基于COSII标记的Solanum section Petota野生多倍体马铃薯的系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L.)属于Solanum属中的section Petota Dumortier。其中Petota组中36%为多倍体。已有学者采用质体DNA限制性位点、颗粒结合型淀粉合成酶(GBSSI)、硝酸还原酶(NIA)、直系同源COSⅡ标记等方法对马铃薯的二倍体和多倍体进行了系统发育关系研究,但这些研究由于只采用了较少的基因或标记抑或是较少的多倍体物种,而并没有对多个物种的野生多倍体马铃薯进行全面的系统发育分析。本研究采用6对COSⅡ标记对11个野生多倍体物种中的54个个体以及33个野生二倍体物种中的37个个体进行了PCR扩增,利用优化的非对称PCR-SSCP技术对所得到的等位基因进行测序并进行较全面的野生多倍体马铃薯的系统发育研究,表明野生多倍体马铃薯中可能存在多起源现象;同时和采用其它基因得到的结果相比较,结果相似。主要研究结果如下:
     1.获得了最优化的非对称PCR-SSCP方法的条件,确定了不同的COSⅡ标记各自最佳的非对称PCR-SSCP条件。和传统的克隆测序方法比较,非对称PCR-SSCP方法省时,省力,可以避免克隆测序中易发生的PCR重组以及异源双链核酸分子,并且其多态性位点的碱基类型和数目均和克隆测序结果一致,在某种程度上可以替代克隆测序。对于多倍体而言,成本可以降低到原来的18.9%-33.3%。。
     2.将优化的非对称PCR-SSCP方法推广到6对COSⅡ标记以及11个物种的54个野生多倍体和33个物种的37个野生二倍体马铃薯个体中,主要用于研究野生多倍体马铃薯的系统发育关系。单个COSH的比对长度介于461(C2_Atlg32130)~1473 (C2_Atlg20050)个位点之间,简约信息位点数介于45-134个之间,一致性指数(Consistency Index, CI)介于0.73-0.86之间,保留指数(Retention Index, RI)介于0.94-0.97之间。5个COSⅡ(不包含C2_At5g47390序列数据)和6个COSⅡ联合序列数据中,序列比对总长度分别为4031和4719个位点,简约信息位点数分别为673和551个,一致性指数(CI)和保留指数(RI)均为0.63和0.92。对二倍体序列的分析结果表明,在222个组合(37个二倍体×6个COSⅡ)中,12.6%含有多于1个的等位基因。排除差异较小的等位基因后,只有5.9%的二倍体含有差异。四倍体用于最终分析时,只有1.8%的个体少于两个等位基因;六倍体亦是如此,只有1.8%的个体少于三个等位基因。
     3.采用最大似然法对不同的序列数据进行系统发育分析。用最大似然法对单个COSⅡ标记的二倍体序列分析表明,虽然这6个单独的COSⅡ得到的系统树存在着不一致,但可以很好地解决二倍体物种的系统发育关系。用最大似然法对二倍体和多倍体的6个COSⅡ联合序列数据分析得到和前人不一致的研究结果,它将分枝3分成两小分枝。但对含有5个COS联合序列文件进行最大似然法分析时,得到和前人相似的研究结果,包含三个主要的分枝分枝1+2,分枝3,分枝4。
     4.用最大似然法对二倍体和多倍体的5个COSⅡ联合序列数据分析表明,54个多倍体中有29个多倍体的等位基因在系统树中所在分枝和GBSSI、NIA所得到的系统发育结果相符:所研究的多倍体均为为异源多倍体起源;多倍体和亲缘关系较近的二倍体在同一分枝上。25个多倍体个体中显示出了不同于前人的研究结果:1)多倍体基因在起源不明的分枝3p、4apl和4p2中,该分枝没有包含二倍体物种的等位基因;2)在原有的三大分枝上发现新的多倍体基因;3)有23个物种/COS组合等位基因发生明显的片段丢失,存在某些系统发育上的相关性;4)野生多倍体马铃薯中存在多起源现象。
Solanum tuberosum L.belongs to Solanum L. section Petota Dumortier, of which 36% in sect. Petota were polyploid. Many different kind of enzymes or markers were used for the phylogeny of wild diploid and polyploid potatoes, e.g., plastid DNA restriction site, Granule-bound starch synthase (GBSSI), Nitrate Reductase (NIA), Conserved Ortholog setⅡ(COSII). But not so much wild polyploid potatoes were used in these researches. We here conduct a DNA sequencing study, using six nuclear orthologs, of 54 accessions of 11 polyploid species, and 37 diploid species representing possible progenitors to address questions species and genome origins of the polyploids, possible multiple origins, and concordance of different molecular markers from different regions of the genome. The main results were as follows:
     The protocols of asymmetric PCR-SSCP were optimized by different kind of tests, later the optimized protocols for each individual COSII were set up. Compared to the traditional cloning, the optimal asymmetric PCR-SSCP protocols saved time and labors, decreased PCR recombination and heteroduplex molecules during PCR processing and had the same base types and base numbers in polymorphic sites with clone sequencing results. In some extent, it could replace cloning method. Also the cost could be reduced by 18.9%-33.3% for polyploid species.
