新型羧基键合硅胶高效液相色谱固定相的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自高效液相色谱法建立以来,关于色谱固定相的研究一直是色谱工作者的一个重要研究领域。近年来,由于人们对中草药的重新重视,使中药得以迅速发展并被广泛应用于多种疾病的预防和治疗中。但中药结构复杂,对其进行分离研究需要具有多种分离功能的色谱固定相。中药活性成分由于具有独特的结构,能与多种物质发生作用,其用作分离材料更适用于中草药的分离。为此,人们制备了一系列新型中药有效成分高效液相色谱键合固定相。本论文在前人研究的基础上,以大黄酸为原料制备了两种固定相,分别对它们进行了结构表征和高效液相色谱性能评价,初步探讨了其色谱保留机理,并对两种新固定相进行了色谱应用研究。主要研究内容包括:1、以γ-氨丙基三乙氧基硅烷为偶联剂制备了酰胺型大黄酸键合硅胶固定相。2、以γ-缩水甘油醚氧丙基三甲氧基硅烷为偶联剂制备了酯型大黄酸键合硅胶固定相。3、研究了新制备的酰胺型固定相在简单流动相甲醇-水条件下对两种异黄酮化合物的分离测定。4、用常见的两种生物碱基研究了新制酯型固定相的分离性能。
     1.酰胺型大黄酸键合硅胶固定相的简便制备及色谱性能评价
     以大黄酸为原料,γ-氨丙基三乙氧基硅烷为偶联剂,简便制备了一种酰胺型羧基键合硅胶固定相(RBSP),并用红外光谱、热重分析及元素分析对其结构进行表征。考察了流动相中甲醇含量对键合固定相的影响,并以含酸性、中性和碱性化合物的混合物为溶质,评价了RBSP的色谱性能。以甲醇-水为流动相,用C18柱作参比,研究了该键合固定相对两种大豆异黄酮化合物和几种生物碱基的分离,并对其色谱分离机理进行了初步探讨。实验结果表明,该固定相(RBSP)具有较好的反相色谱性能,同时由于键合相中含有酚羟基及酰胺基团,能为多种溶质提供作用位点,对极性化合物的分离具有明显优势,且分离速度快,可有效用于极性化合物的分离分析。
     2.酯型大黄酸键合硅胶固定相的制备及其色谱性能评价
     本研究以γ-缩水甘油醚氧丙基三甲氧基硅烷为偶联剂与大黄酸反应,制备了酯型大黄酸键合硅胶固定相(RESP),用多种手段对其结构进行了表征,以多种溶质探针对其色谱性能进行了综合评价,并与传统C18柱相比较。结果表明,由于键合相上存在酯基和大黄酸的蒽醌结构单元,能抑制硅胶上残存硅醇基的活性,可有效实现对多种化合物的分离。
     3.酰胺型大黄酸键合硅胶固定相对两种异黄酮化合物的分析应用
     研究了两种异黄酮化合物大豆甙和黄豆黄甙在酰胺型大黄酸键合相(RBSP)上的色谱行为,并与C18柱相比较,通过改变流动相的组成考察了两种化合物在该固定相上的保留行为。实验结果表明,与C18相比,在相同色谱条件下,RBSP在以简单流动相甲醇-水(V/V=75/25)条件下,能实现对两种异黄酮化合物的快速分离,但洗脱顺序与C18柱相反,说明RBSP柱与C18柱存在不同的保留机理。4.酯型大黄酸键合硅胶固定相对两种碱基的分离测定
     本文以新制键合固定相(RESP)对碱基尿嘧啶(Uracil)和腺嘌呤(Adenine)进行分离研究,并与C18相比较。通过优化色谱条件,实现了对两种碱基的较好分离,并对尿样中尿嘧啶和腺嘌呤进行了分离测定。实验发现,两种碱基在RESP和C18上的出峰顺序一致,表明RESP的分离也主要基于疏水作用。
Since the establishment of HPLC, the study of chromatographic stationary phase has become an important area for chromatography researchers. In the past few years, because of people's renewed attention on the Chinese herbal medicine, traditional Chinese herbs have got a rapid development and widely used in prevention and treatment of a variety of diseases. But the structures of traditional Chinese herbs are complicated, it demands some chromatography stationary phases which have kinds of functions separating them. As the active ingredients of Chinese Herbs have their own unique structure, it can play a role with a variety of substances, which could be used as separation materials of Chinese herbal medicine, a series of new high performance liquid chromatography bonded stationary on Chinese herbal ingredients were prepared. On the basis of the previous literatures, we prepared two kinds of bonded stationary phases which all used rhein as the raw material in this dissertation. Their chemical structures were characterized, and the chromatographic performances of them were also investigated. The chromatographic separation mechanism was initially discussed, and some chromatographic exploratory developments were done on the two new stationary phases. The major content contains:1.γ-aminopropyltriethoxy silane was used as the coupling agent to prepare a amide rhein-bonded silica gel stationary phase.2. y-glycidoxypropyltrimethoxy silane was used as the coupling agent to prepare a ester rhein-bonded silica gel stationary phase.3. The new amide rhein-bonded silica gel stationary phase was used to separate two isoflavone compounds under the simple mobile phase of methanol-water.4. The separation performance of the new ester rhein-bonded silica gel stationary phase was researched by two bio-basic groups.
