氯化消毒副产物暴露与CYP2E1和hOGG1基因多态对新生儿出生体重影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水加氯消毒可杀灭水中病原微生物,有效防止介水疾病的发生和传播,是迄今为止世界范围内最广泛采用的饮水净化消毒方法。然而,在消毒过程中,氯制剂与原水中的有机物质反应可产生大量氯化消毒副产物(chlorination disinfection by-products, CDBPs).毒理学研究显示,一些CDBPs在实验动物中可引起出生动物体重和活产率的降低,心血管系统和神经系统畸形等不良妊娠结局,提示CDBPs可能存在一定的生殖毒性。然而关于CDBPs暴露与低体重、流产、死胎和出生缺陷等的人群流行病学研究并未得到一致性论断。对CDBPs暴露评估的不准确性可能是导致研究结果不一致的主要原因,如何在CDBPs与人类生殖健康关系的研究中更准确评估人群CDBPs的暴露水平成为在开展相关研究时重点需要解决的问题。
     目的:
     本研究以新生儿体重这一生殖健康结局作为观察指标,通过对产妇所在区域管网水中多种CDBPs实行按月定点、定时监测、并通过对产妇孕晚期尿三氯乙酸水平的分析,分别从外暴露与内暴露两个方面对产妇怀孕期间CDBPs的暴露水平进行评估,研究其暴露水平对新生儿体重的影响。其中,采用尿三氯乙酸作为内暴露标志物,在CDBPs健康危害的人群流行病学研究中尚属首次。此外,鉴于CDBPs对人类生殖健康影响的分子机制尚不清楚,本文拟对新生儿代谢基因和DNA修复基因的多态性进行筛查,初步探讨CDBPs对人类生殖健康产生影响的分子机制。
     方法:
     研究对象均来自于2008年1月至2009年5月期间到武汉某医院妇产科就诊的产妇和新生儿。产妇与新生儿的基本信息均摘抄于医院分娩记录本。研究分三部分展开。
     第一部分:选择某水厂供水区域为研究范围,根据与水厂距离由近至远分别设置距水厂1km、4km、8km三个采样点,在2008年1月至2009年5月期间对该水厂末梢水中四种三卤甲烷(三氯甲烷、一氯二溴甲烷、二氯一溴甲烷和三溴甲烷)和两种氯代乙酸(二氯乙酸和三氯乙酸)进行按月、定时、定点监测,充分考虑了由时间和空间变化引起的管网水中CDBPs浓度的波动对暴露评估带来的影响。同时选取怀孕期间一直居住在该供水区域的1385名产妇为研究对象,以此外暴露数据为依据,评估产妇孕早期、孕中期、孕晚期、怀孕全程平均暴露水平以及孕早、中期联合暴露水平与新生儿体重的关系。
     第二部分:采用高效液相色谱方法对398名产妇孕晚期尿中三氯乙酸水平进行检测,并以此作为评价CDBPs暴露的内暴露标志,对产妇孕晚期CDBPs暴露水平与新生儿体重之间的关系进行分析。该方法较以往流行病学研究中仅采用CDBPs外暴露的评估方法更为精确。此外,通过问卷调查,以获得更多的关于产妇用水习惯、经济收入、病史等资料,在充分控制影响新生儿体重混杂因素的同时,对不同途径CDBPs暴露与新生儿体重的关系进行研究。
     第三部分:采集158名新生儿脐带血并提取其DNA样本,检测其代谢酶CYP2E1(G-1259C)和DNA修复酶hOGG1(Ser326Cys)两种基因多态的分布情况。同时以其母亲尿三氯乙酸水平作为暴露评估依据,分析环境-基因交互作用对新生儿体重的影响,初步探讨CDBPs对人类生殖健康影响的分子机制。
     结果:
     本研究第一部分中17个月水样监测结果显示,管网水中CDBPs浓度随末梢水至水厂距离以及时间而波动。在被检测的51份水样中,三氯甲烷范围为3.15-85.75μg/L,二氯一溴甲烷为0.77-12.44μg/L,一氯二溴甲烷为未检出~4.21μg/L,三溴甲烷为未检出~18.15μg/L,二氯乙酸为6.05~28.76μg/L,三氯乙酸为1.93~25.51μg/L。除7月份一份水样的三氯甲烷高于我国生活饮用水卫生标准限值外,其余水样CDBPs含量均在限值以下。以此环境监测数据为依据,我们对产妇怀孕期间CDBPs水平进行了分析评估,结果显示,产妇孕晚期高暴露三氯甲烷和溴代三卤甲烷可能与新生儿体重降低有关,OR值分别为1.82和1.51,95%C1分别为1.10~3.02和1.05-2.17。对产妇孕早期与孕中期联合暴露CDBPs的分析显示,高浓度的二氯乙酸暴露可能导致新生儿体重的减少(OR=1.60,95%CI:1.02~2.47)。
     本文第二部份中385名产妇尿三氯乙酸水平分布范围为0.9μg/gCr-123.3μg/gCr。产妇尿三氯乙酸水平与新生儿体重的线性模型结果显示,产妇孕晚期尿三氯乙酸水平的增高可能与新生体重降低有关(p=-0.15,95%CI:-0.31--0.01,P=0.04)。同时,研究结果还显示产妇尿三氯乙酸水平与每日平均饮水量呈正相关,且具有统计学意义(β=0.23,95%CI:0.38-14.06,P=0.04)。
     在本文第三部分环境与基因交互作用的研究中,158名新生儿CYP2E1G-1259C基因多态分布情况为CC=7(4.4%),CG=56(35.4%),GG=95(60.2%):hOGG1Ser326Cys基因多态分布情况为Cys/Cys=23(14.6%),Ser/Cys=74(46.8%),Ser/Ser=61(38.6%)。在这两种基因多态中,突变型纯合子(CC和Cys/Cys)与其余两种基因型相比新生儿平均体重较低。我们在具有这两种基因不同基因型的人群中,未观察到CDBPs高暴露组与低暴露组之间新生儿体重存在显著性差异,即产妇CDBPs暴露水平与新生儿体重的关系可能不受该两种基因多态的影响。但由于该实验研究对象数量较少,其结果需要在更大人群样本中加以验证。
     结论:
     (1)怀孕期间产妇CDBPs暴露水平可能与新生儿出生体重降低有关。孕晚期是胎儿生长的关键时期,本文发现孕晚期产妇高暴露三氯甲烷和溴代三卤甲烷可能会导致新生儿出生体重的减少。产妇孕早、中期联合暴露高水平的二氯乙酸可能引起新生儿体重的减少,提示孕早期和孕中期可能是二氯乙酸对胎儿生长产生作用的敏感时期。
     (2)产妇尿三氯乙酸水平的增高可能导致新生儿体重减少。尿三氯乙酸可作为内暴露标志评价人群CDBPs的暴露水平。
     (3)本文未发现代谢酶CYP2E1(G-1259C)和DNA修复酶hOGG1(Ser326Cys)两种基因多态与CDBPs暴露的交互作用对新生儿体重的影响,CDBPs对人类健康产生影响的分子机制尚有待进一步探讨。
     创新点:
     (1)对管网水中多种CDBPs的浓度进行监测,历时17个月,监测过程中同时考虑了时间和空间变化对外暴露评估的影响。
     (2)在人群流行病学领域中,首次采用尿三氯乙酸为内暴露标志评价人群CDBPs暴露水平。
     (3)CDBPs对人类健康影响的分子机制尚未阐明,本研究从一相代谢酶(CYP2E1)和DNA修复酶(hOGG1)两种基因多态性入手,初步探讨CDBPs对生殖健康影响的分子机制。
Chlorination is applied to kill pathogenic microorganisms in drinking water and has been widely used over the world to reduce the incidence of waterborne diseases. However, chlorination disinfection by-products (CDBPs) are formed when disinfectants used in water treatment plants react with natural organic matter present in the source water. Several of the halogenated by-products have been evaluated in animal studies and showed evidences of their potential to induce adverse reproductive health outcomes, such as reductions in birth weight and live birth, and congenital malformations of the cardiovascular and neurological systems. In epidemiological studies, the relationship between CDBPs exposure and reproductive health outcomes such as low birth weight, pregnancy loss, still birth and birth defects remains unclear, mainly owing to limitations in the exposure assessment in most studies. How to make CDBP exposure measurement more accurate has become a major problem when conducting CDBPs health effects studies.
     Objectives