     The optimal protocols and six COSII were applied in all the materials in this study to construct phylogeny of the wild polyploid potatoes. The aligned length of the individual six COSII ranged from 461 characters for C2_Atlg32130 to 1473 for C2_At1g20050. The concatenated length of all six COSII was 4719 characters and for five COSII 4031 (without C2_At5g47390), of which parsimony informative characters were 673 and 551 respectively. The consistency indices of the individual COSII datasets ranged from 0.73-0.86 and the retention indices from 0.94-0.97. The consistency/retention indices were lower for both concatenated dataset,0.63/0.92. Of the 222 combinations (37 diploid accessions x 6 COSII),12.6% had more than one minor variant allele. After elimination alleles with minor allelic variants, only 5.9% of the diploids had allelic variants. Only 1.8% of the alleles from the tetraploids had less than two retained (divergent) alleles and only 1.8% the hexaploids had less than three divergent alleles.
     The phylogenetic analysis were performed by using different kind of datasets (six individual COS datasets of diploid+polyploid, six-COSII concatenated dataset of diploid, six-GOSII concatenated dataset of diploid+polyploid, five-COSII concatenated dataset of diploid and five-COSII concatenated dataset of diploid+polyploid). The results of six individual COS datasets of all diploid and polyploid indicated Though various degrees of incongruence were found in all six individual COSII phylogenetic trees, the diploid phylogeny was well solved. The 6COS concatenated dataset of diploid+polyploid result differs from prior phylogenies, in separating species from clade 3 into two clades. However, removing data from COSII C2At5g47390 from the dataset (retaining data from the remaining five COSII) recovered a three clade topology as did all three prior results.
     The five-COSII concatenated dataset of diploid+polyploid results concurred with the cladistic relationships of potato allopolyploids using GBSSI and NIA in 29 of the 54 cases examined:all polyploids were allopoplyploid origins; polyploids and more related diploids were in the same clades The remaining 25 of 54 accessions show three classes of discordance not seen in prior results:1) polyploid alleles in clades of unknown origins not recovered before (3p,4ap1,4p2), without diploid alleles in these new clades; 2) new polyploid alleles in the prexisting three main clades, relative to the studies of GBSSI and NIA; 3) 23 accession/COS combinations, alleles were apparently lost and phylogenetic associations stand out, and 4) multiple origins were found in wild polyploid potatoes.
引文
Albach D.C.2007. Amplified fragment length polymorphisms and sequence data in the phylogenetic analysis of polyploids:multiple origins of Veronica cymbalaria (Plantaginaceae). New Phytol.176:481-498.