     1. Simple preparation and evaluations of amide rhein-bonded silica gel stationary phase
     A new amide carboxy bonded silica gel stationary phase (RBSP) was prepared which was used rhein as the raw material and y-aminopropyltriethoxy silane as the coupling agent. The structure of RBSP was characterized by infrared spectroscopy, thermal analysis and elemental analysis. The effect of methanol content in the mobile phase on chromatographic performance of the bonded stationary phase was investigated. The chromatographic performance of RBSP was also evaluated using the mixture of acidic, neutral and basic compounds as solute. The separating property of bonded stationary phase was carried out using methanol-water as the mobile phase by separating two kinds of soy isoflavones and several biological bases compared with C18. The chromatographic separation mechanism was also initially discussed. The results demonstrated that RBSP possessed good reversed-phase chromatographic behavior. At the same time, because of the bonded stationary phase containing phenolic hydroxyl and amide groups which can provide action sites for multiple compounds, it has the obvious advantage in separating polar compounds especially the fast separating rate. So the RBSP could be efficiently used for the separation of polar compounds.
     2. Preparation and evaluations of ester rhein-bonded silica gel stationary phase
     In this study, y-glycidoxypropyltrimethoxy silane was used as the coupling agent reacting with rhein to prepare a ester rhein-bonded silica gel stationary phase(RESP). The structure of RESP was characterized by multiple methods. And the chromatographic performance was also evaluated using various solutes compared with C18. The results indicated that the bonded stationary phase can hold-back the alcohol groups of silica gel because of the esterfunction and anthraquinones on RESP. So it could separate many compounds efficiently.
     3. The analytical application of amide rhein-bonded silica gel stationary phase to two isoflavone compounds.
     A amide rhein bonded silica gel stationary phase (RBSP) was used for the separation of two isoflavones which named daidzin and glycitin, and the chromatographic behavior of the two isoflavones was studied in comparison with conventional C18. The retention behavior of the two isoflavones on this stationary phase was investigated through changing the construction of mobile phase.The experiments showed that under the same chromatographic condition, RBSP could tacho-separate the two isoflavones when using methanol-water (V/V=75/25) as the mobile phase, but the elution order opposited compared to C18. And the results illustrate that RBSP is different from C18 at the retention mechanism.
     4. Separation and determination of two bio-basic groups on the ester rhein-bonded silica gel stationary phase.
     The analytical research was carried out by comparing the chromatographic behavior of uracil and adenine on the new bonded stationary phase (RESP) with the conventional C18.It could efficiently separate the two basic groups under the optimized chromatographic conditions. And uracil and adenine in urine were determined on RESP. It was found that the elution order of the two basic groups on RESP was unanimously compared to C18. It indicates that the separation mechanism of RBSP is mainly in view of hydrophobic interaction.
引文
[1]Fishbein L. Chromatography of environmental Hzaards, Amsterdam, Elsevier Pub. Co.,1982.
    [2]Snyder L.R., Kirkland J.J., Glajch J.L. Practical HPLC method development,2nd. Chichester, England, John Wiley & Sons Inc.,1997.
    [3]Major R. E. New Chromatography columns and accessories at the 2002 pittsburgh conference, Part I. LCGC,2002,20(3):248-266.
