodes", Adv. Funct. Mater. [J], 2007, 17: 863-874.
    [73] Y. Zhu, A. P. Kulkarni, P. T. Wu, S. A. Jenekhe, "New Ambipolar Organic Semiconductors. 1. Synthesis, Single-Crystal Structures, Redox Properties, and Photophysics of Phenoxazine-Based Donor-Acceptor Molecules", Chem. Mater. [J], 2008, 20: 4200-4211.
    [74] P. J. Low, M. A. J. Paterson, D. S. Yufit, J. A. K. Howard, J. C. Cherryman, D. R. Tackley, R. Brook, B. Brown, "Towards an Understanding of Structure–Property Relationships in Hole Transport Materials: The Influence of Molecular Conformation on Oxidation Potential in Poly(aryl)amines", J. Mater. Chem. [J], 2005, 15: 2304-2315.
    [75] J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu, B. Z. Tang, "Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5- pentaphenylsilole", Chem. Commun. [J], 2001: 1740-1741.
    [76] B. K. An, S. K. Kwon, S. D. Jung, S. Y. Park, "Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles", J. Am. Chem. Soc. [J], 2002, 124: 14410-14415.
    [77] H. Q. Zhang, B. Yang, Y. Zheng, G. D. Yang, L. Ye, Y. G. Ma, X. F. Chen, "New Biphenyl Derivative with Planar Phenyl-Phenyl Conformation in Crystal at Room Temperature Exhibits Highly Efficient UV Light-Emitting", J. Phys. Chem. B [J], 2004, 108: 9571-9573.
    [78] Z. Q. Xie, L. L. Liu, B. Yang, G. D. Yang, L. Ye, M. Li, Y. G. Ma, "Polymorphism of 2,5-Diphenyl-1,4-distyrylbenzene with Two cis Double Bonds: The Essential Role of Aromatic C-H···πHydrogen Bonds", Cryst. Growth Des. [J], 2005, 5: 1959-1964.
    [79] Z. Q. Xie, B. Yang, G. Cheng, L. L. Liu, F. He, F. Z. Shen, Y. G. Ma, S. Y. Liu, "Supramolecular Interactions Induced Fluorescence in Crystal: Anomalous Emission of 2,5-Diphenyl-1,4-distyrylbenzene with All cis Double Bonds", Chem. Mater. [J], 2005, 17: 1287-1289.
    [80] M. W. Holman, P. Yan, K. C. Ching, R. C. Liu, F. I. Ishak, D. M. Adams, "A Conformational Switch of Intramolecular Electron Transfer", Chem. Phys. Lett. [J], 2005, 413: 501-505.
    [81] J. Cody, C. J. Fahrni, "Fluorescence Sensing Based on Cation-Induced Conformational Switching: Copper-Selective Modulation of the Photoinduced Intramolecular Charge Transfer of a Donor–Acceptor Biphenyl Fluorophore", Tetrahedron [J], 2004, 60: 11099-11107.
    [82] S. Karg, M. Meier, W. Riess, "Light-Emitting Diodes Based on Poly-p-phenylene-vinylene: I. Charge-Carrier Injection and Transport", J. Appl. Phys. [J], 1997, 82: 1951-1960.
    [83] Y. Ohmori, "Switching Properties of Multilayer Thin Film Structures", J. Appl. Phys. [J], 1994, 33: 1061-1068.
    [84] H. Nakako, Y. Mayahara, R. Nomura, M. Tabata, T. Masuda, "Effect of Chiral Substituents on the Helical Conformation of Poly(propiolic esters)", Macromolecules [J], 2000, 33: 3978-3982.
    [85] M. A. Hempenius, G. J. Vancso, "Synthesis of a Polyanionic Water-Soluble Poly(ferrocenylsilane)", Macromolecules [J], 2002, 35: 2445-2447.
    [86] H. D. Burrows, J. S. de Melo, C. Serpa, L. G. Arnaut, A. P. Monkman, I. Hamblett, S. Navaratnam, "SB1B~>TB1B Intersystem Crossing inπ-Conjugated Organic Polymers", J. Chem. Phy. [J], 2001, 115: 9601-9606.
    [87]杨小震, "高分子科学的今天和明天" [M],北京:化学工业出版社, 1994.
    [88] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C., Burant J. M. Millam, S. S. Iyengar, J., Tomasi V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz., I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, "GAUSSIAN 03: Revision B.05" [G], Gaussian Inc., Pittsburgh, PA, 2003.
    [89]唐敖庆,杨忠志,李前树, "量子化学" [M],北京:科学出版社, 1982.
    [90]徐光宪,黎乐民,王德民, "量子化学基本原理和从头计算法" [M],北京:科学出版社, 1985.
    [91]王志中,"现代量子化学计算方法" [M],吉林:吉林大学出版社,1998.
    [92] A. Szabo, N. S. Ostlund, "Introduction to Advanced Electronic Structure Theory" [C], Modern Quantum Chemistry, Dover, New York, 1996.
    [93] P. Hohenberg, W. Kohn, "Inhomogeneous Electron Gas", Phys. Rev. [J], 1964, 136: B864-B871.
    [94] W. Kohn, L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects", Phys. Rev. [J], 1965, 140: A1133-A1138.
    [95] R. G. Parr and W. Yang, "Density-Functional Theory of Atoms and Molecules" [M], Oxford Univ. Press: Oxford, 1989.
    [96] J. K. Labanowski, J. W. Andzelm, "Density Functional Methods in Chemistry" [M], Springer-Verlag: New York, 1991.
    [97] D. R. Salahub, M. C. Zerner, "The Challenge of d and f Electrons" [M], ACS: Washington, D.C., 1989.
    [98] C. Lee, W. Yang, R.G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density", Phys. Rev. B [J], 1988, 37: 785-789.
    [99] A. D. Becke, "Density-functional thermochemistry. III. The role of exact exchange", J. Chem. Phys. [J], 1993, 98: 5648-5652.
    [100] V. Peuckert, "A new approximation method for electron systems", J. Phys. C: Solid State Phys. [J], 1978, 11: 4945-4956.
    [101] B. M. Deb, S. K. Chosh, "Schr?dinger Fluid Dynamics of Many-Electron Systems I a Time-Dependent Density-Functional Framework", J. Chem. Phys. [J], 1982, 77: 342-348.
    [102] L. J. Bartolotti, "Time-Dependent Extension of the Hohenberg-Kohn-Levy energy-Eensity Functional", Phys. Rev. A [J], 1981, 24: 1661-1667.
    [103] L. J. Bartolotti, "Time-Dependent Kohn-Sham Density-Functional Theory", Phys. Rev. A [J], 1982, 26: 2243-2244.
    [104] L. J. Bartolotti, "Velocity form of the Kohn-Sham Frequency-Dependent Polarizability Equations", Phys. Rev. A [J], 1987, 36: 4492-4493.
    [105] M. Petersilka, U. J. Gossmann, E. K. U. Gross, "Excitation Energies from Time-Dependent Density-Functional Theory", Phys. Rev. Lett. [J], 1996, 76: 1212-1215.
    [106] J. A. Pople, R. Seeger, R. Krishnan, "Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces", Int. J. Quant. Chem. Symp. [J], 1977, 11: 149-161.
    [107] J. B. Foresman, M. H. Gordon, J. A. Pople and M. J. Frisch, "Toward a Systematic Molecular Orbital Theory for Excited States", J. Phys. Chem. [J], 1992, 96: 135-149.