    Ames M., Spooner D.M.2010. Phylogeny of Solanum series Piurana and related species in Solanum section Petota based on five conserved ortholog sequences. Taxon.59:1091-1104+4-pg. foldout Fig.1 (tree.)
    Ashton P.A., Abbott R.J.1992. Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis Rosser (Compositae). Heredity.1992.68:25-32.
    Bradley R.D., Hillis D.1997. Recombinant DNA sequences generated by PCR amplification. Mol. Biol. Evol.14:592-593.
    Brakenhoff R.H., Schoen-makers J.G., Lubsen N.H.1991. Chimeric cDNA clones:a novel PCR artifact. Nucleic Acids Res.19:1949.
    Brochmann C., Soltis P.S., Soltis D.E.1992. Multiple origins of the octoploid Scandinavian endemic Draba cacuminum:electrophoretic and morphological evidence. Nordic J. Bot.12:257-272.
    Bukasov.1978. Systematics of the potato. pp.1-69, In:Systematics, breeding and seed production of potatoes, edited by Kameraz A.Y. English translation of article first appearing as Trudy po Prikladnoj Botanike, Genetike i Selekcii 62 (1). Amerind Publishing Company, New Delhi.
    Cabrera A., Kozik A., Howad W., Arus P., Iezzoni A.F., van der Knaap E.2009. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics.10:562. doi:10.1186/1471-2164-10-562.
    Cai Q.Q., Touitou I.1993. Excess PCR primers may drastically affect SSCP efficiency. Nucleic Acids Res.21:3909-3910.
    Contreras M.A., Spooner D.M.1999. Revision of Solanum section Etuberosum (subgenus Potatoe). pp.227-245, In:Solanaceae IV, edited by Nee M., Symon D. E., Lester R. N., and Jessop J. P. Royal Botanic Gardens, Kew, UK.
    Cronn R., Cedroni M., Haselkorn T., Grover C., Wendel J.F.2002. PCR-mediated recombination in amplification products derived from polyploid cotton. Theor. Appl. Genet.104:482-489.
    Cronn R.C., Adams K.L.2003. Quantitative analysis of transcript accumulation from genes duplicated by polyploidy using cDNA-SSCP. Biotechniques. 34:726-734.
    Debener, T., Salamini, F., Gebhardt, C.1990. Phylogeny of wild and cultivated Solanum species based on nuclear restriction fragment length polymorphisms (RFLPs). Theor. Appl. Genet.79:360-368.
    Doyle J.1991. DNA protocols for plants-CTAB total DNA isolation, pp.283-293, In: Molecular techniques in taxonomy, edited by Hewitt G.M., Johnston A. Springer, Berlin.
    Doyle J.J., Doyle J.L., Brown A.H.D., Palmer R.G.2002. Genomes, multiple origins, and lineage recombination in the Glycine tomentella (Leguminosae) polyploid complex:histone H3-D gene sequences. Evolution.56:1388-1402.
    Doyle J.J., Flagel L.E., Patterson A.H., Rapp R.A., Soltis D.E., Soltis P.S., Wendel J.F.2008. Evolutionary genetics of genome merger in plants. Ann. Rev. Genet 42:443-461.
    Fajardo D., Spooner D.M.2011. Phylogenetic relationships of Solanum series Conicibaccata and related species in Solanum section Petota inferred from five conserved ortholog sequences. Syst. Bot.36:163-170.
    Farris J.S., Kallersjo M., Kluge A.G., Bult C.1994. Testing significance of incongruence. Cladistics.10:315-319.
    Felsenstein J.1985. Confidence limits on phylogenies:an approach using the bootstrap. Evolution.39:783-791.
    Fujita K., Silver J.1994. Single-strand conformational polymorphism. Genome Res.4: 137-140.
    Fulton T.M., van der Hoeven R., Eannetta N.T., Tanksley S.D.2002. Identification, Analysis, and Utilization of Conserved Ortholog Set Markers for Comparative Genomics in Higher Plants. Plant Cell.14:1457-1467.