    [4]Huang X. J., Wang J. D., Liu X. L. Simple preparation of stationary phase of alkyl-amide reversed phase liquid chromatography for the separation of basic substances. Analytical Sciences,2002,18(1):69-72.
    [5]Huang X. J., Wang J.D., Liu X.L., Shang Z.H. A novel silica-based column packing for reversed phase HPLC of basic compounds. Chromatographia,2001,54(5): 350-354.
    [6]黄晓佳,刘莺,丛润滋,刘学良,王俊德.用于碱性物质分离的酰胺型反相色谱键合相的制备及评价.色谱.2001,19(4):297-300.
    [7]Luo H., Ma L.J., Zhang Y., W.Carr P. Synthesis and characterization of silica-based hyper-crosslinked sulfonate-modified reversed stationary phases. Chromatogr. A, 2008,1182:41-55.
    [8]Mao Y., Fung B.M. Use of alumina with anchored polymer coating as packing material for reversed-phase high performance liquid chromatography. Chromatogr.A,1997,790:9-15.
    [9]万剑砥,冯钰锜,胡玉玲等.2,4,6-三硝基苯酚改性锆铝复合氧化物固定相分离富勒烯的色谱性能研究.高等学校化学学报,2002,23(7):1259-1263.
    [10]Kawahara M., Nakamura H., Nakajima T. Titania and zirconia as new ceramic column packing materials for high performance liquid chromatography. Anal Sci., 1989,5:485-486.
    [11]王俊德,商振华,郁蕴璐.高效液相色谱法.北京:中国石化出版社,1992:1-9.
    [12]杨新立,王俊德,熊博晖.高效液相色谱用硅质填料的进展.色谱,2000,18(4):
    308-312.
    [13]杨瑞琴,蒋生祥,陈立仁.苯基乙烯基甲基聚硅氧烷涂敷的反相高效液相色谱固定相.色谱,1998,16(4):331-333.
    [14]唐涛,李笃信,王风云.新型快速高效液相色谱系统的构建及评价.现代仪器,2007,6,68-71.
    [15]蒋生祥,刘霞.硅胶基质高效液相色谱固定相.色谱,2007,25(2):163-173.
    [16]杨立新.超纯多孔球形硅胶的合成与应用.[博士学位论文].大连:中国科学院大连化学物理研究所,2001:8-9.
    [17]Nawrocki J. The silanol group and its role in liquid chromatography. Chromatogr.A, 1997,779:29-71.
    [18]李莉霞.羧基键合固定相的合成及其对丹参酮的分离研究.[硕士学位论文].无锡:江南大学,2006:8-10.
    [19]朱彭龄,云自厚,谢光华.现代液相色谱.兰州:兰州大学出版社,1994:143-144.
    [20]杨晓晔,龙远德,黄天宝.高效液相色谱烷基硅胶键合固定相.合成化学,2000,8(1):29-33.
    [21]Sudo Y. Optimization of end-capping of octadecyl-silylated silica gels by high temperature silylation. Chromatogr.A,1997,757:21-28.
    [22]Mchard J.A., Winefordner J.D. New, Simple Windowless Cell for Front-Surface Fluorometry. Anal Chem,1972,44:1922-1924.
    [23]Liu X.D., Bordunov A.V., Pohl C.A. Preparation and evaluation of a hydrolytically stable amide-embedded stationary phase. Chromatogr.A,2006,1119:128-134.
    [24]Silva C.R., Airoldi C., Collins K.E., Collins C.H. A new generation of more pH stable reversed phases prepared by silanization of zirconized silica. Chromatogr.A, 2008,1191,90-98.
    [25]Kirkland J.J., Henderson J.W. Reversed-phase HPLC selectivity and retention characteristics of conformationally different bonded alkyl stationary phases. Chromatogr.Sci.,1994,32(11):473-480.
    [26]景玉青,龙远德,黄天宝.一种新型液相色谱屏蔽键合相的色谱性能.高等学
    校化学学报,2002,23(2):210-212.
    [27]O'Gara J.F., Alden B.A., Walter T.H., etal. Simple preparation of a C18 HPLC stationary phase with an internal polar functional group. Anal Chem.,1995,67(3): 3809-3813.