     We conducted this study to investigate the relationship between CDBPs exposure and reduced birth weight. Two means of exposure assessment, external and internal exposure measurement, were adopted_in our study. Several of CDBPs levels in the pregnant women living_in a same area were monitored at three locations in the middle of each month to collect the data for external exposure assessment and we also examined the trichloracetic acid (TCAA) levels in the first morning urine obtained from the pregnant women, and these levels were used as biomarker of CDBPs internal exposure. Besides, our study is the first one to use urinary TCAA as biomarker for CDBPs exposure in epidemiological studies. The molecular mechanism by which CDBPs may influence human reproductive health is not well understood and in order to investigate the mechanisms, we analyzed the association between CYP2E1G1259C and hOGG1Ser326Cys genotype in newborns and CDBPs'health effects.
     Methods
     Pregnant women and newborns in our study were recruited form one hospital in Wuhan during the period from Jan.2008 to May 2009. Their basic information such as maternal age, education, disease history, gestational duration, and newborn's birth weight were obtained from the hospital birth records.
     In our first part, the pregnant women were recruited from one area where the water supply was from a single water plant. Water samples were collected from 3 locations:point 1 (about lkm from the plant), point 2 (about 4 km from the plant), and point 3 (about 8 km from the plant). During the period from Jan 2008 to May 2009, water samples were monthly collected from the these 3 points at fixed intervals, and the parameters including four halomethanes (chloroform, chlorodibromomethane, bromodicloromethane and bromoform) and two chloro-haloacetic acids (trichloracetic acid and dichloroacetic acid) were obtained from these samples. Both time and distance had taken into account when we collected this data. We selected 1385 pregnant women who were living in this area during their pregnancy and their trimester-specific CDBPs exposure assessment was based on this environmental data. Then we analyzed the relationship between CDBPs exposure during the pregnancy and their newborns'birth weight among these 1385 women.
     A number of 398 pregnant women were participated in our second part study and we had examined the urinary trichloracetic acid levels in their first morning urine, and this was used as internal exposure biomarker. This exposure assessment is more accurate than that used in the previous epidemiological studies. The association between maternal urinary trichloracetic acid levels and fetal birth weight was investigated in this part. In addition, we conducted a questionnaire survey to collect the vital information such as maternal water-use behaviors, family incomes, and reproductive disease history to control the birth weight confounders and we also investigate the effects of multi-route exposure to CDBPs.
     In the third part, we collected the cord blood of 158 newborns for DNA isolation. Taqman technique was adopted to genotype the CYP2E1 (G-1259C) and hOGGl (Ser326Cys) polymorphisms and maternal urinary trichloracetic acid levels were used for CDBPs exposure assessment. With these results, we conducted the gene-environment interaction analysis and try to find out the molecular mechanism of CDBPs.
     Results
     Our drinking water monitor lasted for 17 months and the CDBPs levels from month to month and from one point to another. Among the 51 water samples, the concentration ranges are:3.15~85.75 mg/L for chloroform,0.77~12.44 mg/L for chlorodibromoethane, LOD (limit of detection)-4.21 mg/L for bromodicloromethane, LOD~18.15 mg/L for bromoform,6.05-28.76 mg/L for dichloroacetic acid and 1.93~25.51mg/L for trichloracetic acid. The levels of CDBPs met the national standards for drinking water quality_except for the chloroform in one sample in July 2008. Based on this environmental data, we estimated maternal exposure levels and we found that high exposure to chloroform and bromo-trihalomethanes during the last trimester may result in increased risk in reduced birth weight (OR=1.82,95CI: 1.10~3.02; OR=1.51,95CI:1.05~2.17, respectively). Besides, exposure to high level of dichloroacetic acid during the first two trimesters could also lead to reduction of birth weight, with an OR of 1.60 (95CI:1.02~2.47).