    [108] R. Krishnan, H. B. Schlegel, J. A. Pople, "Derivative Studies in Configuration Interaction Theory", J. Chem. Phys. [J], 1980, 72: 4654-4655.
    [109] B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi and H.F. Schaefer, "Analytic Gradients from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach", J. Chem. Phys. [J], 1980, 72: 4652-4653.
    [110] E. A. Salter, G. W. Trucks, R. J. Bartlett, "Analytic energy derivatives in many-body methods. I. First derivatives", J. Chem. Phys. [J], 1989, 90: 1752-1766.
    [111] K. Raghavachari, J. A. Pople, "Specificity and Molecular Mechanism of Abortificient Action of Prostaglandins", Int. J. Quant. Chem. [J], 1981, 20: 167-178.
    [112] J. A. Pople, M. Head-Gordon, K. Raghavachari, "Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies", J. Chem. Phys. [J], 1987, 87: 5968-5975.
    [113] J. Cioslowski, "A New Robust Algorithm for Fully Automated Determination of Attractor Interaction Lines in Molecules", Chem. Phys. Lett. [J], 1994, 219: 151-154.
    [114] H. B. Schlegel, M. A. Robb, "MC SCF Gradient Optimization of the HB2BCO→HB2B + CO Transition Structure", Chem. Phys. Lett. [J], 1982, 93: 43-46.
    [115] R. H. A. Eade, M. A. Robb, "Direct Minimization in MC SCF Theory. The Quasi-Newton Method", Chem. Phys. Lett. [J], 1981, 83: 362-368.
    [116] D. Hegarty, M. A. Robb, "Application of Unitary Group Methods to Configuration Interaction Calculations", Mol. Phys. [J], 1979, 38: 1795-1812.
    [117] J. Ridley, M. Zerner, "An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines", Theoret. Chim. Acta. [J], 1973, 32: 111-134.
    [118] N. Mataga, K. Nishimoto, "Electronic Structure and Spectra of Nitrogen Heterocycles", Z. Physik. Chem. Frankfrut [J], 1957, 13: 140-157.
    [119] K. Weiss, Private Commonication [S], 1970.
    [120] K. Fukui, "Variational Principles in a Chemical Reaction", Int. J. Quantum. Chem. [J], 1981, 15: 633-642.
    [121] K. Fukui, A. Tachibana, K. Yamashita, "Toward Chemodynamics", Int. J. Quantum. Chem. [J], 1981, 15: 621-632.
    [122] J. S. Winn, "Physical Chemistry" [M], New York: Harper Collins College Publishers, 1995.
    [123] P. W. Atkins, "Physical Chemistry" [M], New York: W.H. Freeman and Company, 1990.
    [124] G. D. Billing, K.V. Mikkelsen, "Introduction to Molecular Dynamics and Chemical Kinetics" [M], New York: John Wiley & Sons Inc., 1996.
    [125] H. S. Johnston, "Gas Phase Reaction Rate Theory" [M], New York: Ronald Press Company, 1966.
    [126] S. Glasstone, K. Laidler, H. Erying, "Theory of Rate Processes", New York: McGraw-Hill, 1941.
    [127] D. G. Thuhlar, A. D. Isaacson, B. C. Garreett, "Generalized Transition State Theory, in The Theory of Chemical Reaction Dynamics" [R], edited by M. Baer, CRC Press, Boca Raton, FL, 1985, 4: 65-137.
    [128] B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, "Improved Treatment of Threshold Contributions in Variational Transition-State Theory", J. Phys. Chem. [J], 1980, 84: 1730-1748.
    [129]赵学庄,罗渝然,臧雅茹,万学适, "化学反应动力学原理-下册" [M],北京:高等教育出版社, 1990.
    [130]王琪, "化学动力学导论" [M],吉林:吉林人民出版社, 1982.
    [131] B. C. Garrett, D. G. Truhlar, "Generalized Transition State Theory. Classical Mechanical Theory and Applications to Collinear Reactions of Hydrogen Molecules", J. Phys. Chem. [J], 1979, 83: 1052-1079.
    [132] B. C. Garrett, D.G. Truhlar, "Criterion of Minimum State Density in the Transition State Theory of Bimolecular Reactions", J. Chem. Phys. [J], 1979, 70: 1593-1598.
    [133] W. L. Hase, "The Criterion of Minimum State Density in Unimolecular Rate Theory. An Application to Ethane Dissociation", J. Chem. Phys. [J], 1976, 64: 2442-2449.
    [134] M. Quack, J. Troe, Ber. Bunsenges, "Unimolecular Processes V: Maximum Free Energy Criterion for the High Pressure Limit of Dissociation Reactions", Phys. Chem. [J], 1977, 81: 329-337.
    [135] T. I. Hill, "An Instruction to Statistical Thermodynamics" [M], Mass: Addison-Wesley Publishing Company, 1960.
    [136] J. E. Mayer, M. G. Mayer, "Statistical Mechanics" [M], New York: John Wiley & Sons Inc., 1977.
    [137] W. H. Miller, N. C. Handy, J. E. Adams, "Reaction path Hamiltonian for polyatomic molecules", J. Chem. Phys.[J], 1980, 72: 99-112.
    [138] S. Tsuzuki, K. Tanabe, "Ab Initio Molecular Orbital Calculations of the Internal Rotational Potential of Biphenyl Using Polarized Basis Sets with Electron Correlation Correction", J. Phys. Chem. [J], 1991, 95: 139-144.
    [139] G. Ha¨felinger, C. Regelmann, "Ab initioSTO-3G optimization of planar, perpendicular, and twisted molecular structures of biphenyl", J. Comput. Chem. [J], 1985, 6: 368-376.
    [140] O. Bastiansen, L. Fernholt, B. N. Cyvin, S. J. Cyvin, S. Samdal, A. Almenningen, "Structure and Barrier of Internal Rotation of Biphenyl Derivatives in the Gaseous State : Part 1. The Molecular Structure and NormalCoordinate Analysis of Normal Biphenyl and Pedeuterated Biphenyl", J. Mol. Struct. [J], 1985, 128: 59-76.
    [141] S. Samdal, O. Bastiansen, "Structure and Barrier of Internal Rotation of Biphenyl Derivatives in the Gaseous State. IV. Barrier of Internal Rotation in Biphenyl, Perdeuterated Biphenyl and Seven Non-Ortho-Substituted Halogen Derivatives", J. Mol. Struct. [J], 1985, 128: 115-125.
    [142] H. Suzuki, "Relations between Electronic Absorption Spectra and Spatial Configurations of Conjugated Systems. I. Biphenyl", Bull. Chem. Soc. Jpn. [J], 1959, 32: 1340-1350.
    [143] Y. Delugeard, G. P. Charbonneau, "Biphenyl: Three-Dimensional Data and New Refinement at 293 K", Acta Crystallogr. B [J], 1977, 33: 1586-1588.
    [144] J. Corish, D. A. Morton-Blake, F. O'Donoghue, J. L. Baudour, F. Bénière, B. Toudic, "An Atomistic Simulation Investigation of the Inter-Ring Torsion in Crystalline Biphenyl", Journal of Molecular Structure (Theochem) [J], 1995, 358: 29-38.