    [28]Li J.W., Whitman D.A. Characterization and selectivity optimization on diol, amino, and cyano normal phase columns based onlinear salvation energy relationships. Analytica Chimica Acta,1998,368:141-154.
    [29]Yoshida T., Okada T. Peptide separation in normal-phase liquid chromatography: Study of selectivity and mobile phase effects on various columns. Chromatogr.A, 1999,840:1-9.
    [30]Monacia L., Aresta A., Palmisanoa F.,et al. Amino-bonded silica as stationary phase for liquid chromatographic determination of cyclopiazonic acid in fungal extracts. Chromatogr. A,2002,955:79-86.
    [31]Aubry A.F., Markoglou N., Descorps V., Wainer I.W., Felix G. Evaluation of a chiral stationary phase based on mixed immobilized proteins. Chromatogr.1994,695:1-6.
    [32]封顺,张强,邹汉法,王吉德,陈小明,张曾子.羰基咪唑法合成牛清白蛋白键合手性固定相.高等学校化学学报,2002,23(7):1251-1254.
    [33]唐课文,陈国斌,易健民.烷基化和硅烷化p-环糊精手性固定相的研究.分析实验室,2001,20(2):71-73.
    [34]周婕,王艳芝,张振中.全苯异氰酸酯化环糊精固定相对手性药物的拆分.应用化学,2009,26(3):355-357.
    [35]Tanaka H., Nakogoni K., Tanimura T. Effect of barbiturates on enantiomeric separation by HPLC using copper-proline complex as mobile phase. Chromatogr., 1997,18:308-309.
    [36]Kubota T., Yamamoto C., Okamoto Y. Preparation of chiral stationary phase for HPLC based on immobilization of cellulose 3,5-dimethylphenylcarbamate derivatives on silica gel. Chirality,2003,15:77-82.
    [37]Oliveros L., Senso A., Minguillon C. Benzoates of cellulose bonded on silica gel: chiral discrimination ability as high-performance liquid chromatographic chiral stationary phases. Chirality,1997,9:145-149.
    [38]秦峰,陈小明,刘月启,孔亮,邹汉法.聚合反应制备键合型纤维素-三(4-甲
    基苯基甲酸酯)衍生物类手性固定相.色谱,2004,22(6):569-574.
    [39]Yahima E., Fukaya H., Okamoto Y.3,5-dimethylphenylcarbamates of cellulose and amylase regioselectivity bonded to silica gel as chiral stationary phases for high performance liquid chromatograpy. Chromatogr.A,1994,677:11-19.
    [40]Ghanem A., Al-humaidi E. Chiral recognition ability and solvent versatility of bonded amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase: enantioselective liquid chromatographic resolution of racemic N-alkylated barbiturates and thalidomide analogs. Chirality,2007,19:477-484.
    [41]Armstrong D.W., Tang Y.B., Chen S.S. et al. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal.Chem.,1994,66(9): 1473-1484.
    [42]丁国生,丛润滋,于亿年,王俊德.去甲万古霉素键合手性固定相的制备及其对磷酸苯并哌啉对映异构体的拆分.分析化学,2004,32(12):1656-1659.
    [43]丁国生,唐安娜,王俊德,包建民.替考拉宁键合手性固定相的制备及其在反相条件下对手性化合物的拆分.分析化学,2006,34(3):338-342.
    [44]Ekborg-Ott K.H., Wang X.D., Armstrong D.W. Effect of selector coverage and mobile phase composition on enantiomeric separations with ristocetin a chiral stationary phases. Microchem.,1999,62(1):26-49.
    [45]Glennon J.D., O'Connor K., Srijaranai S., Manley K., Harris S.J., Mckervey M.A. Enhanced chromatographic selectivity for Na+ ions on a calixarene-bonded silica. Anal Lett.,1993,26,153-162.
    [46]Glennon J.D., Home E., O'Connor K., Kearney G.A., Harris S.J., Mckervey M.A. Chromatographic selectivity for amino acid esters and alkali metal ions on a silica bonded calix[4]arene tetraester stationary phase. Anal Proc.,1994,31,33-35.
    [47]Szeman J., Csabai K., Kekesi K., et al. Novel stationary phases for HPLC analysis of cyclodextrin derivatives. Chromatogr.A,2006,1116:76-82.
