基于甘油衍生物及生物可降解离子液体的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是由有机阳离子与无机或有机阴离子组成的在较低温度下呈液体状态的离子化合物,由于其具有特殊的化学、物理性质作为环境友好溶剂和催化剂得到了广泛的研究和关注。在绿色化学的要求下,离子液体的研究当中,环境友好性和生物可再生能力日益受到重视,以生物可再生资源作为原料合成环境友好型离子液体已经成为一个研究热点。本论文旨在利用生物可再生资源甘油衍生物合成新的功能化离子液体以及合成具有生物可降解性的离子液体并研究他们的理化性质及应用价值。
     本文合成了基于甘油衍生物的甲基咪唑基、吡啶基、烷基三乙基铵基和丁基咪唑基的二羟基、二酯基功能化离子液体及甲基咪唑基侧链含有乙酰酯基、乙酰胺基官能团的生物可降解离子液体共39种(其中16种为未见文献报道的离子液体,四种为手性离子液体)。通过~1H NMR,~13C NMR,FT-IR等分析手段对其结构进行了表征确认。
     甘油是天然油脂制造生物柴油过程的主要副产物,具有廉价易得、可生物再生的优点。随着生物柴油产量的提高,甘油衍生物成为廉价易得的化学品,利用其制备廉价、高效能的离子液体并研究其应用价值是很有意义的。本论文利用甘油衍生物为原料,运用简便、高效的合成方法制备了二羟基、二酯基功能化的离子液体,并在制备醋酸盐离子液体过程中采用原子经济性反应;测定了离子液体的水溶性、与有机溶剂的互溶性,研究其生物毒性,并开发其应用价值。
     阳离子侧链含有酯基、酰胺基结构的离子液体已有报道确认其具有良好的生物可降解性,在自然环境中可以降解成对环境无害的成分,因而利用此类离子液体作为有机反应溶剂具有良好的环境友好性,是传统高毒性有机分子溶剂的良好替代品。此类离子液体在作为溶剂参与不对称催化氢化反应中表现出较好的性能,接近现行工艺采用甲醇作为溶剂的效果。
Ionic liquids (ILs) are salts which have low melting point and composed entirely of organic cation and inorganic or organic anion. Recently they have been received widely much attentions and widely researched for Green chemistry as environmental-friendly solvents and catalyst, for their outstanding chemical and physical properties. Synthesis ionic liquid from biorenewable resource is the focus of recently researches. This thesis was working on synthesis ILs based on biorenewable resource: glycerol derivatives and synthesis some ILs known for their biodegradability, also investigate the applications of these environmentally-friendly ILs.
     In this paper, dihydroxyl, diester functionalized ILs based on methylimidazolium, pyridinium, alkyltriethylammonium and butylimidazolium from glycerol derivatives and biodegradable ILs from methylimidazole contain ester or amide group were synthesized and characterized by 1H NMR, 13C NMR and FT-IR.
     Glycerol is the by-product of biodiesel by transesterificaion of nature oils or fats, as the production of biodiesel increasing, glycerol is more available and much cheaper now. This paper focuses on prepare dihydroxyl and diester functionalized ILs from biorenewable glycerol derivatives in an efficient and convenient general method. Atom economic reaction was was utilized for synthesis acetate IL. We determined the ILs’water-solubility and their miscibility with organic solvents, investigated their toxicity and the development of their applicationes: Bio-polymers and carbohydrates dissolve in ILs; Dihydroxyl functionalized non-water-soluble ionic liquids on the extraction of trace boric acid from water.
     ILs contained ester, amide functionalized groups have been confirmed biodegradable in the natural environment. So we could use of such ILs as environment-friendly solvents in organic reactions. It is a good alternative solvent of traditional highly toxic organic molecules compounds. Ionic liquid solvent such as participation in the catalytic asymmetric hydrogenation showed a nice performance, close to the method of using methanol as solvent.
引文
[1] Rogers R D and Seddon K R. Ionic Liquids-Solvents of the Future?[J]. Science, 2003, 302:792-793.
    [2] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chemical Reviews, 1999, 99(8):2071-2083.
    [3] Han X X and Armstrong D W. Ionic Liquids in Separations[J]. Acc. Chem. Res., 2007, 40(11):1079-1086.
    [4]王风彦,邵光杰.离子液体应用研究进展[J].化学试剂, 2009, 31(1):25-30.
    [5] Roger S. Catalytic reactions in ionic liquids[J]. Chem. Commun., 2001, 23:2399- 2407.
    [6] Tang S L Y, Smith R L and Poliakoff M. Principles of green chemistry: PRODUCTIVELY[J]. Green Chem., 2005, 7:761-762.
