强极性中药组分的亲水作用色谱保留行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反相色谱是目前应用最为广泛的一种液相色谱模式,它能分析分离大多数有机化合物,但对于强极性化合物,反相色谱并不能提供很好的分离。与反相色谱不同,亲水色谱使用极性固定相、水/有机溶剂作为流动相,能对强极性化合物提供很好的分离,已广泛应用于糖类、氨基酸、多肽、蛋白质、核苷、药物等的分析分离。本论文采用二醇基、氨基、δ-葡萄糖酸内酯三种键合固定相,通过改变流动相中有机溶剂、盐和有机酸的种类及其浓度、柱温等条件,系统研究了强极性中药组分在亲水作用色谱中的保留行为,期望为中药有效成分的分离提取奠定基础。具体工作如下:
     1.通过改变流动相中乙腈、甲醇和四氢呋喃的浓度,研究了有机溶剂种类及其浓度对溶质保留行为的影响。一般地,流动相中水比例在0-100%(v/v)变化时,溶质的保留随水浓度变化呈“U”型曲线,证明所用溶质的保留属于亲水色谱和反相色谱的混合保留机理,而“U”型曲线形状与有机溶剂、固定相性质和溶质分子结构有关。在同一固定相上,采用乙腈时,溶质的保留最强。
     2.流动相水相中缓冲盐分别选择甲酸铵、甲酸钠、乙酸钠、乙酸铵,通过改变盐浓度研究了溶质在三种固定相上的保留行为。在二醇硅胶中,溶质保留均随盐浓度增加而增强,而在氨丙基硅胶和δ-葡萄糖酸内酯键合硅胶中,酸性溶质保留随盐浓度增加而减弱,分析了产生该现象的原因。还发现,盐种类对溶质保留的影响不符合Hofmeister效应,没有规律可循。
     3.研究了流动相中添加的乙酸、甲酸、三氟乙酸对溶质在固定相上保留行为的影响。结果发现,在二醇、氨丙基和δ-葡萄糖酸内酯键合固定相上,外加酸对中性溶质保留影响较小,而对酸性溶质保留影响较大。提出在中药组分的分析中,流动相中乙酸、甲酸添加量应控制在0-0.5%,三氟乙酸应控制在0-0.1%为宜。
     4.在10-50℃范围内研究了柱温对溶质保留的影响。随着温度的升高,在二醇硅胶中,溶质保留均降低;而在氨丙基硅胶和δ-葡萄糖酸内酯键合硅胶中,各个溶质表现出不同的变化趋势。用Van't Hoff作图法,分析了溶质在三种固定相上的驱动力。
Reversed phase liquid chromatography (RPLC) is currently the most popular method in the field of high performance liquid chromatography (HPLC) as it is effective for varities of organic compounds. However, many polar compounds are difficult to be separated by RPLC. Contrary to RPLC, hydrophilic interaction chromatography (HILIC) use polar stationary phase and aqueous/organic mobile phase and can provide an approach to effectively separate polar compounds, thus it has been used in the separation and analysis of carbohydrates, amino acids, peptides, proteins, nucleotides, pharmaceutical drugs, etc. In this thesis, the retention behaviors of six polar compounds from traditional Chinese medicine were investigated systematically with HILIC on three of the most widely used stationary phase by changing organic solvent types and concentration, additives (salt and organic acid) in mobile phase and column temperature. The obtained results are as follows:
     1. The influences of organic solvents type and concentration on retention behaviors of solutes were investigated by changing concentration of acetonitrile, methanol and tetrahydrofuran in mobile phase. Generally, the retention curves of six solutes exhibited "U" shape with the change in the concentration of water from 0 to 100% (v/v) in mobile phase, indicating a mixed-mode of hydrophilic interaction and reversed phase chromatography. The retention curves of "U" shape were related with properties of organic solvents and stationary phase and molecular structures of solutes. On the same stationary phase, the retentions of solutes were strongest when acetonitrile was used in mobile phase.
     2. The influences of different concentration of HCOONH4, CH3COONH4, HCOONa and CH3COONa on retention behaviors of solutes were studied. The retention times of all solutes increased with increase of salt concentration on diol silica column, while the retentions of acidic solutes were found to decrease with increase of salt concentration on aminopropyl and 8-glucolactone bonding silica column. The reason of this phenomenon was elucidated. Also, it was found that influences of salt type on retentions of solutes were not consistent with Hofmeister effects.