    [145] E. Burgos, H. Bonadeo, "Crystal Physics, Diffraction, Theoretical and General Crystallography", Acta Crystallogr. A [J], 1982, 38: 29-33.
    [146] R. M. G. Roberts, "Conformational Analysis of Biphenyls Using P13PC NMR Spectroscopy", Magn. Reson. Chem. [J], 1985, 23: 52-54.
    [147] D. Steele, V. J. Eaton, "Dihedral Angle of Biphenyl in Solution and the Molecular Force Field", J. Chem. Soc. Faraday Trans. [J], 1973, 69: 1601-1608.
    [148] E. R. Lippincott, J. E. Katon, "The Vibrational Spectra and Geometrical Configuration of Biphenyl", Spectrochim. Acta [J], 1959, 15: 627-650.
    [149] W. B. Wise, R. J. Kurland, "The Proton Magnetic Resonance Spectra and Rotational Barriers of 4,4'-Disubstituted Biphenyls", J. Am. Chem. Soc. [J], 1964, 86: 1877-1879.
    [150] C. Regelmann, G. Hafelinger, "Ab Initio STO-3G Optimization of Planar, Perpendicular, and Twisted Molecular Structures of Biphenyl", J. Comput. Chem. [J], 1985, 6: 368-376.
    [151] W. B. Wise, R. J. Kurland, "The Proton Magnetic Resonance Spectra and Rotational Barriers of 4,4'-Disubstituted Biphenyls", J. Am. Chem. Soc. [J], 1964, 86: 1877-1879.
    [152] M. Merchan, E. Ortis, M. Rubio, "The Internal Rotational Barrier of Biphenyl Studied with Multiconfigurational Second-Order Perturbation Theory (CASPT2)", Theor. Chim. Acta [J], 1995, 91: 17-29.
    [153] A. Goller, U. W. Grummtr, "Torsional Barriers in Biphenyl, 2,2′-Bipyridine and 2-Phenylpyridine", Chemical Physics Letters [J], 2000, 321: 399-405.
    [154] Y. Mizukami, "Exploratory Ab Initio MO Calculations on the Structures of Polychlorinated Biphenyls (PCBs): a Possible Way to Make a Coplanar PCB Stable at Coplanar Conformation", Journal of Molecular Structure (Theochem) [J], 1999, 488: 11-19.
    [155] M. Maus, W. Rettig, "The Influence of Conformation and Energy Gaps on Optical Transition Moments in Donor-Acceptor Biphenyls", Chemical Physics [J], 2000, 261: 323-337.
    [156] J. F. Pan, X. Y. Hou, S. J. Chua, W. Huang, "Theoretical Study of the Structure and Torsional Potential of Substituted Biphenylenes and Their Fluorene Derivatives", Phys. Chem. Chem. Phys. [J], 2002, 4: 3959-3964.
    [157] S. Tanabe, N. Kannan, A. Subramanian, S. Watanabe, R. Tatsukawa, "Highly Toxic Coplanar PCBs: Occurrence, Source, Persistency and Toxic Implications to Wildlife and Humans", Environ. Pollut. [J], 1987, 47: 147-147.
    [158] S. Z. Hu, Z. H. Zhou, K. R. Tsai, "Average Van Der Waals Radii of Atoms in Crystals", Acta Phys. -Chim. Sin. [J], 2003, 19: 1073-1077.
    [159] J. C. Choe, N. R. Cheong, S. M. Park, "Unimolecular Dissociation of Aniline Molecular Ion: A Theoretical Study", International Journal of Mass Spectrometry [J], 2009, 279: 25-31.
    [160] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friehd, P. L. Burns, A. B. Holmes, "Light-Emitting Diodes Based on Conjugated Polymers", Nature, [J], 1990, 347: 539-541.
    [161] H. D. Burrows, J. S. Melo, C. Serpa, L. G. Arnaut, M. G. Miguel, A. P.Monkman, I. Hamblett, S. Navaratnam, "Triplet State Dynamics on Isolated Conjugated Polymer Chains", Chem. Phys. [J], 2002, 285: 3-11.
    [162] J. E. Wong, M. S. Weaver, T. Richardson, D. D. C. Bradley, D. W. Bruce "Organic Light-Emitting Diodes Based on Lateral-Substituted Distyrylbenzenes", Materials Science and Engineering C [J], 2002, 22: 393-400.
    [163] K. H. Schweikart, M. Hohloch, E. Steinhuber, M. Hanack, L. Luer, J. Gierschner, H. J. Egelhaaf, D. Oelkrug, "Highly Luminescent Oligo(phenylenevinylene) Films: The Stereochemical Approach", Synth. Met. [J], 2001, 121: 1641-1642.
    [164] Z Q. Xie, B. Yang, F. Li, G. Cheng, L. L. Liu, G. D. Yang, H. Xu, L. Ye, M. Hanif, S. Y. Liu, D. G. Ma, Y. G. Ma, "Cross Dipole Stacking in the Crystal of Distyrylbenzene Derivative: The Approach Toward High Solid-State Luminescence Efficiency", J. Am. Chem. Soc. [J], 2005, 127: 14152-14153.
    [165] Z. Q. Xie, B. Yang, Y. G. Ma, J. C. Shen, "π-Conjugated Oligomers in Supramolecular Crystals and Their Optoelectronic Functions", Chin. J. Polym. Sci. [J], 2007, 25: 9-22.
    [166] B. Yang, Y. G. Ma, J. C. Shen, "Stacking Mode, Optoelectronic Property and Supramolecular Control Method inπ-Conjugated Organic Molecules", Chem. J. Chinese U. [J], 2008, 29: 2643-2658.
    [167] F. He, G. Cheng, H. Q. Zhang, Y. Zheng, Z. Q. Xie, B. Yang, Y. G. Ma, S. Y. Liu, J. C. Shen, "Synthesis, Characteristics and Luminescence Properties of Oligo(phenylenevinylene) Dimers with a Biphenyl Linkage Center", Chem. Commun. [J], 2003: 2206-2207.
    [168] F. He, H. Xia, S. Tang, Y. Duan, M. Zeng, L. L. Liu, H. Q. Zhang, B. Yang, Y. G. Ma, S. Y. Liu, J. C. Shen, "A Novel Amorphous Oligo(phenylenevinylene) Dimer with a Biphenyl Linkage Center and Fluorene end Groups for Electroluminescent Devices", J. Mater. Chem. [J], 2004, 14: 2735-2740.
    [169] F. He, H. Xu, B. Yang, Y. Duan, L. L. Tian, K. K. Huang, Y. G. Ma, S. Y. Liu, S. H. Feng, J. C. Shen, "Oligomeric Phenylenevinylene with Cross DipoleArrangement and Amorphous Morphology: Enhanced Solid-State Luminescence Efficiency and Electroluminescence Performance", Adv. Mater. [J], 2005, 17: 2710-2714.
    [170] M. D. Halls, H. B. Schlegel, "Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)", Chem. Mater. [J], 2001, 13: 2632-2640.
    [171] H. Z. Gao, Z. M. Su, C. S. Qin, R. G.. Mo, Y. Kan, "Electronic Structure and Molecular Orbital Study of the First Excited State of the High-Efficiency Blue OLED Material Bis(2-methyl-8-quinolinolato)aluminum (III) Hydroxide Complex from Ab Initio and TD-B3LYP", Int. J. Quantum Chem. [J], 2003, 97: 992-1001.