     The urinary trichloroacetic acid levels among 398 women ranges from 0.9~123.3μg/gCr. Our results showed that high level of urinary trichloroacetic acid in the late pregnancy may be associated with reduced birth weight (β=-0.15,95%CI: 0.31~-0.01, P=0.04). In addition, we also observed that there was a positive correlation between urinary trichloroacetic acid levels and water consumption(β=0.23, 95%CI:0.38-14.06, P=0.04).
     In our gene-environment interaction study,158 newborns were genotyped for the CYP2E1 G1259C and hOGG1 Ser326Cys polymorphisms and the distribution of the polymorphism is:CC=7 (4.4%), CG=56 (35.4%), GG=95 (60.2%) forCYP2E1 and Cys/Cys=23(14.6%), Ser/Cys=74(46.8%), Ser/Ser=61(38.6%) for hOGGl. Compared with the newborns with heterozygous and wild type homozygous, the mean birth weight of newborns with the CC genotype for CYP2E1 or Cys/Cys genotype for hOGG1 were lower than others. However, when we divided newborns into two groups, wild type homozygous and other genotypes, we did not find any differences in birth weight between high and normal exposure groups, which indicated that these two polymorphisms may not relate to CDBPs effects on birth weight. But the sample size in our study is a bit small and our results need to be confirmed in large scale studies.
     Conclusion
     In conclusion, our results showed evidences that exposure to CDBPs during pregnancy may relate to reduced birth weight. Many scientists consider the last trimester as an important period for fetal growth, and our study found that high exposure to chloroform and bromo-trihalomethanes may lead to reductions in birth weight. In addition, exposure to high levels of dichloroacetic acid during the first two trimesters may also result in reduced birth weight, which indicated that fetal growth during the first and second trimester may be more sensitive to dichloroacetic acid. Meanwhile, by using urinary trichlroacetic acid as the internal biomarker, we observed that high exposure to CDBPs can lead to reductions in birth weight. In our third part, we did not found the gene-environment interaction effects of CYP2E1 (G-1259C) andhOGG1 (Ser326Cys) polymorphism and the molecular mechanism of CDBPs still need to be studies in the future.
     The new ideas
     (1) We conducted a 17 months study to monitor several CDBPs concentrations distribution systems and during our study both the time and geographic variations were taken into account.
     (2) Our study is the first one to use urinary trichloroacetic acid as the biomarker for CDBPs exposure in epidemiological studies.
     (3) The molecular mechanism through which CDBPs may influence human reproductive health is still unclear. We studied the polymorphism of phaseⅠmetabolism enzymes (CYP2E1) and DNA repair enzymes (hOGGl) to investigate the molecular mechanism of CDBPs.
引文
1. Galal-Gorchev, H., Chlorine in water disinfection. Pure Appl Chem,1996.68: 1731-1735.
    2. Cutler, D., Miller, G, The role of public health improvements in health advances: the twentieth-century United States. Demography,2005.42(1):1-22.
    3. Wigle, D.T., Safe drinking water:a public health challenge. Chronic Dis Can, 1998.19(3):103-107.
    4. Rook, J.J., Formation of haloforms during chlorination of natural waters. Wat Treat Exam,1974.23:234-243.
    5. Bellar, T.A., Lichtenberg, J. J., Kroner, R. C., The occurrence of organohalides in chlorinated drinking water. J Am Water Works Assoc,1974.66:703-706.
    6. Sadiq, R., Rodriguez, M. J., Disinfection by-products (CDBPs) in drinking water and predictive models for their occurrence:a review. Sci Total Environ,2004. 321(1-3):21-46.
    7. Richardson, S.D., Plewa, M. J., Wagner, E. D., Schoeny, R., Demarini, D. M., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:a review and roadmap for research. Mutat Res,2007.636(1-3):178-242.
    8. Nissinen, T.K., Miettinen, I. T., Martikainen, P. J., Vartiainen, T., Disinfection by-products in Finnish drinking waters. Chemosphere,2002.48(1):9-20.
    9.9. Loper, J.C., Mutagenic effects of organic compounds in drinking water. Mutat Res,1980.76(3):241-268.
    10.张黎,翟慧,刘爱琳,吴志刚,鲁文清,加氯消毒对水中有机提取物致人胎肝细胞DNA损伤的影响.环境与健康杂志,2010.27(1):14-16.
    11. Holmbom, B., Voss, R. H., Mortimer, R. D., Fractionation isolation and characterization of Ames mutagenic compounds in Kraft chlorination effluents. Environ. Sci. Technol.,1984.18:333-337.
    12. Ishiguro, Y., Santodonato, J., Neal, M. W., Mutagenic potency of chlorofuranones and related compounds in Salmonella. Environ Mol Mutagen,1988.11(2):
    225-234.
    13. LaLonde, R.T., Cook, G. P., Perakyla, H., Dence, C. W., Babish, J. G, Salmonella typhimurium (TA100) mutagenicity of 3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone and its open-and closed-ring analogs. Environ Mol Mutagen, 1991.17(1):40-48.
    14. IPCS2000. Disinfectants and disinfectant by-products, in Environmental Health Criteria 216.2000. Geneva:WHO.
    15. Ruddick, J.A., Villeneuve, D. C, Chu, I., Valli, V. E., A teratological assessment of four trihalomethanes in the rat. J Environ Sci Health,,1983.18(3):333-349.
    16. Thompson, D.J., Warner, S. D., Robinson, V. B., Teratology studies on orally administered chloroform in the rat and rabbit. Toxicol Appl Pharmacol,1974. 29(3):348-357.