    [7] Anastas P and Eghbali N. Green Chemistry: Principles and Practice[J]. Chem. Soc. Rev., 2010, 39:301-312.
    [8] Wilkes J S. A short history of ionic liquids—from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4:73-80.
    [9]顾彦龙,彭家建,乔琨,杨宏洲,石峰,邓友全.室温离子液体及其在催化和有机合成中的应用[J].化学进展, 2003, 15(3):222-241.
    [10] Sun J, Forsyth M, and MacFarlane D R. Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion[J]. J. Phys. Chem. B, 1998, 102:8858-8864.
    [11] Byrne R, Coleman S, Gallagher S and Diamond D. Designer molecular probes for phosphonium ionic liquids[J]. Phys. Chem. Chem. Phys., 2010, 12:1895-1904.
    [12] a. Wilkes J S, Levisky J A, Wilson R A and Hussey C L. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis[J]. Inorg. Chem., 1982, 21(3):1263-1264. b. Bonhote P, Dias A, Papageorgiou N, Kalyanasundaram K and Gratzel M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts[J]. Inorg. Chem., 1996, 35(5): 1168- 1178.
    [13] Gale R J and Osteryoung R A. Infrared Spectral Investigations of Room-Temperature Aluminum Chloride-1-Butylpyridinium Chloride Melts[J]. Inorg. Chem., 1980, 19(8):2240- 2242.
    [14] Mateus N M M, Branco L C, Lourenco N M T and Afonso C A M. Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids[J]. Green Chemistry, 2003, 5:347-352.
    [15] Fang S H, Yang L, Wei Chao, Peng C G, Tachibana K, Kamijima K. Low-viscosity and low-melting point asymmetric trialkylsulfonium base dionic liquids as potential electrolytes[J]. Electrochemistry Communications, 2007, 9:2696-2702.
    [16] Wilkes J S and Zaworotko M J. Air and Water Stable I-Ethyl-3-methylimidazolium BasedIonic Liquids[J]. J. Chem. Soc., Chem. Commun., 1992:965-967.
    [17] MacFarlane D R, Pringle J M, Johansson K M, Forsyth S A, Forsyth M. Lewis base ionic liquids[J]. Chem. Commun., 2006, 18:1905-1917.
    [18] Plechkovaa N V and Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chem. Soc. Rev., 2008, 37:123-150.
    [19]包伟良,王治明.离子液体的研究现状与发展趋势[C].中国科协第143次青年科学家论坛—离子液体与绿色化学, 2007:3-9.
    [20] Yoke J T, Weiss J F and Tollin G. Reactions of Triethylamine with Copper(Ⅰ) and Copper(Ⅱ) Halides[J]. Inorg. Chem., 1963, 2(6):1210-1216.
    [21] Swain C G, Ohno A, Roe D K, Brown R and Maugh T. Tetrahexylammonium Benzoate, a Liquid Salt at 25o, a Solvent for Kinetics or Electrochemistry[J]. J. Am. Chem. Soc., 1967, 89(11):2648-2649.
    [22] Wikes J S, Levisky J A, Wilson R A, Hussey C L., Dialkylimidazolium chloroaluminate melts: a new class of room temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J]. Inorg. Chem., 1982, 21(3):1263-1264.
    [23] Golding J, Forsyth S, MacFarlane D R, Forsyth M and Deacon G B. Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids[J]. Green Chemistry, 2002, 4:223-229.
    [24] Imperato G, Konig B and Chiappe C. Ionic Green Solvents from Renewable Resources[J]. Eur. J. Org. Chem. 2007:1049-1058.
    [25] Zhao D B, Liao Y C, Zhang Z D. Toxicity of Ionic Liquids[J]. Clean, 2007, 35(1):42-48.
    [26] Coleman D and Gathergood N. Biodegradation studies of ionic liquids[J]. Chem. Soc. Rev., 2010, 39:600-637.
    [27] Davis J H Jr. Task-Specific Ionic Liquids[J]. Chemistry Letters, 2004, 33(9):1072-1077.
    [28] Fukumoto K, Yoshizawa M and Ohno H. Room Temperature Ionic Liquids from 20 Natural Amino Acids[J]. J. Am. Chem. Soc., 2005, 127(8):2398-2399.
    [29] a. Gathergood N, Garcia M T and Scammells P J. Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation[J]. Green Chem., 2004, 6:166-175. b. Coleman D and Gathergood N. Biodegradation studies of ionic liquids[J]. Chem. Soc. Rev., 2010, 39:600-637.