    [48]Wirth M.J., Fatunmbi H.O. Horizontal polymerization of mixed trifunctional silanes on silica.2.application to chromatographic silica gel. Anal Chem.,1993, 65(6):822-826.
    [49]Li L.S., Liu M., Da S.L., Feng Y.Q. Preparation and characterization of a
    p-tert-butyl-calix[6]-1,4-berizocrown-4-bonded silica gel stationary phase for HPLC. Chromatogr.A,2004,1040(1):53-61.
    [50]Li L.S., Da S.L., Feng Y.Q., Liu M. Studies on the separation of nucleosides and bases on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase by HPLC. Talanta,2004,63(2):443-451.
    [51]李来生,达世禄,冯钰锜,刘敏.脱叔丁基杯[8]芳烃键合固定相的制备及其液相色谱性能.高等学校化学学报,2005,26:241-243.
    [52]王萍,王俊德,丛润滋等.用于碱性物质分离的高效液相色谱键合相的制备及评价.色谱,1997,15(3):189-192.
    [53]王俊德,黄晓佳,刘学良,商振华.酰胺型键合固定相的简便制备.中国,发明专利,01109431.1,2002.10.16.
    [54]黄晓佳,王俊德,刘学良.新型烷基醚型键合固定相的制备及评价.色谱,2001,19(6):485-488.
    [55]黄晓佳,刘学良,王俊德等.新型酯型反相高效液相色谱填料的制备表征及性能评价.高等学校化学学报,2002,23(9):1684-1687.
    [56]黄晓佳,王俊德,刘学良.酰胺型键合相的简便制备及评价.色谱,2002,20(3):19-22.
    [57]黄晓佳,王俊德,刘学良等.胺型键合反相固定相的制备及评价.分析化学,2002,30(8):962-966.
    [58]黄晓佳,王俊德,刘学良等.双胺型键合固定相的制备及评价.分析化学,2002,30(9):1048-1052.
    [59]Bogudlaw B., Marta J., Barbara O.G. Silicon dioxide surface modified with cholesterd derivatives. Materials Chemistry and Physis,2001,72(1):30-41.
    [60]Albert K., Pfleiderer B., Bayer E., etal. Characterization of chemically modified glass surfaces by 13C and 29Si GP/MAS NMR spectroscopy. Colloid and Interface Science,1991,142(1):35-40.
    [61]Trammell B.C., Ma L.J., Luo H., Hillmyer M.A., Carr P.W. Synthesis and characterization of hypercrosslinked, surface-confined, ultra-stable silica-based stationary phases. Chromatogr.A.,2004,1060,61-76.
    [62]Auler L.M.L.A., Silva C.R., Collins K.E., Collins C.H. New stationary phase for anion-exchange chromatography. Chromatogr.A.,2005,1073,147-153.
    [63]Tonhi E., Bachmann S., Albert K., Jardim I.C.S.F., Collins K.E., Collins C.H. High-performance liquid chromatographic stationary phases based on poly(methyloctylsiloxane)immobilized on silica:I. Physical and chemical characterizations. Chromatogr.A.,2002,948,97-107.
    [64]Sindorf D.W., Maciel G.E. Silicon-29 nuclear magnetic resonance study of hydroxyl sites on dehydrated silica gel surfaces using silylation as a probe. Phys Chem.,1983,87 (26):5516-5521.
    [65]邬继荣,陈利民,许文东.新型硅烷偶联剂研究进展.2009,16(4):48-50.
    [66]辛忠.合成材料添加剂化学.北京:化学工业出版社,2005:188-189.
    [67]沈玺,高雅男,徐政.硅烷偶联剂的研究与应用.2006,26(1):14-17
    [68]Nasuto R., Kwietniewski L.,R6zylo J.K. Relationship between stationary and mobile phase composition and its influence on retention factors of aromatic hydrocarbons in reversed-phase high performance liquid chromatography. Chromatogr.A,1997,762(1-2):27-33.
    [69]Schoenmakers P.J., Billiet H.A.H., Galan L.D. Description of solute retention over the full range of mobile phase compositions in reversed-phase liquid chromatography. Chromatogr.,1983,282:107-121.
    [70]Cheong W.J., Carr P.W. Study of partition models in reversed-phase liquid chromatography based on measured mobile phase solute activity coefficients. Chromatogr.,1990,499:373-393.