    17. Schwetz, B.A., Leong, B. K., Gehring, P. J., Embryo-and fetotoxicity of inhaled chloroform in rats. Toxicol Appl Pharmacol,1974.28(3):442-451.
    18. Murray, F.J., Schwetz, B. A., McBride, J. G., Staples, R. E., Toxicity of inhaled chloroform in pregnant mice and their offspring. Toxicol Appl Pharmacol,1979. 50(3):515-522.
    19. Borzelleca, J.F., Carchman, R. A., Effects of selected organic drining water contaminants on male reproduction. U.E.P. Agency, Editor.1982.
    20. Klinefelter, G.R., Suarez, J. D., Roberts, N. L., DeAngelo, A. B., Preliminary screening for the potential of drinking water disinfection byproducts to alter male reproduction. Reprod Toxicol,1995.9(6):571-578.
    21. Smith, M.K., Randall, J. L., Read, E. J., Stober, J. A., Teratogenic activity of trichloroacetic acid in the rat. Teratology,1989.40(5):445-451.
    22. Smith, M.K., Randall, J. L., Read, E. J., Stober, J. A., Developmental toxicity of dichloroacetate in the rat. Teratology,1992.46(3):217-223.
    23. Toth, GP., Kelty, K. C., George, E. L., Read, E. J., Smith, M. K., Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate. Fundam Appl Toxicol,1992.19(1):57-63.
    24. Linder, R.E., Klinefelter, G R., Strader, L. F., Suarez, J. D., Roberts, N. L.,
    Spermatotoxicity of dichloroacetic acid. Reprod Toxicol,1997.11(5):681-688.
    25. Linder, R.E., Klinefelter, G R., Strader, L. F., Suarez, J. D., Roberts, N. L, Dyer, C. J., Spermatotoxicity of dibromoacetic acid in rats after 14 daily exposures. Reprod Toxicol,1994.8(3):251-259.
    26. Linder, R.E., Klinefelter, G R., Strader, L. F., Veeramachaneni, D. N., Roberts, N. L., Suarez, J. D., Histopathologic changes in the testes of rats exposed to dibromoacetic acid. Reprod Toxicol,1997.11(1):47-56.
    27. Hunter, E.S., Rogers, E. H., Schmid, J. E., Richard, A., Comparative effects of haloacetic acids in whole embryo culture. Teratology,1996.54(2):57-64.
    28. Smith, M.K., George, E. L., Zenick, H., Manson, J. M., Stober, J. A., Developmental toxicity of halogenated acetonitriles:drinking water by-products of chlorine disinfection. Toxicology,1987.46(1):83-93.
    29. Smith, M.K., Randall, J. L., Stober, J. A., Read, E. J., Developmental toxicity of dichloroacetonitrile:a by-product of drinking water disinfection. Fundam Appl Toxicol,1989.12(4):765-772.
    30. Nieuwenhuijsen, M.J., Grellier, J., Smith, R., Iszatt, N., Bennett, J., Best, N., Toledano, M., The epidemiology and possible mechanisms of disinfection by-products in drinking water. Philos Transact A Math Phys Eng Sci,2009. 367(1904):4043-4076.
    31. Reif, J.S., Hatch, M. C., Bracken, M., Holmes, L. B., Schwetz, B. A., Singer, P. C, Reproductive and developmental effects of disinfection by-products in drinking water. Environ Health Perspect,1996.104(10):1056-1061.
    32. Nieuwenhuijsen, M.J., Toledano, M. B., Eaton, N. E., Fawell, J., Elliott, P., Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes:a review. Occup Environ Med,2000.57(2):73-85.
    33. Graves, C.G, Matanoski, G M., Tardiff, R. G., Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products:a critical review. Regul Toxicol Pharmacol, 2001.34(2):103-124.
    34. Bove, F., Shim, Y., Zeitz, P., Drinking water contaminants and adverse pregnancy
    outcomes:a review. Environ Health Perspect,2002.110 Suppl 1:61-74.
    35. Tardiff, R.G, M.L. Carson, and M.E. Ginevan, Updated weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products. Regul Toxicol Pharmacol,2006.45(2): 185-205.
    36. Yang, C.Y., Chiu, H. F., Cheng, M. F., Tsai, S. S., Chlorination of drinking water and cancer mortality in Taiwan. Environ Res,1998.78(1):1-6.
    37. Yang, C.Y., Cheng, B. H., Tsai, S. S., Wu, T. N., Lin, M. C., Lin, K. C., Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environ Health Perspect,2000.108(8):765-768.
    38. Yang, C.Y., Drinking water chlorination and adverse birth outcomes in Taiwan. Toxicology,2004.198(1-3):249-254.
    39. Yang, C.Y., Xiao, Z. P., Ho, S. C., Wu, T. N., Tsai, S. S., Association between trihalomethane concentrations in drinking water and adverse pregnancy outcome in Taiwan. Environ Res,2007.104(3):390-395.
    40. Hwang, B.F., Jaakkola, J. J., Guo, H. R., Water disinfection by-products and the risk of specific birth defects:a population-based cross-sectional study in Taiwan. Environ Health,2008.7:23.
    41. Lewis, C., Suffet, I. H., Hoggatt, K., Ritz, B., Estimated effects of disinfection by-products on preterm birth in a population served by a single water utility. Environ Health Perspect,2007.115(2):290-295.
    42. Gallagher, M.D., et al., Exposure to trihalomethanes and adverse pregnancy outcomes. Epidemiology,1998.9(5):484-489.
    43. Keegan, T., Trihalomethane levels in the north of England 1992-1996, in Centre for Environmental Technology.1998, Imperial College London.
    44. Assessing the toxicity of exposure to mixtures of disinfection by-products: research recommendations., I.L.S.I. Risk Science Institute, Editor.1998., International Life Sciences Institute.
    45. Bove, F.J., et al., Public drinking water contamination and birth outcomes. Am J Epidemiol,1995.141(9):850-862.
    46. Lewis, C., I.H. Suffet, and B. Ritz, Estimated effects of disinfection by-products on birth weight in a population served by a single water utility. Am J Epidemiol, 2006.163(1):38-47.