    Gaeta R.T., Pires J.C.2010. Homoeologous recombination in allopolyploids:the polyploid ratchet. New Phytol.186:18-28.
    Grubbs K.C., Small R.L., Schilling E.E.2009. Evidence for multiple, autoploid origins of agamospermous populations in Eupatorium sessilifolium (Asteraceae). Plant Syst. Evol.279:151-161.
    Hanneman R.E.Jr.1994. Assignment of endosperm balance numbers to the tuberbearing Solanums and their close non-tuber bearing relatives. Euphytica. 74:19-25.
    Hawkes J.G.1990. The potato:evolution, biodiversity, and genetic resources. Belhaven Press, Washington, DC.
    Hennessy L.K., Teare J., Ko C.1998. PCR conditions and DNA denaturants effects on reproducibility of SSCP patterns for BRCA1 mutations. Clini. Chem.44: 879-882.
    Hijmans R., Gavrilenko T., Stephenson S., Bamberg J., Salas A., Spooner D.M.2007. Geographic and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Global Ecol. Biogeogr.16:485-495.
    Hodgkinson V.H., Birungi J., Haghpanah M., Joshi S., Munstermann L.E.2002. Rapid identification of mitochondrial cytochrome B haplotypes by single strand conformation polymorphism in Lutzomyia longipalpis (Diptera: Psychodidae) populations. J. Med. Entomol.39:689-694.
    International Potato Center (CIP).1999. Molecular biology laboratory protocols:plant genotyping. Edited by Ghislain M., Zhang D., Herrera M. R. International Potato Center, Lima, Peru.
    Jansky S.H., Jin L.P., Xie K.Y., Xie C.H., Spooner D.M.2009. Potato Production and Breeding in China. Potato Research.52:57-65. DOI:10.1007/s11540-008-9121-2.
    Judo M.S.B., Wedel A.B., Wilson C.1998. Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res.26:1819-1825.
    Kacem B.H., Gargouri J., Gargouri A.2008. In vitro direct repeats-mediated debletion during PCR amplification. Mol. Biotechnol.40:39-45.
    Kanagawa T.2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng.96:317-323.
    Kardolus J.P.1999. Morphological variation within series Acaulia Juz. (Solanum sect. Petota). pp.257-274, In:Solanaceae Ⅳ:advances in biology and utilization, edited by Nee M., Symon D.E., Lester R.N., Jessop J.P. Royal Botanic Gardens, Kew, UK.
    Kardolus J.P., van Eck H.J., van den Berg R.G.,1998. The potential of AFLPs in biosystematics:A first application in Solanum taxonomy (Solanaceae). Plant Syst.Evol.210:87-103.
    Koopman M., Baum D. In press. Isolating nuclear genes and identifying lineages without monophyly:an example of closely related species from Southern Madagascar. Int. J. Plant Sci.
    Kukita Y., Tahira T., Sommer S.S., Hayashi K.1997. SSCP analysis of long DNA fragments in low pH gel. Hum. Mutat.10:400-407.
    Lahr D.J.G., Kartz L.A.2009. Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. Biotechinques.47:857-866.
    Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., Mc William H., Valentin F., et al.2007. Clustal W and Clustal X version 2.0. Bioinformatics.23:2947-2948.
    Levin R.A., Whelan A., Miller J.S.2009. The utility of nuclear conserved ortholog set II (COSII) genomic regions for species-level phylogenetic inference in Lycium (Solanaceae). Mol. Phylogenet. Evol.53:881-890.
    Maddison D.R., Maddison W.P.2001. MacClade:analysis of phylogeny and character evolution, v.4.08. Sinauer Associates, Sunderland Massachusetts, USA.
    Martins-Lopes P., Zhang H., Koebner R.2001. Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol. Biol. Rep.19:159-162.