     3. The influences of CH3COOH, HCOOH and TFA on retention behaviors of solutes was studied. The results indicated that the retentions of neutral solutes had less variation, but retentions of acidic solutes had more variation upon adding organic acid in mobile phase. In analysis of traditional Chinese medicine, the amount of HCOOH and CH3COOH added should be 0-0.5%, and TFA should be 0-0.1% in the mobile phase.
     4. The influences of column temperature on retention of solutes were investigated in the range 10-50℃. As temperature raised, retentions of all solutes decreased gradually on diol silica column, while had a different variation trend in aminopropyl andδ-glucolactone bonding silica column. By Van't Hoff method, the driving force for the transfer of solutes from mobile phase to stationary phase was deduced.
引文
[1]王媛,顾惠新,路鑫,等.以亲水作用色谱为核心的液相色谱联用技术及其应用研究[J].色谱,2008,26(6):649-657
    [2]Guo Y, Gaiki S. Retention Behavior of Small Polar Compounds on Polar Stationary Phases in Hydrophilic Interaction Chromatography[J]. Journal of Chromatography A.2005, 1074:71-80
    [3]郭志谋,张秀莉,徐青,等.亲水作用色谱固定相及其在中药分离中的应用[J].色谱,2009,27(5):675-681
    [4]Alpert A J. Hydrophilic Interaction Chromatography for the Separation of Peptides, Nucleic Acids and Other Polar Compounds[J]. Journal of Chromatography,1990,499: 177-196
    [5]Hemstrom P, Irgum K. Hydrophilic Interaction Chromatography [J]. Journal of Separation Science.2006,29:1784-1821
    [6]Ikegami T, Tomomatsu K, Takubo H, et al. Separation Efficiencies in Hydrophilic Interact-ion Chromatography [J]. Journal of Chromatography A.2008,1184:474-503
    [7]Yoshida T. Peptide Separation by Hydrophilic-Interaction Chromatography:a Review[J]. Journal of Biochemical and Biophysical Methods.2004,60(3):265-280
    [8]Yoshida T. Prediction of Peptide Retention Time in Normal-phase Liquid Chromatography [J]. Journal of Chromatography A.1998,811(1-2):61-67
    [9]Guo Y, Huang A H. A HILIC Method for the Analysis of Tromethamine as the Counter Ion in an Investigational Pharmaceutical Salt[J]. Journal of Pharmaceutical and Biomedical Analysis.2003,31(6):1191-1201
    [10]Berthod A, Chang S S, Kullman J P, et al. Practice and Mechanism of HPLC Oligosaccharide Separation with a Cyclodextrin Bonded Phase[J]. Talanta.1998,47(4): 1001-1012
    [11]Hao Z, Lu C Y, Xiao B, et al. Separation of Amino Acids, Peptides and Corresponding Amadori Compounds on a Silica Column at Elevated Temperature [J]. Journal of Chromatography A.2007,1147(2):165-171
    [12]Pack B W, Risley D S. Evaluation of a Monolithic Silica Column Operated in the Hydrophilic Interaction Chromatography Mode with Evaporative Light Scattering Detection for the Separation and Detection of Counter-ions [J]. Journal of Chromatography A.2005, 1073(1-2):269-275
    [13]Jandera P. Stationary Phases for Hydrophilic Interaction Chromatography, Their Characterization and Implementation into Multidimensional Chromatography Concepts[J]. Journal of Separation Science.2008,31(9):1421-1437
    [14]Strege M A. Hydrophilic Interaction Chromatography-Electrospray Mass Spectrometry Analysis of Polar Compounds for Natural Product Drug Discovery[J]. Analytical Chemistry. 1998,70(13):2439-2445
    [15]Li R P, Huang J X. Chromatographic Behavior of Epirubicin and its Analogues on High Purity Silica in Hydrophilic Interaction Chromatography[J]. Journal of Chromatography A. 2004,1041:163-169
    [16]Grumbach E S, Diehl D M, Neue U D. The Application of Novel 1.7μm Ethylene Bridged Hybrid Particles for Hydrophilic Interaction Chromatography [J]. Journal of Separation Science.2008,31(9):1151-1518