    47. Hoffman, C.S., et al., Drinking water disinfection by-product exposure and fetal growth. Epidemiology,2008.19(5):729-737.
    48.中华人民共和国卫生部,中国国家标准化管理委员会,GB/T 5750—-2006生活饮用水标准检验方法[S].2007,北京:中国标准出版社.83-398.
    49. Porter, C.K., Putnam, S. D., Hunting, K. L., Riddle, M. R., The effect of trihalomethane and haloacetic acid exposure on fetal growth in a Maryland county. Am J Epidemiol,2005.162(4):334-344.
    50.中华人民共和国卫生部,中国国家标准化管理委员会,GB 5749-2006生活饮用水卫生标准[S].2006,北京:中国标准出版社.
    51.丰有吉,沈铿,妇产科学[M].2005,北京:人民卫生出版社.
    52. Wright, J.M., J. Schwartz, and D.W. Dockery, The effect of disinfection by-products and mutagenic activity on birth weight and gestational duration. Environ Health Perspect,2004.112(8):920-925.
    53. Hinckley, A.F., Bachand, A. M., Reif, J. S., Late pregnancy exposures to disinfection by-products and growth-related birth outcomes. Environ Health Perspect,2005.113(12):1808-1813.
    54. Hoffman, C.S., et al., Drinking water disinfection by-product exposure and duration of gestation. Epidemiology,2008.19(5):738-746.
    55. Shaw, GM, Ranatunga, D., Quach, T., Neri, E., Correa, A., Neutra, R. R., Trihalomethane exposures from municipal water supplies and selected congenital malformations. Epidemiology,2003.14(2):191-199.
    56. Savitz, D.A., Singer, P. C., Herring, A. H., Hartmann, K. E., Weinberg, H. S., Makarushka, C., Exposure to drinking water disinfection by-products and pregnancy loss. Am J Epidemiol,2006.164(11):1043-1051.
    57. Do, M.T., Birkett, N. J., Johnson, K. C., Krewski, D., Villeneuve, P., Chlorination disinfection by-products and pancreatic cancer risk. Environ Health Perspect, 2005.113(4):418-424.
    58. King, W.D., Dodds, L., Allen, A. C., Armson, B. A., Fell, D., Nimrod, C., Haloacetic acids in drinking water and risk for stillbirth. Occup Environ Med, 2005.62(2):124-127.
    59. Righi, E., Fantuzzi, G., Montanari, M., Bargellini, A., Predieri, G, Aggazzotti, G., [Exposure to water disinfection by-products and adverse pregnancy outcomes: results of a case-control study carried out in Modena (Italy)]. Ann Ig,2003.15(5): 649-62.
    60. Weisel, C.P., Kim, H., Haltmeier, P., Klotz, J. B., Exposure estimates to disinfection by-products of chlorinated drinking water. Environ Health Perspect, 1999.107(2):103-110.
    61. Froese, K.L., Sinclair, M. I., Hrudey, S. E., Trichloroacetic acid as a biomarker of exposure to disinfection by-products in drinking water:a human exposure trial in Adelaide, Australia. Environ Health Perspect,2002.110(7):679-687.
    62. Ashley, D.L., Bonin, M. A., Cardinali, F. L., McCraw, J. M, Wooten, J. V., Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin Chem,1994.40(7 Pt 2): 1401-1404.
    63. Kim, H., Haltmeier, P., Klotz, J. B., Weisel, C. P., Evaluation of biomarkers of environmental exposures:urinary haloacetic acids associated with ingestion of chlorinated drinking water. Environ Res,1999.80(2 Pt 1):187-195.
    64. USEPA, The Occurrence of Disinfection By-Products (CDBPs) of Health Concern in Drinking Water:Results of a Nationwide DBP Occurrence Study. 2002, USEPA:Athens, GA.
    65. Bader, E.L., Hrudey, S. E., Froese, K. L., Urinary excretion half life of trichloroacetic acid as a biomarker of exposure to chlorinated drinking water disinfection by-products. Occup Environ Med,2004.61(8):715-716.
    66. Zhang, W., Gabos, S., Schopflocher, D., Li, X. F., Gati, W. P., Hrudey, S. E., Reliability of using urinary and blood trichloroacetic acid as a biomarker of exposure to chlorinated drinking water disinfection byproducts. Biomarkers, 2009.14(6):355-365.
    67. Sellers, E.M., Koch-Weser, J., Kinetics and clinical importance of displacement of warfarin from albumin by acidic drugs. Ann N Y Acad Sci,1971.179: 213-225.
    68. Lumpkin, M.H., Bruckner, J. V., Campbell, J. L., Dallas, C. E., White, C. A., Fisher, J. W., Plasma binding of trichloroacetic acid in mice, rats, and humans under cancer bioassay and environmental exposure conditions. Drug Metab Dispos,2003.31(10):1203-1207.
    69. Kramer, M.D., Lynch, C. F., Isacson, P., Hanson, J. W., The association of waterborne chloroform with intrauterine growth retardation. Epidemiology,1992. 3(5):407-413.
    70. Savitz, D.A., Andrews, K. W., Pastore, L. M., Drinking water and pregnancy outcome in central North Carolina:source, amount, and trihalomethane levels. Environ Health Perspect,1995.103(6):592-596.
    71. Dodds, L., King, W., Woolcott, C., Pole, J., Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology,1999.10(3):233-237.
    72. Aggazzotti, G, Righi, E., Fantuzzi, G, Biasotti, B., Ravera, G, Kanitz, S., Barbone, F., Sansebastiano, G, Battaglia, M. A., Leoni, V., Fabiani, L., Triassi, M., Sciacca, S., Chlorination by-products (CBPs) in drinking water and adverse pregnancy outcomes in Italy. J Water Health,2004.2(4):233-247.