    [71]Rodgers A.H., Khaledi M.G. Influence of pH on retention and selectivity in micellar liquid chromatography:consequences of micellar-induced shifts of ionization constants. Anal Chem.,1994,66:327-334.
    [72]Kaliszan R. Effect of separation conditions on chromatographic determination of hydrophobicity of acidic xenobiotics. Chromatogr.B,1998,717(1-2):125-134.
    [73]万剑砥,冯钰锜,胡玉玲,达世禄,王忠华.中孔复合锆一铝氧化物微球的制备及其正相色谱性能研究.高等学校化学学报,2001,22(10):1661-1663.
    [74]Mccalley D.V. Influence of organic solvent modifier and solvent strength on peak shape of some basic compounds in high performance liquid chromatography using
    a reversed phase column. Chromatogr.,1995,708(2):185-194.
    [75]谢笑天,郑萍,朱伟明,赵革玲.高效液相色谱法测定卷烟烟气总粒相物中的烟碱.分析化学,2000,9(28):1085-1087.
    [76]蒋晔,张晓青,徐智儒.高效液相色谱法测定唑来膦酸及其制剂含量.药物分析杂志,2005,25(4):406-408.
    [77]金辉,王建.HPLC法测定呋麻滴鼻剂中盐酸麻黄碱及呋喃西林的含量.首都医药,2005,12(10):42-43.
    [78]Kucharska M., Grabkab J. A review of chromatographic methods for determination of synthetic food dyes. Talanta,2010,80:1045-1051.
    [79]Glajch J.L., Kirkland J.J., Kohler J. Effect of column degradation on the reversed-phase high-performance liquid chromatographic separation of peptides and proteins. Chromatogr.,1987,384:81-90.
    [80]Murphy L.J., Siggia S., Uden P.C. High-performance liquid chromatography of nitroaromatic compounds on an n-propylaniline-bonded stationary phase. Chromatogr.,1986,366:161-170.
    [1]Majors, R. E. New chromatography columns and accessories at the 2002 pittsburgh conference, part I. LCGC, North Am.2002,20,248-266.
    [2]杨新立,王俊德,熊博晖.高效液相色谱用硅质填料的进展.色谱,2000,18(4):308-312.
    [3]李来生,王上文,黄丽芳,刘妙芬.葫芦[6]脲单轮烷键合固定相的制备、表征及色谱性能.化学学报,2008,66(1):63-72.
    [4]Huang, X. J.; Wang, J. D.; Liu, X. L. A simple preparation of stationary phase of alkylamide reversed-phase liquid chromatography for the separation of basic substances. Anal. Sci.,2002,18,69-72.
    [5]Kanazawa, H.; Nishikawa, M.; Mizutani, A.; Sakamoto, C.; Morita-Murase, Y.; Nagata, Y.; Kikuchi, A.; Okano, T. Aqueous chromatographic system for separation of biomolecules using thermoresponsive polymer modified stationary phase. Chromatogr. A,2008,1191,157-161.
    [6]黄晓佳,刘学良,王俊德,丛润滋,新型酯型反相高效液相色谱填料的制备、表征及性能评价.高等学校化学学报,2002,23(9):1684-1687.
    [7]Mallik, A. K.; Rahman, M. M.; Czaun, M.; Takafuji, M.; Ihara, H. Facile synthesis of high-density poly(octadecylate)-grafted silica for reversed-phase high-performance liquid chromatography by surface-initiated atom transfer radical polymerization. Chromatogr.A,2008,1187,119-127.
    [8]Zhong, Q. Q.; He, L. F.; Beesley, T. E.; Trahanovsky, W. S.; Sun, P.; Wang, C. L. Armstrong, D. W. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. Chromatogr.A,2006,1115,19-45.
    [9]周玲玲,孙文卓,王剑瑜,袁黎明.N-(3,5-二甲基苯基)氨基甲酸酯单糖及二糖作为高效液相色谱手性固定相研究.化学学报,2008,66(20):2309-2312.
    [10]Huang, S. H.; Bai, Z. W.; Yin, C. Q.; Li, S. R.; Pan, Z. Q. Synthesis of polymer type chiral stationary phases and their enantioseparation evaluation by high-performance liquid chromatography. Chirality,2007,19,129-140.