    Matsubayashi M.1991. Phylogenetic relationships in the potato and its related species. pp 93-118, In:Chromosome engineering in plants:Genetics, breeding, evolution, part B, edited by Tsuchiya T., Gupta P.K. Elsevier Science BV. Amsterdam.
    Mazars G.R., Moyret C., Jeanteur P., Theillet C.G.1991. Direct sequencing by thermal asymmetric PCR. Nucleic Acids Res.19:4783.
    Meyerhans A., Vartanian J.P., Wain-Hobson S.1990. DNA recombination during PCR. Nucleic Acids Res.18:1687-1691.
    Muller K.F.2005. SeqState-primer design and sequence statistics for phylogenetic DNA data sets. Appl. Bioinformatics.4:65-69.
    Mueller L.A., Solow T.H., Taylor N., Skwarecki B., Buels R., Binns J., Lin C.W., et al.2005. The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond. Plant Physiol.138:1310-1317. DOI: 10.1104/pp.105.060707.
    Nakagawa K., Hosaka K.2002. Species relationships between a wild tetraploid potato species, Solanum acaule Bitter, and its related species as revealed by RFLPs of chloroplast and nuclear DNA. Amer. J. Potato Res.79:85-98.
    Ochoa C.M.1962. Los Solanum tuberiferos silvestres del Peru (secc. Tuberarium, sub-secc. Hyperbasarthrum). Lima, Peru:Privately published.
    Orita M., Suzuki Y., Sekiya T., Hayashi K.1989. Rapid and sensitive detection of bpoint mutations and DNA polymorphisms using the polymerase chain reaction. Genomics.5:874-879.
    Orti G., Hare M.P., Avise J.C.1997. Detection and isolation of nuclear haplotypes by PCR-SSCP. Mol. Ecol.6:575-580.
    Ownbey M.1950. Natural hybridization and amphiploidy in the genus Tragopogon. Amer. J. Bot.37:487-499.
    Ownbey M., McCollum G.D.1953. Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Amer. J. Bot.40:788-796.
    Ownbey M., McCollum G.D.1954. The chromosomes of Tragopogon. Rhodora.56: 7-21.
    Pendinen G., Gavrilenko T., Jiang J., Spooner D.M.2008. Allopolyploid speciation of the tetraploid Mexican potato species Solanum stoloniferum and S. hjertingii revealed by genomic in situ hybridization. Genome.51:714-720.
    Peralta I.E., Spooner D.M., Knapp S.2008. The taxonomy of tomatoes:a revision of wild tomatoes(Solanum section Lycopersicon) and their outgroup relatives in sections Juglandifolium and Lycopersicoides. Syst. Bot. Monogr.84:1-186+3 plates.
    Pokorny R.M., Dietz A.B., Galandiuk S., Neibergs H.L.1997. Improved resolution of asymmetric-PCR SSCP products. Biotechniques.22:606-608.
    Posada D., Crandall K.A.1998. MODELTEST:testing the model of DNA substitution. Bioinformatics.14:817-818.
    Rauscher J.T., Doyle J.J., Brown A.H.D.2004. Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics.166:987-998.
    Rieseberg L., Willis J.H.2007. Plant speciation. Science.317:910-914.
    Rodriguez A., Spooner D.M.2002. Subspecies boundaries of the wild potatoes Solanum bulbocastanum and S. cardiophyllum based on morphological and nuclear RFLP data. Acta Mexicana.61:9-25.
    Rodriguez F., Cai D., Teng Y., Spooner D.M.2011. Asymmetric single-strand conformation polymorphism:an accurate and cost-effective method to amplify and sequence allelic variants. Amer. J. Bot. In press.
    Rodriguez F., Spooner D.M.2009. Nitrate reductase phylogeny of potato (Solanum sect. Petota) genomes with emphasis on the origins of the polyploid species. Syst. Bot.34:207-219.