    73. Infante-Rivard, C., Drinking water contaminants, gene polymorphisms, and fetal growth. Environ Health Perspect,2004.112(11):1213-1216.
    74. Toledano, M.B., Nieuwenhuijsen, M. J., Best, N., Whitaker, H., Hambly, P., de Hoogh, C., Fawell, J., Jarup, L., Elliott, P., Relation of trihalomethane concentrations in public water supplies to stillbirth and birth weight in three water regions in England. Environ Health Perspect,2005.113(2):225-232.
    75. Kanitz, S., Franco, Y., Patrone, V., Caltabellotta, M., Raffo, E., Riggi, C., Timitilli, D., Ravera, G, Association between drinking water disinfection and somatic parameters at birth. Environ Health Perspect,1996.104(5):516-520.
    76. Jaakkola, J.J., Magnus, P., Skrondal, A., Hwang, B. F., Becher, G., Dybing, E., Foetal growth and duration of gestation relative to water chlorination. Occup
    Environ Med,2001.58(7):437-442.
    77. Kallen, B.A., Robert, E., Drinking water chlorination and delivery outcome-a registry-based study in Sweden. Reprod Toxicol,2000.14(4):303-309.
    78. Grellier, J., Bennett, J., Patelarou, E., Smith, R. B., Toledano, M. B., Rushton, L. Briggs, D. J., Nieuwenhuijsen, M. J., Exposure to disinfection by-products, fetal growth, and prematurity:a systematic review and meta-analysis. Epidemiology. 21(3):300-313.
    79. Beddowes, E.J., Faux, S. P., Chipman, J. K., Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress. Toxicology,2003.187(2-3):101-115.
    80. Yuan, J., Wu, X. J., Lu, W. Q., Cheng, X. L., Chen, D., Li, X. Y., Liu, A. L., Wu, J. J., Xie, H., Stahl, T., Mersch-Sundermann, V., Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells. Int J Hyg Environ Health,2005.208(6):481-488.
    81. Scholl, T.O., Stein, T. P., Oxidant damage to DNA and pregnancy outcome. J Matern Fetal Med,2001.10(3):182-185.
    82. Kim, Y.J., Hong, Y. C., Lee, K. H., Park, H. J., Park, E. A., Moon, H. S., Ha, E. H., Oxidative stress in pregnant women and birth weight reduction. Reprod Toxicol,2005.19(4):487-492.
    83. Myatt, L., Cui, X., Oxidative stress in the placenta. Histochem Cell Biol,2004. 122(4):369-382.
    84. Meek, M.E., Beauchamp, R., Long, G., Moir, D., Turner, L., Walker, M., Chloroform:exposure estimation, hazard characterization, and exposure-response analysis. J Toxicol Environ Health B Crit Rev,2002.5(3):283-334.
    85. Tomasi, A., Albano, E., Biasi, F., Slater, T. F., Vannini, V., Dianzani, M. U., Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique. Chem Biol Interact,1985.55(3):303-316.
    86. Gemma, S., Vittozzi, L., Testai, E., Metabolism of chloroform in the human liver and identification of the competent P450s. Drug Metab Dispos,2003.31(3):
    266-274.
    87. Hayashi, S., Watanabe, J., Kawajiri, K., Genetic polymorphisms in the 5'-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem,1991.110(4):559-565.
    88. Poulsen, H.E., Prieme, H., Loft, S., Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev,1998.7(1):9-16.
    89. Radicella, J.P., Dherin, C., Desmaze, C., Fox, M. S., Boiteux, S., Cloning and characterization of hOGGl, a human homolog of the OGGl gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA,1997.94(15):8010-8015.
    90. Arai, K., Morishita, K., Shinmura, K., Kohno, T., Kim, S. R., Nohmi, T., Taniwaki, M., Ohwada, S., Yokota, J., Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene, 1997.14(23):2857-2861.
    91. Kohno, T., Shinmura, K., Tosaka, M., Tani, M., Kim, S. R., Sugimura, H., Nohmi, T., Kasai, H., Yokota, J., Genetic polymorphisms and alternative splicing of the hOGGl gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene,1998.16(25):3219-3225.
    92. Sugimura, H., Kohno, T., Wakai, K., Nagura, K., Genka, K., Igarashi, H., Morris, B. J., Baba, S., Ohno, Y, Gao, C., Li, Z., Wang, J., Takezaki, T., Tajima, K., Varga, T., Sawaguchi, T., Lum, J. K., Martinson, J. J., Tsugane, S., Iwamasa, T., Shinmura, K., Yokota, J., hOGG1 Ser326Cys polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev,1999.8(8):669-674.
    93. Infate-Rivard, C., Olson, E., Jacques, L., Ayotte, P., Drinking water conaminants and childhood leukemia. Epidemology,2001.12(1):13-19.
    94. DeMarini, D.M., et al., Glutathione S-transferase-mediated induction of GC->AT transitions by halomethanes in Salmonella. Environ Mol Mutagen, 1997.30(4):440-447.
    95. Pegram, R.A., et al., Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium:contrasting results with bromodichloromethane off chloroform. Toxicol Appl Pharmacol,1997.144(1):
    183-188.
    96. Kamen, B., Folate and antifolate pharmacology. Semin Oncol,1997.24(5 Suppl 18):S18-30-S18-39.
    97. Ray, J.G and C.A. Laskin, Folic acid and homocyst(e)ine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss:A systematic review. Placenta,1999.20(7):519-529.
    98. Alston, T.A., Inhibition of vitamin B12-dependent methionine biosynthesis by chloroform and carbon tetrachloride. Biochem Pharmacol,1991.42(12): R25-28.
    99. Dow, J.L. and T. Green, Trichloroethylene induced vitamin B(12) and folate deficiency leads to increased formic acid excretion in the rat. Toxicology,2000. 146(2-3):123-136.
    100.Geter, D.R., et al., Tribromomethane exposure and dietary folate deficiency in the formation of aberrant crypt foci in the colons of F344/N rats. Food Chem Toxicol, 2005.43(9):1405-1412.