    [11]Mifune, M.; Minato, K.; Kitamura, Y.; Okazaki, K.; Iwado, A.; Akizawa, H.; Haginaka, J.; Motohashi, N.; Saito, Y.π-Electron interaction of PAHs with anion-exchange silica gels modified with anionic metal-porphine and-phthalocyanine derivatives as HPLC stationary phase for preparative column in organic solvents. Talanta.2004,63,1035-1038.
    [12]石义林,韩金土,刘锦春,程介克.几种生物碱基的反相高效液相色谱分离及人尿中尿嘧啶和腺嘌呤的测定.分析科学学报,1996,12(1):19-22.
    [1]McNeff C., Zigan L., Johnson K., Carr P.W., Wang A., Weber-Main A.M. Analytical advantages of highly stable stationary phases for reverses-phase LC. LCGC, North Am.2000,18(5):514-529.
    [2]Kirkland J.J., Adams J.B., Straten M.A.V., Claessens H.A. Bidentate silane stationary phases for reversed-phase high-performance liquid chromatography. Anal. Chem.1998,70,4344-4352.
    [3]Trammell B.C., Ma L.J., Luo H., Hillmyer M.A., Carr P.W. Synthesis and characterization of hypercrosslinked,surface-confined,ultra-stable silica-based stationary phase. Chromatogr.A,2004,1060,61-76.
    [4]Kirkland J.J. Development of som stationary phases for reversed-phase HPLC. Chromatogr.A,2004,1060,9-21.
    [5]Kovacs-Hadady K. A systematic study of the desorption of different ion-pairing reagents on reversed phase thin-layers. Chromatographia,1997,45,81-90.
    [6]Huang X.J., Wang J.D., Liu X.L., Cong R.Z., A new type of chemically bonded phase for reversed-phase HPLC. Anal. Sci.2003,19,1391-1394.
    [7]Li L.S., Liu M.,. Da S.L,. Feng Y.Q. High performance liquid chromatography of aromatic carboxylic acids on p-tert-butyl-calix[8]arene-bonded silica gel stationary phase. Talanta,2004,62,643-648.
    [8]Rimmer C.A., Sander L.C., Wise S.A., Dorsey J.G. Synthesis and characterization of C13 to C18 stationary phases by monomeric, solution polymerized, and surface polymerized approaches. Chromatogr.A,2003,1007,11-20.
    [9]Mallik A.K., Rahman M.M., Czaun M., Takafuji M., Ihara H. Facile synthesis of high-density poly(octadecyl acrylate)-grafted silica for reversed-phase high-performance liquid chromatography by surface-initiated atom transfer radical polymerization. Chromatogr.A,2008,1187,119-127.
    [10]Shundo A., Sakurai T., Takafuji M., Nagaoka S., Ihara H. Molecular-length and chiral discriminations by β-structural poly(1-alanine) on silica. Chromatogr.A, 2005,1073,169-174.
    [11]Claessens H.A., Van Straten M.A., Cramers C.A., Jezierska M., Buszewski B. Comparative study of test methods for reversed-phase columns for high-performance liquid chromatography. Chromatogr.A,1998,826,135-156.
    [12]Wolcott R.G., Dolan J.W., Snyder L.R., Bakalyer S.R., Arnold M.A., Nichlos J.A. Control of column temperature in reversed-phase liquid chromatography. Chromatogr.A,2000,869,211-230.
    [13]黄晓佳,刘莺,丛润滋,刘学良,王俊德.用于碱性物质分离的酰胺型反相色谱键合相的制备及评价.色谱,2001,19(4):293-296.
    [14]许丽丽,李来生,杨汉荣.姜黄素键合硅胶固定相的制备、表征及色谱性能.色谱,2007,25(3):374-379.
    [15]李来生,陈雄泉,杨汉荣,吴宇梅.黄芩苷键合硅胶固定相的制备和表征.分析化学,2007,35(9):1279-1284.
    [16]王俊德,商振华,郁蕴璐.高效液相色谱法.北京:中国石油出版社,1992,130-131.
    [1]Kanji Miyabe. Evaluation of chromatographic performance of various packing materials having different structural characteristics as stationary phase for fast high performance liquid chromatography by new moment equations. Chromatography A, 2008,1183,49-64.