    Rodriguez F., Wu F., Ane C., Tanksley S., Spooner D.M.2009. Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evol. Biol.9:191, DOI:10.1186/1471-2148-9-191.
    Ronquist F., Huelsenbeck J.P.2003. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics.19:1572-1574.
    Rozak D.A., Bryan P.N.2005. Offset recombinant PCR:a simple but effective method for shuffling compact heterologous domains. eNucleic Acids Research. 33:e82 doi:10.1093/nar/gni081.
    Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A.1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science.239:487-491.
    Salmon A., Flagel L., Ying B., Udall J.A., Wendel J.F.2009. Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol.186:123-134.
    Segraves K.A., Thompson J.N., Soltis D.E., Soltis P.S.1999. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Mol. Ecol.8:253-262.
    Shendure J., Hanlee J.2008. Next-generation DNA sequencing. Nature Biotechnol. 26:1135-1145.
    Soltis D.E., Soltis P.S.1993. Molecular data and the dynamic nature of polyploidy. Crit. Rev. Plant Sci.12:243-273.
    Soltis D.E., Soltis P.S.1999. Polyploidy:recurrent formation and genome evolution. Trends Ecol. Evol.14:348-352.
    Soltis D.E., Soltis P.S., Pires J.C., Kovarik A., Tate J., Mavrodiev E.2004. Recent and recurrent polyploidy in Tragopogon (Asteraceae):genetics, genomic, and cytogenetic comparisons. Biol. J. Linn. Soc.82:485-501.
    Soltis D.E., Soltis P.S., Schemske D.W., Hancock J.F., Thompson J.N., Husband B.C., Judd W.S.2007. Have we grossly underestimated the number of species? Taxon.56:13-30.
    Spooner D.M.2009. DNA barcoding will frequently fail in complicated groups:an example in wild potatoes. Amer. J. Bot.96:1177-1189.
    Spooner D.M., Castillo R.1997. Reexamination of series relationships of South American wild potatoes (Solanaceae:Solanum sect. Petota):evidence from chloroplast DNA restriction site variation. Amer. J. Bot.84:671-685.
    Spooner D.M., Rodriguez F., Polgar Z., Ballard Jr.H.E., Jansky S.H.2008. Genomic origins of potato polyploids:GBSSI gene sequencing data. The Plant Genome, a suppl. To Crop Sci.48(S1):S27-S36. Theor. Appl. Genet.118:963-969.
    Spooner, D.M.,Salas A..2006. Structure, biosystematics, and genetic resources. pp 1-39, In:Handbook of potato production, improvement, and post-harvest management, edited by Gopal J. and Khurana S.M.P. Haworth's Press, Inc., Binghampton, New York.
    Spooner D.M., Sytsma K.J.1992. Reexamination of series relationships of Mexican and Central American wild potatoes (Solanum sect. Petota):evidence from chloroplast DNA restriction site variation. Syst. Bot.17:432-448.
    Spooner D.M., van den Berg R.G., Bamberg J.B.1995. Examination of species boundaries of Solanum series Demissa and potentially related species in series Acaulia and series Tuberosa (sect. Petota). Syst. Bot.20:295-314.
    Spooner D.M., van den Berg R.G., Rodriguez A., Bamberg J., Hijmans R.J., Lara-Cabrera S.I.2004. Wild potatoes (Solanum section Petota) of North and Central America. Syst. Bot. Monogr.68:1-209.
    Spooner D.M., Anderson G.J., Jansen R.K.1993. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Amer. J. Bot.80:676-688.
    Staden R.1996. The Staden sequence analysis package. Mol. Biotechnol.5:233-241.
    Stamatakis A., Hoover P., Rougemont J.2008. A rapid bootstrap algorithm for the RAxML Web-Servers. Syst. Biol.75:758-771.
    Stupar R.M., Bhaskar P.B., Yandell B.S., Rensink W.A., Hart A.L., Ouyanf S., Veilleux R.E., Busse J.S., Erhardt R.J., Buell C.R., Jiang J.2007. Phenotypic and transcriptional changes associa ted with potato autopolyploidization. Genetics.176:2055-2067.