    [172] J. P. Zhang, G. Frenking, "Quantum Chemical Analysis of the Chemical Bonds in Tris(8-hydroxyquinolinato)aluminum as a Key Emitting Material for OLED", J. Phys. Chem. A [J], 2004, 108: 10296-10301.
    [173] Z. Q. Xie, B. Yang, L. L. Liu, M. Li, D. Lin, Y. G. Ma, G. Cheng, S. Y. Liu, "Experimental and Theoretical Studies of 2,5-Diphenyl-1,4-distyrylbenzenes with All-cis and All-trans Double Bonds: Chemical Structure Determination and Optical Properties", J. Phys. Org. Chem. [J], 2005, 18: 962-973.
    [174] S. Jacobs, W. Eevers, G. Verreyt, H. J. Geise, "Spectroscopy and Conductivity of the Separate cis and trans Isomers of a PPV Olegomer", Synth. Met. [J], 1993, 61: 189-193.
    [175] S. J. Liu, F. He, H. Wang, H. Xu, C. Y. Wang, F. Li, Y. G. Ma, "Cruciform DPVBi: Synthesis, Morphology, Optical and Electroluminescent Properties", J. Mater. Chem. [J], 2008, 18: 4802-4807.
    [176] G. Grem, G. Leditzky, B. Ullrich, G. Leising, "Blue Electroluminescent Device Based on a Conjugated Polymer", Synth. Met. [J], 1992, 51: 383-389.
    [177] R. B. Woodward, R. Hoffmann, "Conservation of Orbital Symmetry", Angew. Chem.-Int. Edit. [J], 1969, 8: 781-853.
    [178] R. B. Woodward, R. Hoffmann, "Stereochemistry of Electrocyclic Reactions", J. Am. Chem. Soc. [J], 1965, 87: 395-397.
    [179] R. Hoffmann, R. B. Woodward, "Selection Rules for Concerted Cycloaddition Reactions", J. Am. Chem. Soc. [J], 1965, 87: 2046-2048.
    [180] R. B. Woodward, R. Hoffmann, "Selection Rules for Sigmatropic Reactions", J. Am. Chem. Soc. [J], 1965, 87: 2511-2513.
    [181] R. B. Woodward, R. Hoffmann, "The Conservation of Orbital Symmetry" [M], New York: Academic Press, 1970.
    [182] N. D. Epiotis, R. L. Yates, D. Carlberg, F. Bernardi, "Stereochemistry of Polar 2+2 Cycloadditions", J. Am. Chem. Soc. [J], 1976, 98: 453-461.
    [183] N. D. Epiotis, "Theory of Pericyclic Reactions", Angew. Chem.-Int. Edit. Engl. [J], 1974, 13: 751-780.
    [184] A. Padwa, T. J. Blacklock, "Photo-Chemical Transformations of Small Ring Compounds. 104. Stereochemical Course of the Thermal and Photosensitized Intra-Molecular [2+2] Cyclo-Addition Reaction of Allyl-Substituted Cyclopropenes", J. Am. Chem. Soc. [J], 1979, 101: 3390-3392.
    [185] H. Meier, "The Photochemistry of Stilbenoid Compounds and Their Role in Materials Technology", Angew. Chem.-Int. Edit. Engl. [J], 1992, 31, 1399-1420.
    [186] A. Padwa, W. Koehn, J. Masaracc, C. L. Osborn, D. J. Trecker, "[2+2] Thermal Cyclodimerization of cis,trans-1,3-Cyclooctadiene", J. Am. Chem. Soc. [J], 1971, 93: 3633-3638.
    [187] F. D. Lewis, T. I. Ho, R. J. Devoe, "Non-Convergent Cycloaddition Pathways for Thermal Vs Photochemical-Reaction of N-Isobutenylpyrrolidine with Dimethyl Fumarate", J. Org. Chem. [J], 1980, 45: 5283-5286.
    [188] N. D. McClenaghan, C. Absalon, D. M. Bassani, "Facile Synthesis of a Fullerene-Barbituric Acid Derivative and Supramolecular Catalysis of Its Photoinduced Dimerization", J. Am. Chem. Soc. [J], 2003, 125: 13004-13005.
    [189] D. G. Amirsakis, A. M. Elizarov, M. A. Garcia-Garibay, P. T. Glink, J. F. Stoddart, A. J. P. White, D. J. Williams, "Diastereospecific Photochemical Dimerization of a Stilbene-Containing Daisy Chain Monomer in Solution as well as in the Solid State", Angew. Chem.-Int. Edit. [J], 2003, 42: 1126-1132.
    [190] E. Galoppini, R. Chebolu, R. Gilardi, W. Zhang, "Copper(I)-Catalyzed [2+2]Photocycloadditions with Tethered Linkers: Synthesis of Syn-Photodimers of Dicyclopentadienes", J. Org. Chem. [J], 2001, 66: 162-168.
    [191] F. H. Allen, M. F. Mahon, P. R. Raithby, G. P. Shields, H. A. Sparkes, "New Light on the Mechanism of the Solid State [2+2] Cycloaddition of Alkenes: a Database Analysis", New J. Chem. [J], 2005, 29: 182-187.
    [192] V. Ramamurthy, K. Venkatesan, "Photochemical-Reactions of Organic- Crystals", Chem. Rev. [J], 1987, 87: 433-481.
    [193] S. Ohba, H. Hosomi, Y. Ito, "In Situ X-Ray Observation of Pedal-Like Conformational Change and Dimerization of trans-Cinnamamide in Cocrystals with Phthalic Acid", J. Am. Chem. Soc. [J], 2001, 123: 6349-6352.
    [194] D. B. Varshney, G. S. Papaefstathiou, L. R. MacGillivray, "Site-Directed Regiocontrolled Synthesis of a 'Head-to-Head' Photodimer Via a Single-Crystal-to-Single-Crystal Transformation Involving a Linear Template", Chem. Commun. [J], 2002: 1964-1965.
    [195] H. M. Sheldrake, T. W. Wallace, C. P. Wilson, "Functionalized Cyclobutenes Via Multicomponent Thermal [2+2] Cycloaddition Reactions", Org. Lett. [J], 2005, 7: 4233-4236.
    [196] C. H. Tung, L. Z. Wu, L. P. Zhang, B. Chen, "Supramolecular Systems as Microreactors: Control of Product Selectivity in Organic Phototransformation", Acc. Chem. Res. [J], 2003, 36: 39-47.
    [197] W. Herrmann, S. Wehrle, G. Wenz, "Supramolecular Control of the Photochemistry of Stilbenes by Cyclodextrins", Chem. Commun. [J], 1997: 1709-1710.
    [198] K. Takaoka, M. Kawano, T. Ozeki, M. Fujita, "Crystallographic Observation of an Olefin Photodimerization Reaction that Takes Place Via Thermal Molecular Tumbling within a Self-Assembled Host", Chem. Commun. [J], 2006: 1625-1627.
    [199] H. Maeda, K. Nishimura, K. Mizuno, M. Yamaji, J. Oshima, S. Tobita, "Synthesis and Photochemical Properties of Stilbenophanes Tethered by Silyl Chains. Control of (2pi+2pi) Photocycloaddition, cis-trans Photoisomerization,and Photocyclization", J. Org. Chem. [J], 2005, 70: 9693-9701.