    [2]Hao Luo, Lianjia Ma, Yu Zhang, Peter W.Carr. Synthesis and characterization of silica-based hyper-crosslinked sulfonate-modified reversed stationary phases. Chromatography A,2008,1182,41-55.
    [3]Li J.Y., Shao S., Jaworsky M.S., Kurtulik P.T. Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography. Chromatogr.A.,2008, 1185,185-193.
    [4]Qin L., He X.W., Li W.Y., Zhang Y.K. Molecularly imprinted polymer prepared with bonded_-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. Chromatogr.A.,2008,1187,94-102.
    [5]方听,林国发,许秀枝,等.酞菁键合硅胶的制备及分离取代酞菁异构体.无机化学学报,2007,11,1935-1940.
    [6]李来生,陈雄泉,杨汉荣,等.黄芩苷键合硅胶固定相的制备和表征[J].分析化学,2007,35(9),1279-1284.
    [7]黄晓佳,刘莺,丛润滋,等.用于碱性物质分离的酰胺型反相色谱键合相的制备及评价.色谱,2001,4,293-296.
    [8]李明元,余渝,杜小琴.水解法提取大豆异黄酮苷元工艺研究.西南大学学报,2008,30(4):119-122.
    [9]Petr Hodek, Pavel Trefil, Marie Stiborova. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chemico-Biological Interactions,2002,139,1-21.
    [10]张玉梅,孙学斌.紫外分光光度法测定大豆异黄酮含量.中国食品卫生杂志,2000,12(4):7-8.
    [11]鞠兴荣,袁建,汪海波,等.高效液相色谱法测定大豆提取物中大豆异黄酮的含量.中国粮油学报,2000,15(4):26-29.
    [12]Adrian A. Frank, Laurie J. custer, Camencita M., et al. Quantitionation of Phytoestrogens in legumes by HPLC. Agric Food chem.,1994,42,1905-1913.
    [13]孙君明,丁安林,东惠茹.高效液相色谱(HPLC)技术检测大豆异黄酮含量.2000,19(1):15-20.
    [14]胡晓娟,苏惠.保健品原料中大豆异黄酮的HPLC法测定.2007,24,(2):268-270.
    [1]石义林,韩金土,刘锦春,程介克.几种生物碱基的反相高效液相色谱分离及人尿中尿嘧啶和腺嘌呤的测定.分析科学学报,1996,12(1):19-22.
    [2]Kazoka H. High-performance liquid chromatography of some purine and pyrimidine derivative on silica in hexane-isopropanol-ethyleneglycol mobile phase. Chromatogr.A,1999,836,235-244.
    [3]Kazoka H. Separation of purines and pyrimidines by normal-phase high-performance liquid chromatography using dimethyl sulfoxide in binary and ternary eluents. Chromatogr.A,2000,874,45-53.
    [4]Mcwhorter S., Soper S.A. Conductivity detection of polymerase chain reaction products separated by micro reversed-phase liquid chromatography. Chromatogr.A, 2000,883,1-9.
    [5]Thierry D. Magali C. Jean C. Electrospray-mass spectrometry characterization and measurement of far-UV-induced thymine photoproducts. Photochem.Photobiol. B:Biol.,2000,54,145-154.
    [6]Yamakawa H., Higashino K.I., Ohara O. Sequence dependant DNA separation by anion-exchange high-performance liquid chromatography. Anal.Biochem.,1996, 240,242-250.
    [7]Geldart S.E., Brown P.R. Optimization for the separation of ribonucleotides by capillary electrophoresis at high pH. Chromatogr.A.,1997,792,67-73.
    [8]杨更亮,李海鹰,刘海燕,王德先,李保会,陈义.毛细管区带电泳法测定冬虫夏草中的腺苷、腺嘌呤和尿嘧啶.分析化学,2002,30(9):1081-1084.
    [9]Assenza S., Brown P.R. Comoarison of high-performance liquid chromatographic serum profiles of humans and dogs. Chromatogr.,1980,181,169.
    [10]Galushko S.V., Shishkina I.P. Reversed-phase high-performance liquid chromatography of pyrimidine bases and nucleosides:Application of sovophobic theory. Chromatogr.,1988,445,59-70.
    [11]李来生.对-叔丁基杯[8]芳基键合固定相色谱应用研究I.核苷和碱基的色谱分离.[博士论文].武汉:武汉大学,2004,94-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700