    1. Bichsel, Y., von Gunten, U., Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters. Environ. Sci. Technol., 2000.34:2784-2791.
    2. Singer, P.C., Control of disinfection by-products in drinking water. J. Environ. Eng.,1994.120:727-774.
    3. Stevens, A.A., Moore, L. A.& Miltner, R. J., Formation and control of non-trihalomethane disinfection by-products. Water Works Assoc,1989.81: 54-60.
    4. Amy, G.L., Tan, L.& Davis, M. K., The effects of ozonation and activated carbon adsorption on trihalomethane speciation. Water Res.,1991.25:191-202.
    5. Richardson, S.D., Plewa, M. J., Wagner, E. D., Schoeny, R., Demarini, D. M., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:a review and roadmap for research. Mutat Res,2007.636(1-3):178-242.
    6. Weisel, C.P.J., W. K., Ingestion, inhalation and dermal exposures to chloroform and trichloroethene from tap water. Environ. Health Perspect.,1996.104:48-51.
    7. Kim, H., Haltmeier, P., Klotz, J. B., Weisel, C. P., Evaluation of biomarkers of environmental exposures:urinary haloacetic acids associated with ingestion of chlorinated drinking water. Environ Res,1999.80(2 Pt 1):187-195.
    8. Whitaker, H.J., M.J. Nieuwenhuijsen, and N.G Best, The relationship between water concentrations and individual uptake of chloroform:a simulation study. Environ Health Perspect,2003.111(5):688-694.
    9. Villanueva, C.M., et al., Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am J Epidemiol,2007.165(2):148-156.
    10. King, W.D. and L.D. Marrett, Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada). Cancer Causes Control,1996.7(6):596-604.
    11. Cantor, K.P., et al., Drinking water source and chlorination byproducts. I. Risk of bladder cancer. Epidemiology,1998.9(1):21-28.
    12. Villanueva, C.M., et al., Disinfection byproducts and bladder cancer:a pooled analysis. Epidemiology,2004.15(3):357-367.
    13. Doyle, T.J., et al., The association of drinking water source and chlorination by-products with cancer incidence among postmenopausal women in Iowa:a prospective cohort study. Am J Public Health,1997.87(7):1168-1176.
    14. Hildesheim, M.E., et al., Drinking water source and chlorination byproducts. II. Risk of colon and rectal cancers. Epidemiology,1998.9(1):29-35.
    15. Koivusalo, M. and T. Vartiainen, Drinking water chlorination by-products and cancer. Rev Environ Health,1997.12(2):81-90.
    16. Bove, G.E., Jr., P.A. Rogerson, and J.E. Vena, Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer. Int J Health Geogr,2007.6:18.
    17. King, W.D., L.D. Marrett, and C.G Woolcott, Case-control study of colon and rectal cancers and chlorination by-products in treated water. Cancer Epidemiol Biomarkers Prev,2000.9(8):813-818.
    18. Young, T.B., M.S. Kanarek, and A.A. Tsiatis, Epidemiologic study of drinking water chlorination and Wisconsin female cancer mortality. J Natl Cancer Inst, 1981.67(6):1191-1198.
    19. Karagas, M.R., et al., Disinfection byproducts in drinking water and skin cancer? A hypothesis. Cancer Causes Control,2008.19(5):547-548.
    20. Bove, F., Shim, Y., Zeitz, P., Drinking water contaminants and adverse pregnancy outcomes:a review. Environ Health Perspect,2002.110 Suppl 1:61-74.
    21. Graves, C.G., Matanoski, G M., Tardiff, R. G, Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products:a critical review. Regul Toxicol Pharmacol,2001. 34(2):103-124.
    22. Nieuwenhuijsen, M.J., Toledano, M. B., Eaton, N. E., Fawell, J., Elliott, P., Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes:a review. Occup Environ Med,2000.57(2):73-85.
    23. Tardiff, R.G., M.L. Carson, and M.E. Ginevan, Updated weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products. Regul Toxicol Pharmacol,2006.45(2):185-205.
    24. IPCS2000. Disinfectants and disinfectant by-products, in Environmental Health Criteria 216.2000. Geneva:WHO.
    25. Reif, J.S., Hatch, M. C., Bracken, M., Holmes, L. B., Schwetz, B. A., Singer, P. C., Reproductive and developmental effects of disinfection by-products in drinking water. Environ Health Perspect,1996.104(10):1056-1061.
    26. Dodds, L. and W.D. King, Relation between trihalomethane compounds and birth defects. Occup Environ Med,2001.58(7):443-446.
    27. Klotz, J.B. and L.A. Pyrch, Neural tube defects and drinking water disinfection by-products. Epidemiology,1999.10(4):383-90.
    28. Nieuwenhuijsen, M.J., et al., Chlorination disinfection by-products and risk of congenital anomalies in England and Wales. Environ Health Perspect,2008. 116(2):216-222.
    29. Hwang, B.F., P. Magnus, and J.J. Jaakkola, Risk of specific birth defects in relation to chlorination and the amount of natural organic matter in the water supply. Am J Epidemiol,2002.156(4):374-382.
    30. Shaw, G.M., Ranatunga, D., Quach, T., Neri, E., Correa, A., Neutra, R. R., Trihalomethane exposures from municipal water supplies and selected congenital malformations. Epidemiology,2003.14(2):191-199.
    31. Kallen, B.A., Robert, E., Drinking water chlorination and delivery outcome-a registry-based study in Sweden. Reprod Toxicol,2000.14(4):303-309.
    32. Magnus, P., et al., Water chlorination and birth defects. Epidemiology,1999. 10(5):513-517.
    33. Chisholm, K., et al., Risk of birth defects in Australian communities with high levels of brominated disinfection by-products. Environ Health Perspect,2008. 116(9):1267-1273.