    [30] Frank E and Sherif Z A. Air and water stable ionic liquids in physical chemistry[J]. Phys. Chem. Chem. Phys., 2006, 8:2101-2116.
    [31] Freemantle, M. Designer solvents - Ionic liquids may boost clean technology development[J]. chem. Eng. News, 1998, 76(13):32-37.
    [32] Cravotto G, Gaudino E C, Boffa L, Lévêque J M, Estager J and Bonrath W. Preparation of Second Generation Ionic Liquids by Efficient Solvent-Free Alkylation of N-Heterocycles with Chloroalkanes[J]. Molecules, 2008, 13:149-156.
    [33] Greaves T L and Drummond C J. Protic Ionic Liquids: Properties and Applications[J]. Chem. Rev., 2008, 108:206-237.
    [34] Dyson P J and Geldbach T J. Applications of Ionic Liquids in Synthesis and Catalysis[J]. TheElectrochemical Society Interface ? Spring, 2007:50-53.
    [35] Afonso C A M, Branco L C, Candeias N R, Gois P M P, Lourenco N M T, Mateus N M M and Rosa J N. Efficient catalyst reuse by simple dissolution in non-conventional media[J]. Chem. Commun., 2007:2669-2679.
    [36] Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr., Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R and Tschaplinski T. The Path Forward for Biofuels and Biomaterials[J]. Science, 2006, 311:484-489.
    [37] Zhu S D, Wu Y X, Chen Q M, Yu Z N, Wang C W, Jin S W, Ding Y G and Wu G. Dissolution of cellulose with ionic liquids and its application: a mini-review[J]. Green Chem., 2006, 8:325-327.
    [38] Zhu S, Chen R, Wu Y, Chen Q, Zhang X and Yu Z. A Mini-Review on Greenness of Ionic Liquids[J]. Chem. Biochem. Eng. Q., 2009, 23(2):207-211.
    [39] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399:28-29.
    [40] Keim W, Vogt D, Waffenschmidt H and Wasserscheid P. New Method to Recycle Homogeneous Catalysts from Monophasic Reaction Mixtures by Using an Ionic Liquid Exemplified for the Rh-Catalysed Hydroformylation of Methyl-3-pentenoate[J]. Journal of Catalysis, 1999, 186:481-484.
    [41] Clark J H, Deswarte F E I and Farmer T J. The integration of green chemistry into future biorefineries[J]. Biofuels, Bioprod. Bioref., 2009, 3:72-90.
    [42] Clark J H., Budarin V, Deswarte F E. I. et al. Green chemistry and the biorefinery: a partnership for a sustainable future[J]. Green Chem., 2006, 8:853-860.
    [43] Zheng Y G, Chen X L and Shen Y C. Commodity Chemicals Derived from Glycerol, an Important Biorefinery Feedstock[J]. Chem. Rev., 2008, 108(2):5253-5277.
    [44] Schrekker H S, Stracke M P, Schrekker C M L and Dupont Jairton. Ether-Functionalized Imidazolium Hexafluorophosphate Ionic Liquids for Improved Water Miscibilities[J]. Ind. Eng. Chem. Res., 2007, 46:7389-7392.
    [45] Yang X, Yan N, Fei Z F, Crespo-Quesada R M, Laurenczy G, Kiwi-Minsker L, Kou Yuan, Li Y D and Dyson P J. Biphasic Hydrogenation over PVP Stabilized Rh Nanoparticles in Hydroxyl Functionalized Ionic Liquids[J]. Inorg. Chem., 2008, 47(17):7444-7446.
    [46] Jastorff B, St?rmann R, Ranke J, M?lter K, Stock F, Oberheitmann B, Hoffmann W, Hoffmann J, Nüchter M, Ondruschkae B and Filser J. How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation[J]. Green Chemistry, 2003, 5:136-142.
    [47] Matsumoto M, Mochiduki K, Kondo K. Toxicity of Ionic Liquids and Organic Solvents to Lactic Acid-Producing Bacteria[J] J. Biosci. Bioeng., 2004, 98(5):344-347.
    [48] a. Garcia M T, Gathergood N and Scammells P J. Biodegradable ionic liquids PartII. Effect of the anion and toxicology[J]. Green Chem., 2005, 7:9-14. b. Morrissey S. Environmentally-Benign Imidazolium-Based Ionic Liquids: Synthesis, Characterisation and Applications in Hydrogenation Reactions[D]. Dublin, School ofChemical science, Dublin City University, 2008.