    [200] C. W. Susan, A. F. Steven, "[2+2] Photocycloaddition of Cinnamyloxy Silanes", J. Org. Chem. [J], 1994, 59: 6472-6475.
    [201] A. A. Borisenko, A. V. Nikulin, S. Wolfe, N. S. Zefirov, N. V. Zyk, "Reaction of Cyclic Olefins with Acetyl Nitrate-[2+2] Cycloaddition of the Nitryl Cation", J. Am. Chem. Soc. [J], 1984, 106: 1074-1079.
    [202] P. Alvarez, E. Lastra, J. Gimeno, M. Bassetti, L. R. Falvello, "Formation of a Cyclobutylidene Ring: Intramolecular [2+2] Cycloaddition of Allyl and Vinylidene C=C Bonds Under Mild Conditions", J. Am. Chem. Soc. [J], 2003, 125: 2386-2387.
    [203] P. Brana, J. Gimeno, J. A. Sordo, "Unusual Intramolecular [2+2] Cycloaddition of Allyl and Vinylidene C=C Bonds Under Mild Conditions: A Theoretical Analysis", J. Org. Chem. [J], 2004, 69: 2544-2550.
    [204] B. Lecea, A. Arrieta, I. Arrastia, F. P. Cossio, "Origins of Stereocontrol in the [2+2] Cycloaddition Between Achiral Ketenes and Chiral Alpha-Alkoxy Aldehydes. A Pericyclic Alternative to the Aldol Reaction", J. Org. Chem. [J], 1998, 63: 5216-5227.
    [205] M. Alajarin, A. Vidal, F. Tovar, A. Arrieta, B. Lecea, F. P. Cossio, "Surpassing Torquoelectronic Effects in Conrotatory Ring Closures: Origins of Stereocontrol in Intramolecular Ketenimine-Imine [2+2] Cycloadditions", Chem.-Eur. J. [J], 1999, 5: 1106-1117.
    [206] D. V. Deubel, S. Schlecht, G. Frenking, "[2+2] Versus [3+2] Addition of Metal Oxides Across C=C Double Bonds: Toward an Understanding of the Surprising Chemo- and Periselectivity of Transition-metal-oxide Additions to Ketene", J. Am. Chem. Soc. [J], 2001, 123: 10085-10094.
    [207] C. Zhou, D. M. Birney, "A Density Functional Theory Study Clarifying the Reactions of Conjugated Ketenes with Formaldimine. A Plethora of Pericyclic and Pseudopericyclic Pathways", J. Am. Chem. Soc. [J], 2002, 124: 5231-5241.
    [208] K. Kraft, G. Koltzenb, "Photochemische Reaktionen Von Aromaten MIT Konjugierten Dienen. II. Neue Addukte DES Benzols an Butadien-(1.3)",Tetrahedron Letters. [J], 1967, 8: 4357-4362.
    [209] K. Kraft, G. Koltzenb, "Photochemische Reaktionen Von Aromaten MIT Konjugierten Dienen. III. Neue Addukte Von Benzol Und Naphthalin an Isopren. Untersuchungen Zum Reaktionsmechanismus", Tetrahedron Letters. [J], 1967, 8: 4723-4728.
    [210] L. L. Tian, F. He, H. Y. Zhang, H. Xu, B. Yang, C. Y. Wang, P. Lu, M. Hanif, F. Li, Y. G. Ma, J. C. Shen, "Thermal Cycloaddition Facilitated by Orthogonalπ-πOrganization through Conformational Transfer in a Swivel-Cruciform Oligo(phenylenevinylene)", Angew. Chem. Int. Ed. [J], 2007, 46: 3245-3248.
    [211] F. He, L. L. Tian, X. Y. Tian, H. Xu, Y. H. Wang, W. J. Xie, M. Hanif, J. L. Xia, F. Z. Shen, B. Yang, F. Li, Y. G. Ma, Y. Q. Yang, J. C. Shen, "Diphenylamine-Substituted Cruciform Oligo(phenylenevinylene)s: Enhanced One- and Two-Photon Excited Fluorescence in the Solid State", Adv. Funct. Mater. [J], 2007, 17: 1551-1557.
    [212] S. Nagasaki, S. Inagaki, "Stereospecific [2+2] Cycloaddition Reactions of Diphosphorus with Alkenes", Tetrahedron Letters. [J], 2008, 49: 3578-3581.
    [213] B. Lecea, M. Ayerbe, A. Arrieta, F. P. Cossío, V. Branchadell, R. M. Ortu?o, A. Baceiredo, "Theoretical Study on the Mechanism of the [2+1] Thermal Cycloaddition between Alkenes and Stable Singlet (phosphino) (silyl)carbenes", J. Org. Chem. [J], 2007, 72: 357-366.
    [214] J. A. Varela, S. G. Rubín, L. Castedo, C. Saá, "'Formal' and Standard Ruthenium-Catalyzed [2+2+2] Cycloaddition Reaction of 1,6-Diynes to Alkenes: A Mechanistic Density Functional Study", J. Org. Chem. [J], 2008, 73: 1320-1332.
    [215] A. M. P. Peedikakkal, J. J. Vittal, "Solid-State Photochemical [2+2] Cycloaddition in a Hydrogen-Bonded Metal Complex Containing Several Parallel and Crisscross C=C Bonds", Chem. Eur. J. [J], 2008, 14: 5329-5334.
    [216] M. Nagarathinam, J. J. Vittal, "A Rational Approach to Crosslinking of Coordination Polymers Using the Photochemical [2+2] Cycloaddition Reaction", Macromol. Rapid. Commun. [J], 2006, 27: 1091-1099.
    [217] C. W. Tang, S. A. Vanslyke, "Organic Electroluminescent Diodes", Appl. Phys. Lett. [J], 1987, 51: 913-915.
    [218] C. W. Tang, S. A. VanSlyke, C. H. Chen, "Electroluminescence of Doped Organic Thin Films" J. Appl. Phys. [J], 1989, 65: 3610-3616.
    [219] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holms, "Light-Emitting Diodes Based on Conjugated Polymers", Nature [J], 1990, 347: 539-541.
    [220] D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, "Nonradiative Recombination Centers and Electrical Aging of Organic Light-Emitting Diodes: Direct Connection Between Accumulation of Trapped Charge and Luminance Loss", J. Appl. Phys. [J], 2003, 93: 1108-1119.
    [221] Y. Kijima, N. Asai, and S. Tamura, "A Blue Organic Light Emitting Diode", Jpn. J. Appl. Phys. [J], 1999, 38: 5274-5277.
    [222] J. Kido, M. Kimura, K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device", Science [J], 1995, 267: 1332-1334.
    [223] M. Kitamura, T. Imada, Y. Arakawa, "Organic Light-Emitting Diodes Driven by Pentacene-Based Thin-Film Transistors", Appl. Phys. Lett. [J], 2003, 83: 3410-3412.
    [224] X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, "TMultilayer Polymer Light-Emitting Diodes: White-Light Emission with High EfficiencyT", Adv. Mater. [J], 2005, 17: 2053-2058.
    [225] G. Cheng, Y. F. Zhang, Y. Zhao, Y. Y. Lin, C. Y. Ruan, S. Y. Liu, T. Feng, Y. G. Ma, Y. X. Cheng, "White Organic Light-Emitting Devices with a Phosphorescent Multiple Emissive Layer", Appl. Phys. Lett. [J], 2006, 89: 043504.