    [17]West C, Lesellier E. Characterization of Stationary Phases in Subcritical Fluid Chromatography with the Solvation Parameter Model[J]. Journal of Chromatography A.2006, 1110(1-2):200-213
    [18]Brons C, Olieman C. Study of the High-performance Liquid Chromatographic Separation of Reducing Sugars, Applied to the Determination of Lactose in Milk[J]. Journal of Chromatography,1983,259(1):79-86
    [19]Herbreteau B, Lafosse M, Morinallory L, et al. High Performance Liquid Chromatography of Raw Sugars and Polyols Using Bonded Silica Gels[J]. Chromatographia, 1992,33(7-8):325-330
    [20]Peterson J, Allikmaa V, Subbi J, et al. Structural Deviations in Poly(amidoamine) Dendrimers:a MALDI-TOF MS Analysis[J]. European Polymer Journal.2002,39(1):33-42
    [21]Tanaka H, Zhou X J, Masayoshi O. Characterization of a Novel Diol Column for High Performance Liquid Chromatography [J]. Journal of Chromatography A.2003,987:119-125
    [22]Wang X D, Li W Y, Rasmussen H T. Orthogonal Method Development Using Hydrophilic Interaction Chromatography and Reversed-phase High-performance Liquid Chromatography for the Determination of Pharmaceuticals and Impurities[J]. Journal of Chromatography A.2005,1083(1-2):58-62
    [23]Treiber L. Normal-phase High-performance Liquid Chromatography with Relay Gradient Elution. I. Description of the Method[J]. Journal of Chromatography A.1995,696(2): 193-199
    [24]Mcclintic C, Remick D M, Peterson J A, et al. Novel Method for the Determination of Piperazine in Pharmaceutical Drug Substances Using Hydrophilic Interaction Chromatography and Evaporative Light Scattering Detection[J]. Journal of Liquid Chromatography & Related Technologies.2003,26(18):3093-3104
    [25]Yoshida T, Okada T. Peptide Separation in Normal-phase Liquid Chromatography. Study of Selectivity and Mobile Phase Effects on Various Columns[J]. Journal of Chromatography A.1999,840(1):1-9
    [26]Han S M. Direct Enantiomeric Separations by High Performance Liquid Chromatography Using Cyclodextrins[J]. Biomedical Chromatography.1997,11(5):259-271
    [27]Armstrong D, Jin H. Evaluation of the Liquid Chromatographic Separation of Monosaccharides, Disaccharides, Trisaccharides, Tetrasaccharides, Deoxysaccharides and Sugar Alcohols with Stable Cyclodextrin Bonded Phase Columns[J]. Journal of Chromatography.1989,462:219-232
    [28]Risley D S, Strege M A. Chiral Separations of Polar Compounds by Hydrophilic Interaction Chromatography with Evaporative Light Scattering Detection[J]. Analytical chemistry.2000,72(8):1736-1739
    [29]Linden J C, Lawhead C L. Liquid Chromatography of Saccharides[J]. Journal of Chromatography.1975,105(1):125-133
    [30]Churms S C. Recent Progress in Carbohydrate Separation by High-performance Liquid Chromatography Based on Hydrophilic Interaction[J]. Journal of Chromatography A.1996, 720(1-2):75-91
    [31]Olsen B A. Hydrophilic Interaction Chromatography Using Amino and Silica Columns for the Determination of Polar Pharmaceuticals and Impurities[J]. Journal of Chromatography A.2001,913(1-2):113-122
    [32]Valette J C, Demesmay C, Rocca J L, et al. Separation of Tetracycline Antibiotics by Hydrophilic Interaction Chromatography Using an Aminopropyl stationary phase[J]. Chromatographia.2004,59(1-2):55-60
    [33]Bjorklund M, Hearn M T W. Characterisation of Silica-based Heparin-affinity Adsorbents through Column Chromatography of Plasma Fractions Containing Thrombin[J]. Journal of Chromatography A.1996,743(1):145-162