    [49] a. Gathergood N, Scammells P and Garcia M T. Biodegradable ionic liquids PartIII. The first readily biodegradable ionic liquids[J]. Green Chem., 2006, 8:156-160. b. Morrissey S, Beadham I and Gathergood N. Selective hydrogenation of trans-cinnamal- dehyde and hydrogenolysis-free hydrogenation of benzyl cinnamate in imidazolium ILs[J]. Green Chem., 2009, 11:475-483.
    [50] Liang Y, Guo L D and Ma K P. The role of mycorrhizal fungl in ecosystems[J]. Acta Phytoecologica Sinica, 2002, 26(6):739-745.
    [51] Pernak J, Smiglak M, Griffin S T, Hough W L, Wilson T B, Pernak A, Zabielska-Matejuk J, Fojutowski A, Kitad K and Rogers R D. Long alkyl chain quaternary ammonium-based ionic liquids and potential applications[J]. Green Chem., 2006, 8:798-806.
    [52] Kummerer K. Sustainable from the very beginning: rational design of molecules by life Cycle engineering as an important approach for green pharmacy and green chemistry[J]. Green Chem., 2007, 9:899-907.
    [53]何爱珍,刘红光,王坤,张玥,袁莉.离子液体在废水处理中的研究进展[J],工业水处理, 2009, 29(12):11-16.
    [54] a. Bicak N, Senkal B F. Sorbitol-Modified Poly(N-glycidyl styrene sulfonamide) for Removal of Boron[J]. Journal of Applied Polymer Science, 1998, 68:2113-2119. b. Bicak N, Gazi M, Senkal B F. Polymer supported amino bis-(cis-propan 2,3 diol) functions for removal of trace boron from water[J]. Reactive & Functional Polymers, 2005, 65:143-148. c. Gazi M, Bicak N. Selective boron extraction by polymer supported 2-hydroxylethylamino propylene glycol functions[J]. Reactive & Functional Polymers, 2007, 67:936-942.
    [55] Bicak N, Gazi M, Bulutcu N. N,N-bis(2,3-Dihydroxypropyl) Octadecylamine for Liquid- Liquid Extraction of Boric Acid[J]. Separation science and technology, 2003,38(1):165-177.
    [56] Swatloski R P, Spear S K, Holbrey J D and Rogers R D. Dissolution of Cellulose with Ionic Liquids[J]. J. Am. Chem. Soc., 2002, 124:4974-4975.
    [57] a. Xie H B, King A, Kilpelainen I, Granstrom M and Argyropoulos D S. Thorough Chemical Modification of Wood-Based Lignocellulosic Materials in Ionic Liquids[J]. Biomacromolecules 2007, 8:3740-3748. b. Kilpelainen I, Xie H B, King A, Granstrom M, Hekkkinen S and Argyropoulos D S. Dissolution of Wood in Ionic Liquids[J]. J. Agric. Food Chem., 2007, 55:9142-9148.
    [58] Harjani J R, Singer R D, Garciac M T and Scammells P J. The design and synthesis of biodegradable pyridinium ionic liquids[J]. Green Chem., 2008, 10:436-438.
    [59]乔振,王敏.不对称催化氢化反应进展[J].有机化学, 2001, 22(5):325-340.
    [60] Chauvin Y, Mussmann L, Olivier H. A novel class of versatile solvents for two-phase catalysis: Hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts[J]. Angew Chem, Int Ed Engl, 1995, 34(23-24):2698-2700.
    [61] Berger A, Souza R, Delgado M R and Dupont J. Ionic liquid-phase asymmetric catalytichydrogenation: hydrogen concentration effects on enantioselectivity[J]. Tetrahedron: Asymmetry 2001, 12:1825-1828.
    [62] Guernik S, Wolfson A, Herskowitz M, Greenspoon N and Geresh S. A novel system consisting of Rh–DuPHOS and ionic liquid for asymmetric hydrogenations[J]. Chem. Commun., 2001:2314-2315.
    [63] Brown R A, Pollet P, McKoon E, Eckert C A. Liotta C L and Jessop P G. Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide[J]. J. Am. Chem. Soc., 2001, 123:1254-1255.
    [64] Monteiro A L, Zinn F K, Souza R F and Dupont J. Asymmetric hydrogenation of 2-arylacrylic acids catalyzed by immobilized Ru-BINAP complex in 1-n-butyl-3-methyl- imidazolium tetrafluoroborate molten salt[J]. Tetrahedron: Asymmetry, 1997, 8(2):177-179.
    [65] Gutmann T, Sellin M, Breitzke H, Stark A and Buntkowsky G. Para-hydrogen induced polarization in homogeneous phase—an example of how ionic liquids a?ect homogenization and thus activation of catalysts[J]. Phys. Chem. Chem. Phys., 2009, 11(40):9170-9175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700