    [226] J. Luo, X. Z. Li, Q. Hou, J. B. Peng, W. Yang, Y. Cao, "THigh-Efficiency White-Light Emission from a Single Copolymer: Fluorescent Blue, Green, and Red Chromophores on a Conjugated Polymer BackboneT", Adv. Mater. [J], 2007, 19: 1113-1117.
    [227] J. M. Shi, C. W. Tang, "Anthracene Derivatives for Stable Blue-Emitting Organic Electroluminescence Devices", Appl. Phys. Lett. [J], 2002, 80: 3201-3203.
    [228] R. J. Tseng, R. C. Chiechi, F. Wudl, Y. Yang, "Highly Efficient 7,8,10-Triphenylfluoranthene-Doped Blue Organic Light-Emitting Diodes for Display Application", Appl. Phys. Lett. [J], 2006, 88: 093512.
    [229] B. W. D'Andrade, S. R. Forrest, "TWhite Organic Light-Emitting Devices for Solid-State LightingT", Adv. Mater. [J], 2004, 16: 1585-1595.
    [230] S. L. Tao, Z. K. Peng, X. H. Zhang, P. F. Wang, C. S. Lee, S. T. Lee, "THighly Efficient Non-Doped Blue Organic Light-Emitting Diodes Based on Fluorene Derivatives with High Thermal StabilityT", Adv. Funct. Mater. [J], 2005, 15: 1716-1721.
    [231] K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, S. M. Peng, "Ter(9,9-diarylfluorene)s: Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability", J. Am. Chem. Soc. [J], 2002, 124: 11576-11577.
    [232] K. Okumoto, Y. Shirota, "New Class of Hole-Blocking Amorphous Molecular Materials and Their Application in Blue-Violet-Emitting Fluorescent and Green-Emitting Phosphorescent Organic Electroluminescent Devices", Chem. Mater. [J], 2003, 15: 699-707.
    [233] H. Yeh, R. Lee, L. Chan, T. J. Lin, C. Chen, E. Balasubramaniam, Y. Tao, "Synthesis, Properties, and Applications of Tetraphenylmethane-Based Molecular Materials for Light-Emitting Devices", Chem. Mater. [J], 2001, 13: 2788-2796.
    [234] H. T. Shih, C. H. Lin, H. H. Shih, C. H. Cheng, "THigh-Performance Blue Electroluminescent Devices Based on a BiarylT Advanced Materials", Adv. Mater. [J], 2002, 14: 1409-1412.
    [235] Z. Q. Xie, B. Yang, F. Li, G. Cheng, L. L. Liu, G. D. Yang, H. Xu, L. Ye, M. Hanif, S. Y. Liu, D. G. Ma, Y. G. Ma, "Cross Dipole Stacking in the Crystal ofDistyrylbenzene Derivative: The Approach toward High Solid-State Luminescence Efficiency", J. Am. Chem. Soc. [J], 2005, 127: 14152-14153.
    [236] Z. Q. Xie, B. Yang, G. Cheng, L. L. Liu, F. He, F. Z. Shen, Y. G. Ma, S. Y. Liu, "Supramolecular Interactions Induced Fluorescence in Crystal: Anomalous Emission of 2,5-Diphenyl-1,4-distyrylbenzene with All cis Double Bonds", Chem. Mater. [J], 2005, 17: 1287-1289.
    [237] Z. Q. Xie, B. Yang, W. J. Xie, L. L. Liu, F. Z. Shen, H. Wang, X. Y. Yang, Z. M. Wang, Y. P. Li, M. Hanif, G. D. Yang, L. Ye, Y. G. Ma. "A Class of Nonplanar Conjugated Compounds with Aggregation-Induced Emission: Structural and Optical Properties of 2,5-Diphenyl-1,4- distyrylbenzene Derivatives with All cis Double Bonds", J. Phys. Chem. B [J], 2006, 110: 20993-21000.
    [238] Z. Q. Xie, B. Yang, L. L. Liu, M. Li, D. Lin, Y. G. Ma, G. Cheng, S. Liu, "TExperimental and Theoretical Studies of 2,5-Diphenyl-1,4-distyrylbenzenes with All-cis- and All-trans Double Bonds: Chemical Structure Determination and Optical PropertiesT", J. Phys. Org. Chem. [J], 2005, 18: 962-973.
    [239] S. Tang, M. R. Liu, P. Lu, H. Xia, M. Li, Z. Q. Xie, F. S. Shen, C. Gu, H. P. Wang, B. Yang, Y. G. Ma, "TA Molecular Glass for Deep-Blue Organic Light-Emitting Diodes Comprising a 9,9T'T-Spirobifluorene Core and Peripheral Carbazole GroupsT", Adv. Funct. Mater. [J], 2007, 17: 2869-2877.
    [240] F. He, H. Xu, B. Yang, Y. Duan, L. L. Tian, K. K. Huang, Y. G. Ma, S. Y. Liu, S. H. Feng, J. C. Shen, "TOligomeric Phenylenevinylene with Cross Dipole Arrangement and Amorphous Morphology: Enhanced Solid-State Luminescence Efficiency and Electroluminescence PerformanceT", Adv. Mater. [J], 2005, 17: 2710-2714.
    [241] G. Cheng, Y. F. Zhang, Y. Zhao, S. Y. Liu, Z. Q. Xie, H. Xia, M. Hanif, Y. G. Ma, "Tunable Electroluminescent Color for 2, 5-Diphenyl-1,4-distyrylbenzene with Two trans-Double Bonds", Appl. Phys. Lett. [J], 2005, 87: 013506.
    [242] G. Cheng, Y. F. Zhang, Y. Zhao, S. Y. Liu, S. Tang, Y. G. Ma, "Efficient Pure Blue Electroluminescence from Ter(9,9,9",9"-bihexyl-9',9'-diphenyl)- fluorenes", Appl. Phys. Lett. [J], 2005, 87: 151905.
    [243] Y. F. Zhang, G. Cheng, Y. Zhao, J.Y. Hou, S. Y. Liu, S. Tang, Y. G. Ma, "Organic Pure-Blue-Light-Emitting Devices Based on Terfluorenes Compounds", Appl. Phys. Lett. [J], 2005, 87: 241112.
    [244] Y. Kan, L. Wang, L. Duan, Y. Hu, G. Wu, Y. Qiu, "Highly-Efficient Blue Electroluminescence Based on Two Emitter Isomers", Appl. Phys. Lett. [J], 2004, 84: 1513-1515.
    [245] C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, "Highly Efficient Blue Electroluminescence from a Distyrylarylene Emitting Layer with a New Dopant", Appl. Phys. Lett. [J], 1995, 67: 3853-3855.
    [246] C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, Y. Y. Chien,"TEfficient Organic Blue-Light-Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties",T Adv. Mater. [J], 2004, 16: 61-65.
    [247] T. C. Chao, Y. T. Lin, C. Y. Yang, T. S. Hung, H. C. Chou, C. C. Wu, K. T. Wong, "Highly Efficient UV Organic Light-Emitting Devices Based on Bi(9,9-diarylfluorene)s", Adv. Mater. [J], 2005, 17: 992-996.
    [248] L. H. Chan, H. C. Yeh, C. T. Chen, "Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds", Adv. Mater. [J], 2001, 13: 1637-1641.