    [34]Yoshida T. Peptide Separation in Normal Phase Liquid Chromatography[J]. Analytical Chemistry.1997,69(15):3038-3043
    [35]Tolstikov V V, Fiehn O. Analysis of Highly Polar Compounds of Plant Origin: Combination of Hydrophilic Interaction Chromatography and Electrospray Ion Trap Mass Spectrometry[J]. Analytical Biochemistry.2002,301(2),298-307
    [36]Jiang W, Irgum K. Covalently Bonded Polymeric Zwitterionic Stationary Phase for Simultaneous Separation of Inorganic Cations and Anions[J]. Analytical Chemistry.1999, 71(2):333-344
    [37]Jiang W, Irgum K. Synthesis and Evaluation of Polymer-Based Zwitterionic Stationary Phases for Separation of Ionic Species[J]. Analytical Chemistry.2001,73(9):1993-2003
    [38]Wade K L, Garrard I J, Fahey J W. Improved Hydrophilic Interaction Chromatography Method for the Identification and Quantification of Glucosinolates[J]. Journal of Chromatography A.2007,1154(1-2):469-472
    [39]Diener M, Erler K, Christian B, et al. Application of a New Zwitterionic Hydrophilic Interaction Chromatography Column for Determination of Paralytic Shellfish Poisoning Toxins[J]. Journal of Separation Science.2007,30(12):1821-1826
    [40]Jiang W, Irgum K. Tentacle-type Zwitterionic Stationary Phase Prepared by Surface-initiated Graft Polymerization of 3-[N,N-Dimethyl-N-(Methacryloyloxyethyl)-ammonium] Propanesulfonate through Peroxide Groups Tethered on Porous Silica[J]. Analytical Chemistry.2002,74(18):4682-4687
    [41]Liu S M, Xu L, Wu C T, et al. Preparation and Characterization of Perhydroxyl-cucurbit[6]uril Bonded Silica Stationary Phase for hydrophilic-interaction Chromatography [J]. Talanta,2004,64(4):929-934
    [42]Jon S Y, Selvapalam N, Oh D H, et al. Facile Synthesis of Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of Cucurbit [n]uril[J]. Journal of the American Chemical Society.2003,125(34):10186-10187
    [43]Xu M C, Peterson D S, Rohr T, et al. Polar Polymeric Stationary Phases for Normal-phase HPLC Based on Monodisperse Macroporous Poly(2,3-ihydroxypropyl methacrylate-co-ethylene dimethacrylate) Beads [J]. Analytical Chemistry.2003,75(4): 1011-1021
    [44]Li W K, Li Y H, Francisco D T, et al. Hydrophilic Interaction Liquid Chromatographic Tandem Mass Spectrometric Determination of Atenolol in Human Plasma[J]. Biomedical Chromatography.2005,19(5):385-393
    [45]Guo Y. Analysis of Quaternary Amine Compounds by Hydrophilic Interaction Chromatography/Mass Spectrometry (HILIC/MS)[J]. Journal of Liquid Chromatography & Related Technologies.2005,28(4):497-512
    [46]Dallet P, Labat L, Kummer E, et al. Determination of Urea, Allantoin and Lysine Pyroglutamate in Cosmetic Samples by Hydrophilic Interaction Chromatography[J]. Journal of Chromatography B.2000,742(2):447-452
    [47]McKeown A P, Euerby M R, Lomax H, et al. The Use of Silica for Liquid Chromatographic/Mass Spectrometric Analysis of Basic Analytes[J]. Journal of Separation Science.2001,24(10-11):835-842
    [48]Appelblad P, Abrahamsson P. Mass Spectrometric Detection of Homocysteine, Methylmalonic Acid and Succinic Acid Using HILIC on a Zwitterionic Stationary Phase[J]. LC-GC Europe.2005,47-48
    [49]Schlichtherle-Cerny H, Affolter M, Cerny C. Hydrophilic Interaction Liquid Chromatography Coupled to Electrospray Mass Spectrometry of Small Polar Compounds in Food Analysis[J]. Analytical Chemistry.2003,75(10):2349-2354