    Sunnucks P., Wilson A.C.C., Beheregaray L.B., Zenger K., French J., Taylor A.C. 2000. SSCP is not so difficult:the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol. Ecol.9:1699-1710.
    Swofford D.L.2002. PAUP*:Phylogenetic analysis using parsimony (*and other methods), version 4.0b3a PPC. Sinauer Associates, Massachusetts.
    Symonds V.V., Soltis P.S., Soltis D.E.2010. Dynamics of polyploid formation in Tragopogon (Asteraceae):recurrent formation, gene flow, and population structure. Evolution.64:1984-2003.
    Tate J.A., Joshi P., Soltis K.A., Soltis P.S., Soltis D.E.2009. On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Plant Biol.9:80, DOI: 10.1186/1471-2229-9-80.
    Teschauer W., Mussack T., Braun A., Waldner H., Fink E.1996. Conditions for single strand conformation polymorphism (SSCP) analysis with broad applicability:a study on the effects of acrylamide, buffer and glycerol concentrations in SSCP analysis of exons of the p53 gene. Eur. J. Clin. Chem. Clin. Biochem.34:125-131.
    Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.1997. The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.24:4876-4882.
    van den Berg R.G., Bryan G J., Rio A. D, Spooner D.M.2002. Reduction of species in the wild potato Solanum section Petota series Longipedicellata:AFLP, RAPD and chloroplast SSR data. Theor Appl Genet.105:1109-1114.
    Ugent.1981. Biogeography and origin of Solanum acaule Bitter. Phytologia.48: 85-95.
    Wendel J.F., Doyle J.J.1998. Phylogenetic incongruence:window into genome history and molecular evolution. pp.265-296, In:Molecular systematics of plants II:DNA sequencing, edited by Soltis D.E., Soltis P.S., Doyle J.J. Kluwer Academic Publishers, Boston.
    Werth C.R., Guttman S.I., Eshbaugh W.H.1985. Recurring origins of allopolyploid species in Asplenium. Science.228:731-733.
    Williams D.M.1994. Combining trees and combining data. Taxon.43:449-455.
    Wu F.N., Mueller L.A., Crouzillat D., Petiard V., Tanksley S.D.2006. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSⅡ) for comparative, evolutionary and systematic studies:A test case in the euasterid plant clade. Genetics.174:1407-1420.
    Wu L., Tang T., Zhou R., Shi S.2007. PCR-mediated recombination of the amplification products of the Hibiscus tiliaceus cytosolic glyceraldehyde-3-phosphate dehydrogenase gene. J. Biochem. Mol. Biol.40:172-179.
    Wyatt R., Odrzykoski I.J., Stoneburner A., Bass H.W., Galau G.A.1988. Allopolyploidy in bryophytes:multiple origins of Plagiomnium medium. Proc. Natl. Acad. Sci. USA.85:5601-5604.
    Yang Y.L., Wang G., Dorman K., Kaplan A.H.1996. Long polymerase chain reaction amplification of heterogeneous HIV type 1 templates produces recombination at a relatively high rate. AIDS Research and Human Retroviruses.12: 303-306.
    Zhang X., Xu S.Z., Gao X., Zhang L., Ren H., Cheng J.2008. The application of asymmetric PCR-SSCP in gene mutation detecting. Front. Agricult. China.3: 361-364.
    Zhou L., Yang C.F., Xiao L.H.2003. PCR-mediated recombination between Cryptosporidium spp. of lizards and snakes. J. Eukaryot. Microbiol.50: 563-565.
    Zhu X., Niu N., Liu Y., Du T., Chen D., Wang X., Gu H.F., Liu Y.2006. Improvement of the sensitivity and resolution of PCR-SSCP analysis with optimized primer concentrations in PCR products. J. Genet.85:233-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700