    [249] J. U. Kim, H. B. Lee, J. S. Shin, Y. H. Kim, Y. K. Joe, H. Y. Oh,C. G. Park, S. K. Kwon, "Synthesis and Characterization of New Blue Light Emitting Material with Tetraphenylsilyl", Synth. Met. [J], 2005, 150: 27-32.
    [250] M. Pope, H. P Kallmann, P. Magnante, "Electroluminescence in Organic Crystals", J. Chem. Phys. [J], 1963, 38: 2042-2043.
    [251] M. Sano, M. Pope, H. Kallman, "Electroluminescence and Band Gap in Anthracene", J. Chem. Phys. [J], 1965, 43: 2920-2921.
    [252] K. Danel, T. H. Huang, J. T. Lin, Y. T. Tao, C. H. Chuen, "Blue-Emitting Anthracenes with End-Capping Diarylamines", Chem. Mater. [J], 2002, 14: 3860-3865.
    [253] S. W. Culligan, A. C. A. Chen, J. U. Wallace, K. P. Klubek, C. W. Tang, S. H. Chen, "Effect of Hole Mobility through Emissive Layer on Temporal Stability of Blue Organic Light-Emitting Diodes", Adv. Funct. Mater. [J], 2006, 16: 1481-1487.
    [254] S. Y. Zheng, J. M. Shi, "Novel Blue-Light-Emitting Polymers Containing Dinaphthylanthracene Moiety", Chem. Mater. [J], 2001, 13: 4405-4407.
    [255] H. Benmansour, T. Shiya, Y. Sato, G. C. Bazan, "Anthracene-Containing Binaphthol Chromophores for Light-Emitting Diode (LED) Fabrication", Adv. Funct. Mater. [J], 2003, 13: 883-886.
    [256] Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae, S. K. Kwon, "Novel Blue Emitting Material with High Color Purity", Adv. Mater. [J], 2001, 13: 1690-1693.
    [257] Y. H. Kim, H. C. Jeong, S. H. Kim, K. Yang, S. K. Kwon, "High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene", Adv. Funct. Mater. [J], 2005, 15: 1799-1805. .
    [258] M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen,"Highly Efficient, Deep-Blue Doped Organic Light-Emitting Devices", Adv. Mater. [J], 2005, 17: 2493-2497.
    [259] M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, and C. H. Chen, "Stable Styrylamine-Doped Blue Organic Electroluminescent Device Based on 2-Methyl-9,10-di(2-naphthyl)anthracene", Appl. Phys. Lett. [J], 2004, 85: 3301-3303.
    [260] Z. Q. Gao, B. X. Mi, C. H. Chen, K. W. Cheah, Y. K. Cheng, W. S. Wen, "High-Efficiency Deep Blue Host for Organic Light-Emitting Devices", Appl. Phys. Lett. [J], 2007, 90: 123506.
    [261] M. H. Ho, Y. S. Wu, S. Wen, M. T. Lee, T. M. Chen, C. H. Chen, K. C. Kwok, S. K. So, K.T. Yeung, Y. K. Cheng, Z.Q. Gao, "Highly Efficient Deep BlueOrganic Electroluminescent Device Based on 1-Methyl-9,10-di(1- naphthyl)anthracene", Appl. Phys. Lett. [J], 2006, 89: 252903.
    [262] T. H. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao, C. H. Chen, "Highly Efficient Yellow and White Organic Electroluminescent Devices Doped with 2,8-Di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenylnaphthacene", Appl. Phys. Lett. [J], 2004, 85: 4304-4306.
    [263] L. Zhao, C. Li, Y. Zhang, X. H. Zhu, J. B. Peng, Y. Cao, "Anthracene-Cored Dendrimer for Solution-Processible Blue Emitter: Syntheses, Characterizations, Photoluminescence, and Electroluminescence", Macromol. Rapid Commun. [J], 2006, 27: 914-920.
    [264] Y. Kan, L.Wang, L. Duan, Y. Hu, G. Wu, Y. Qiu, "Highly-Efficient Blue Electroluminescence Based on Two Emitter Isomers", Appl. Phys. Lett. [J], 2004, 84: 1513-1515.
    [265] Y. Kan, L. D. Wang, Y. D. Gao, L. Duan, G. S. Wu, Y. Qiu, "Highly Efficient Blue Electroluminescence Based on a New Anthracene Derivative", Synth. Met. [J], 2004, 141: 245-249.
    [266] P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, C. F. Shu, "Highly Efficient Non-Doped Blue-Light-Emitting Diodes Based on an Anthrancene Derivative End-Capped with Tetraphenylethylene Groups", Adv. Funct. Mater. [J], 2007, 17: 3141-3146.
    [267] Y. H. Niu, B. Q. Chen, T. D. Kim, M. S. Liu, A. K.Y. Jen, "Efficient and Stable Blue Light-Emitting Diodes Based on an Anthracene Derivative Doped Poly(N-vinylcarbazole) ", Appl. Phys. Lett. [J], 2004, 85: 5433-5436.
    [268] P. Raghunath, M. A. Reddy, C. Gouri, K. Bhanuprakash, V. J. Rao, "Electronic Properties of Anthracene Derivatives for Blue Light Emitting Electroluminescent Layers in Organic Light Emitting Diodes: A Density Functional Theory Study", J. Phys. Chem. A [J], 2006, 110: 1152-1162.
    [269] M. X. Yu, J. P. Duan, C. H. Lin, C. H. Cheng, Y. T. Tao, "Diaminoanthracene Derivatives as High-Performance Green Host Electroluminescent Materials", Chem. Mater. [J], 2002, 14: 3958-3963.
    [270] K. Danel, T. H. Huang, J. T. Lin, Y. T. Tao, C. H. Chuen, "Blue-Emitting Anthracenes with End-Capping Diarylamines", Chem. Mater. [J], 2002, 14: 3860-3865.
    [271] S. K. Kim, Y. Park, I. N. Kang, J. W. Park, "New Deep-Blue Emitting Materials Based on Fully Substituted Ethylene Derivatives", J. Mater. Chem. [J], 2007, 17: 4670-4678.
    [272] S. K. Kim, B. Yang, Y. G. Ma, J. H. Lee, J. W. Park, "Exceedingly Efficient Deep-Blue Electroluminescence from New Anthracenes Obtained Using Rational Molecular Design", J. Mater. Chem. [J], 2008, 18: 3376-3384.
    [273] B. Yang, S. K. Kim, H. Xu, Y Park, H. Y. Zhang, C. Gu, F. Z. Shen, C. L. Wang, D. D. Liu, X. D. Liu, M. Hanif, S. Tang, W. J. Li, F. Li, J. C. Shen, J. W. Park, Y. G. Ma. "The Origin of the Improved Efficiency and Stability of Triphenylamine-Substituted Anthracene Derivatives for OLEDs: A Theoretical Investigation", ChemPhysChem [J], 2008, 9: 2601-2609.
    [274] Y. T. Yang, H. Geng, S. W. Yin, Z. G. Shuai, J. B. Peng, "First-Principle Band Structure Calculations of Tris(8-hydroxyquinolinato)aluminum", J. Phys. Chem. B [J], 2006, 110: 3180-3184.
    [275] K. Hannewald, P. A. Bobbert, "Ab Initio Theory of Charge-Carrier Conduction in Ultrapure Organic Crystals", Appl. Phys. Lett. [J], 2004, 85: 1535-1537.