    [50]Rotzoll N, Dunkel A, Hofmann T. Activity-Guided Identification of (S)-Malic Acid 1-O-D-Glucopyranoside (Morelid) and Aminobutyric Acid as Contributors to Umami Taste and Mouth-Drying Oral Sensation of Morel Mushrooms (Morchella deliciosa Fr.) [J]. Journal of Agricultural and Food Chemistry.2005,53(10):4149-4156
    [51]Person M, Hazotte A, Elfakir C, et al. Development and Validation of a Hydrophilic Interaction Chromatography-mass Spectrometry Assay for Taurine and Methionine in Matrices Rich in Carbohydrates [J]. Journal of Chromatography A.2005,1081(2):174-181
    [52]Dixon A M, Delinsky D C, Bruckner J V, et al. Analysis of Dichloroacetic Acid in Drinking Water by Ion Exchange HILIC-LC/MS/MS[J]. Journal of Liquid Chromatography & Related Technologies.2004,27(15):2343-2355
    [53]Negri A, Stirling D, Quilliam M, et al. Three Novel Hydroxybenzoate Saxitoxin Analogues Isolated from the Dinoflagellate Gymnodinium Catenatum[J]. Chemical Research in Toxicology.2003,16(8):1029-1033
    [54]Dell'Aversano C, Eaglesham G K, Quilliam M A. Analysis of Cyanobacterial Toxins by Hydrophilic Interaction Liquid Chromatography-mass Spectrometry [J]. Journal of Chromatography A.2004,1028(1):155-164
    [55]Striegel A M. Determining and Correcting "Moment Bias" in Gradient Polymer Elution Chromatography [J]. Journal of Chromatography A.2003,996(1-2):45-51
    [56]Svec F, Petro M, Frechet M J. Separation of Hydrophilic Oligomers and Polymers Using Monodisperse Poly(2,3-Dihydroxypropyl Methacrylate-Co-Ethylene Dimethacrylate) Beads via Normal-phase and Hydrophilic-interaction HPLC[J]. Collection of Czechoslovak Chemical Communications.2001,66(7):1047-1061
    [57]Zheng Y F, Xu G W, Yang J, et al. Determination of Urinary Nucleosides by Direct Injection and Coupled-column High-performance Liquid Chromatography [J]. Journal of Chromatography B.2005,819(1):85-90
    [58]Fox A. Carbohydrate Profiling of Bacteria by Gas Chromatography-mass Spectrometry and Their Trace Detection in Complex Matrices by Gas Chromatography-tandem Mass Spectrometry [J]. Journal of Chromatography A.1999,843(1-2):287-300
    [59]Que A H, Novotny M V. Separation of Neutral Saccharide Mixtures with Capillary Electrochromatography Using Hydrophilic Monolithic Columns [J]. Analytical Chemistry. 2002,74(20):5184-5191
    [60]Verzele M, Simoens G, Vandamme F. A Critical Review of Some Liquid Chromatography Systems for the Separation of Sugars[J]. Chromatographia.1987,23(4): 292-300
    [61]Zhu B Y, Mant C T, Hodges R S. Mixed-mode Hydrophilic and Ionic Interaction Chromatography Rivals Reversed-phase Liquid Chromatography for the Separation of Peptides[J]. Journal of Chromatography.1992,594(1-2):75-86
    [62]Hyun M H, Whangbo S H, Cho Y J. Effect of Analyte Lipophilicity on the Resolution of Amino Acids on Liquid Chromatographic Ligand Exchange Chiral Stationary Phases[J]. Journal of Separation Science.2003,26(18):1615-1622
    [63]Shen Y, Jacobs J M, Camp D G. et al. Ultra-high-efficiency Strong Cation Exchange LC/RPLC/MS/MS for High Dynamic Range Characterization of the Human Plasma Proteome[J]. Analytical Chemistry.2004,76(4):1134-1144
    [64]Gilar M, Olivova P, Daly A E, et al. Orthogonality of Separation in Two-Dimensional Liquid Chromatography [J]. Analytical Chemistry.2005,77(19):6426-6434
    [65]Wang H, Gao X, Zhang B. Tanshinone:an Inhibitor of Proliferation of Vascular Smooth Muscle cells[J]. Journal of Ethnopharmacology.2005,99(1):93-98
    [66]胡益勇,徐晓玉.阿魏酸的化学和药理研究进展[J].中成药,2006,28(2):253-255
    [67]马佳佳,李红梅,董治宇等,.葛根素的药理作用及其临床应用[J].第四军医大学学报,2002,23(suppl):64-66
    [68]邓良,袁华.绿原酸的研究进展[J].化学与生物工程,2005,14(7):4-6
    [69]巢志茂.胡黄连活性成分的研究进展[J].国外医学中医中药分册,1993,15(2):1-3
    [70]张帆,李臻,哈木拉提吾甫尔,等.新疆产地干果中苦杏仁苷含量的快速测定[J].食品科学,2010,31(2):138-140
    [1]Alpert A J. Hydrophilic Interaction Chromatography for the Separation of Peptides, Nucleic Acids and Other Polar Compounds [J]. Journal of Chromatography,1990(499): 177-196
    [2.]Oyler A R, Armstrong B L, Cha J Y, et al. Hydrophilic Interaction Chromatography on Amino-silica Phases Complements Reversed-phase High-performance Liquid Chromatography and Capillary Electrophoresis for Peptide Analysis [J]. Journal of Chromatography A,1996,724(1-2):378-383
    [3]Troyer J K, Stephenson K K, Fahey J W. Analysis of Glucosinolates from Broccoli and Other Cruciferous Vegetables by Hydrophilic Interaction Liquid Chromatography [J]. Journal of Chromatography A,2001,919(2):299-304
    [4]郭志谋,张秀莉,徐青,等.亲水作用色谱固定相及其在中药分离中的应用[J].色谱,2009,27(5):675-681
    [5]Wang X D, Li W Y, Rasmussen H T. Orthogonal Method Development Using Hydrophilic Interaction Chromatography and Reversed-phase High-performance Liquid Chromatography for the Determination of Pharmaceuticals and Impurities [J]. Journal of Chromatography A. 2005,1083(1-2):58-62
    [6]Ikegami T, Tomomatsu K, Takubo H, et al. Separation Efficiencies in Hydrophilic Interaction Chromatography [J]. Journal of Chromatography A.2008,1184:474-503
    [7]Hemstrom P, Irgum K. Hydrophilic Interaction Chromatography [J]. Journal of Separation Science.2006,29:1784-1821
    [8]Brons C, Olieman C. Study of the High-performance Liquid Chromatographic Separation of Reducing Sugars, Applied to the Determination of Lactose in Milk[J]. Journal of Chromatography,1983,259(1):79-86
    [9]Tanaka H, Zhou X J, Masayoshi O. Characterization of a Novel Diol Column for High Performance Liquid Chromatography [J]. Journal of Chromatography A.2003,987:119-125
    [10]Linden J C, Lawhead C L. Liquid Chromatography of Saccharides[J]. Journal of Chromatography.1975,105(1):125-133
    [11]. Churms S C. Recent Progress in Carbohydrate Separation by High-performance Liquid Chromatography Based on Hydrophilic Interaction[J]. Journal of Chromatography A.1996, 720(1-2):75-91
    [12]Ikegami T, Tomomatsu K, Takubo H, et al. Separation Efficiencies in Hydrophilic Interaction Chromatography [J]. Journal of Chromatography A.2008,1184:474-503
    [13]Guo Y, Gaiki S. Retention Behavior of Small Polar Compounds on Polar Stationary Phases in Hydrophilic Interaction Chromatography [J]. Journal of Chromatography A.2005, 1074:71-80
    [14]Jurado L A, Mosley J, Jarrett H W. Cyanogen Bromide Activation and Coupling of Ligands to Diol-containing Silica for High-performance Affinity Chromatography: Optimization of Conditions[J]. Journal of Chromatography A,2002,971(1-2):95-104
    [15]封顺,张强,邹汉法,等.羰基咪唑法合成牛血清白蛋白键合手性固定相[J].高等学校化学学报,2002,23(7):1251-1254
    [16]. Yang Q, Xu Z K, Hu M X, et al. Novel Sequence for Generating Glycopolymer tethered on a Membrane Surface[J]. Langmuir,2005,21:10717-10723
    [17]. Jin G W, Guo Z M, Zhang F F, et al. Study on the Retention Equation in Hydrophilic Interaction Liquid Chromatography[J]. Talanta,2008,76(3):522-527
    [18]. Yang Z. Hofmeister Effects: an Explanation for the Impact of Ionic Liquids on Biocatalysis[J]. Journal of Biotechnology,2009,144(1):12-22
    [19]王彦,耿信笃.离子交换色谱流动相组成对溶菌酶复性的影响[J].西北大学学报,2004,34(1):47-51
    [20]何媛,雷根虎,卫引茂.流动相组成和温度对衍生化环糊精键合固定相拆分四种仲醇消旋体的影响[J].化学学报,2009,67(3):219-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700