    [276] K. Hannewald, V. M. Stojanovic, J. M. T. Schellekens, P. A. Bobbert, G. Kresse, J. Hafner, "Theory of Polaron Bandwidth Narrowing in Organic Molecular Crystals", Phys. Rev. B [J], 2004, 69: 075211.
    [277] S. F. Nelsen, D. A. Trieber, R. F. Ismagilov, Y. Teki, "Solvent Effects on Charge Transfer Bands of Nitrogen-Centered Intervalence Compounds", J. Am. Chem. Soc. [J], 2001, 123: 5684-5694.
    [278] P. Barbara, T. Meyer, M. Ratner, "Contemporary Issues in Electron Transfer Research", J. Phys. Chem. [J], 1996, 100: 13148-13168.
    [279] M. Malagoli, J. L. Bredas, "Density Functional Theory Study of the Geometric Structure and Energetics of Triphenylamine-Based Hole-Transporting Molecules", Chem. Phys. Lett. [J], 2000, 327: 13-17.
    [280] B. C. Lin, C. P. Cheng, Z. Q. You, C. P. Hsu, "Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): Why It Is an Electron Transporter", J. Am. Chem. Soc. [J], 2005, 127: 66-67.
    [281] W. Q. Deng, W. A. Goddard III, "Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations", J. Phys. Chem. B [J], 2004, 108: 8614-8621.
    [282] Y. B. Song, C. A. Di, X. D. Yang, S. P. Li, W. Xu, Y. Q. Liu, L. M. Yang, Z. G. Shuai, D. Q. Zhang, D. B. Zhu, "A Cyclic Triphenylamine Dimer for Organic Field-Effect Transistors with High Performance", J. Am. Chem. Soc. [J], 2006, 128: 15940-15941.
    [283] X. D. Yang, Q. K. Li, Z. G. Shuai, "Theoretical Modelling of Carrier Transports in Molecular Semiconductors: Molecular Design of Triphenylamine Dimer Systems", Nanotechnology [J], 2007, 18: 424029.
    [284] R. A. Marcus, "On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I", J. Chem. Phys. [J], 1956, 24: 966-978.
    [285] R. A. Marcus, "On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. II. Applications to Data on the Rates of Isotopic Exchange Reactions", J. Chem. Phys. [J], 1957, 26: 867-871.
    [286] R. A. Marcus, "On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. III. Applications to Data on the Rates of Organic Redox Reactions", J. Chem. Phys. [J], 1957, 26: 872-877.
    [287] R. A. Marcus, "Chemical and Electrochemical Electron-Transfer Theory", Annu. Rev. Phys. Chem. [J], 1964, 15: 155-196.
    [288] R. A. Marcus, "Electron Transfer Reactions in Chemistry. Theory and Experiment", Rev. Mod.Phys. [J], 1993, 65: 599-610.
    [289] R. A. Marcus, N. Sutin, "Electron Transfer in Chemistry and Biology", Biochim. Biophys. Acta [J], 1985, 811: 265-322.
    [290] J. L. Bredas, D. Beljonne, J. Cornil, J. P. Calbert, Z. Shuai, R. Silbey, "Electronic Structure ofπ-Conjugated Oligomers and Polymers: aQuantum-Chemical Approach to Transport Properties", Synth. Met. [J], 2001, 125: 107-116.
    [291] J. Cornil, D. Beljonne, J. P. Calbert, J. L. Bredas, "Interchain Interactions in Organicπ-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport", Adv. Mater. [J], 2001, 13: 1053-1067.
    [292] J. Cornil, V. Lemaur, J. P. Calbert, J. L. Bredas, "Charge Transport in Discotic Liquid Crystals: A Molecular Scale Description", Adv. Mater. [J], 2002, 14: 726-729.
    [293] Y. C. Cheng, R. J. Silbey, D. A. da Silva, J. P. Calbert, J. Cornil, J. L. Bredas, "Three-Dimensional Band Structure and Bandlike Mobility in Oligoacene Single Crystals: A Theoretical Investigation", J. Chem. Phys. [J], 2003, 118: 3764-3774.
    [294] D. N. Beratan, "Electron Tunneling through Rigid Molecular Bridges: Bicyclo[2.2]octane", J. Am. Chem. Soc. [J], 1986, 108: 4321-4326.
    [295] J. N. Onuchic, D. N. Beratan, "Molecular Bridge Effects on Distant Charge Tunneling", J. Am. Chem. Soc. [J], 1987, 109: 6771-6778.
    [296] C. X. Liang, M. D. Newton, "Ab Initio Studies of Electron Transfer: Pathway Analysis of Effective Transfer Integrals", J. Phys. Chem. [J], 1992, 96: 2855-2866.
    [297] A. A. Voityuk, N. Rosch, M. Bixon, J. Jortner, "Electronic Coupling for Charge Transfer and Transport in DNA", J. Phys. Chem. B [J], 2000, 104: 9740-9745.
    [298] A. Troisi, G. Orlandi, "The Hole Transfer in DNA: Calculation of Electron Coupling between Close Bases", Chem. Phys. Lett. [J], 2001, 344: 509-518.
    [299] S.W. Yin, Y.P. Yi, Q. X. Li, G. Yu, Y. Q. Liu, Z. G. Shuai, "Balanced Carrier Transports of Electrons and Holes in Silole-Based Compounds: A Theoretical Study", J. Phys. Chem. A [J], 2006, 110: 7138-7143.
    [300] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices", Nature [J], 1998, 395: 151-154.
    [301] H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, G. Xu, "Degradation Mechanism of Small Molecule Based Organic Light Emitting Diodes", Science [J], 1999, 283: 1900-1902.
    [302] K. Sakanoue, M. Motoda, M. Sugimoto, S. Sakaki, "A Molecular Orbital Study on the Hole Transport Property of Organic Amine Compounds", J. Phys. Chem. A [J], 1999, 103: 5551-5556.
    [303] R. D. Hreha, C. P. George, A. Haldi, B. Domercq, M. Malagoli, S. Barlow, J. L. Bredas, B. Kippelen, S. R. Marder, "2,7-Bis(diarylamino)-9,9- dimethylfluorenes as Hole-Transport Materials for Organic Light-Emitting Diodes", Adv. Funct. Mater. [J], 2003, 13: 967-973.
    [304] B. C. Lin, C. P. Cheng, Z. P. M. Lao, "Reorganization Energies in the Transports of Holes and Electrons in Organic Amines in Organic Electroluminescence Studied by Density Functional Theory", J. Phys. Chem. A [J], 2003, 107: 5241-5251.
    [305] Y. Kawamura, H. Sasabe, C. Adachi, "Simple Accurate System for Measuring Absolute Photoluminescence Quantum Efficiency in Organic Solid-State Thin Films", Jpn. J. Appl. Phys. [J], 2004, 43: 7729-7730.
    [306] C. Adachi, M. Baldo, TE. Hompson, S. R. Forrest, "Nearly 100% Internal Phosphorescence Efficiency in an Organic Light-Emitting Device", J. Appl. Phys. [J], 2001, 90: 5048-5051.
    [307] P. Raghunath, M. A. Reddy, C. Gouri, K. Bhanuprakash, V. J. Rao, "Electronic Properties of Anthracene Derivatives for Blue Light Emitting Electroluminescent Layers in Organic Light Emitting Diodes: A Density Functional Theory Study", J. Phys. Chem. A [J], 2006, 110: 1152-1162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700