    34. Bove, F.J., et al., Public drinking water contamination and birth outcomes. Am J Epidemiol,1995.141(9):850-862.
    35. Hwang, B.F., Jaakkola, J. J., Guo, H. R., Water disinfection by-products and the risk of specific birth defects:a population-based cross-sectional study in Taiwan. Environ Health,2008.7:23.
    36. Luben, T.J., et al., The healthy men study:an evaluation of exposure to disinfection by-products in tap water and sperm quality. Environ Health Perspect, 2007.115(8):1169-1176.
    37. Hwang, B.F. and J.J. Jaakkola, Water chlorination and birth defects:a systematic review and meta-analysis. Arch Environ Health,2003.58(2):83-91.
    38. Waller, K., et al., Trihalomethanes in drinking water and spontaneous abortion. Epidemiology,1998.9(2):134-140.
    39. Waller, K., et al., Influence of exposure assessment methods on risk estimates in an epidemiologic study of total trihalomethane exposure and spontaneous abortion. J Expo Anal Environ Epidemiol,2001.11(6):522-531.
    40. Savitz, D.A., Andrews, K. W., Pastore, L. M., Drinking water and pregnancy outcome in central North Carolina:source, amount, and trihalomethane levels. Environ Health Perspect,1995.103(6):592-596.
    41. Savitz, D.A., Singer, P. C, Herring, A. H., Hartmann, K. E., Weinberg, H. S., Makarushka, C, Exposure to drinking water disinfection by-products and pregnancy loss. Am J Epidemiol,2006.164(11):1043-1051.
    42. Dodds, L., King, W., Woolcott, C., Pole, J., Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology,1999.10(3):233-237.
    43. Toledano, M.B., Nieuwenhuijsen, M. J., Best, N., Whitaker, H., Hambly, P., de Hoogh, C., Fawell, J., Jarup, L., Elliott, P., Relation of trihalomethane concentrations in public water supplies to stillbirth and birth weight in three water regions in England. Environ Health Perspect,2005.113(2):225-232.
    44. Dodds, L., et al., Trihalomethanes in public water supplies and risk of stillbirth. Epidemiology,2004.15(2):179-186.
    45. King, W.D., Dodds, L., Allen, A. C., Armson, B. A., Fell, D., Nimrod, C., Haloacetic acids in drinking water and risk for stillbirth. Occup Environ Med, 2005.62(2):124-127.
    46. Yang, C.Y., Cheng, B. H., Tsai, S. S., Wu, T. N., Lin, M. C., Lin, K. C., Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environ Health Perspect,2000.108(8):765-768.
    47. Wright, J.M., J. Schwartz, and D.W. Dockery, The effect of disinfection by-products and mutagenic activity on birth weight and gestational duration. Environ Health Perspect,2004.112(8):920-925.
    48. Jaakkola, J.J., Magnus, P., Skrondal, A., Hwang, B. F., Becher, G, Dybing, E., Foetal growth and duration of gestation relative to water chlorination. Occup Environ Med,2001.58(7):437-442.
    49. Kramer, M.D., Lynch, C. F., Isacson, P., Hanson, J. W., The association of waterborne chloroform with intrauterine growth retardation. Epidemiology,1992. 3(5):407-413.
    50. Gallagher, M.D., et al., Exposure to trihalomethanes and adverse pregnancy outcomes. Epidemiology,1998.9(5):484-489.
    51. Wright, J.M., J. Schwartz, and D.W. Dockery, Effect of trihalomethane exposure on fetal development. Occup Environ Med,2003.60(3):173-180.
    52. Aggazzotti, G, Righi, E., Fantuzzi, G, Biasotti, B., Ravera, G, Kanitz, S., Barbone, F., Sansebastiano, G, Battaglia, M. A., Leoni, V., Fabiani, L., Triassi, M., Sciacca, S., Chlorination by-products (CBPs) in drinking water and adverse pregnancy outcomes in Italy. J Water Health,2004.2(4):233-247.
    53. Hinckley, A.F., Bachand, A. M., Reif, J. S., Late pregnancy exposures to disinfection by-products and growth-related birth outcomes. Environ Health Perspect,2005.113(12):1808-1813.
    54. Lewis, C, Suffet, I. H., Hoggatt, K., Ritz, B., Estimated effects of disinfection by-products on preterm birth in a population served by a single water utility. Environ Health Perspect,2007.115(2):290-295.
    55. Yang, C.Y., Xiao, Z. P., Ho, S. C., Wu, T..N., Tsai, S. S., Association between trihalomethane concentrations in drinking water and adverse pregnancy outcome in Taiwan. Environ Res,2007.104(3):390-395.
    56. Lewis, C, I.H. Suffet, and B. Ritz, Estimated effects of disinfection by-products on birth weight in a population served by a single water utility. Am J Epidemiol, 2006.163(1):38-47.
    57. Kanitz, S., Franco, Y., Patrone, V., Caltabellotta, M, Raffo, E., Riggi, C, Timitilli, D., Ravera, G, Association between drinking water disinfection and somatic parameters at birth. Environ Health Perspect,1996.104(5):516-520.
    58. Yang, C.Y., Drinking water chlorination and adverse birth outcomes in Taiwan. Toxicology,2004.198(1-3):249-254.
    59. Porter, C.K., Putnam, S. D., Hunting, K. L., Riddle, M. R., The effect of trihalomethane and haloacetic acid exposure on fetal growth in a Maryland county. Am J Epidemiol,2005.162(4):334-344.
    60. Hoffman, C.S., et al., Drinking water disinfection by-product exposure and fetal growth. Epidemiology,2008.19(5):729-737.
    61. Infante-Rivard, C, Drinking water contaminants, gene polymorphisms, and fetal growth. Environ Health Perspect,2004.112(11):1213-1216.
    62. Fenster, L., et al., Trihalomethane levels in home tap water and semen quality. Epidemiology,2003.14(6):650-658.
    63. Smith, M.K., Randall, J. L., Read, E. J., Stober, J. A., Teratogenic activity of trichloroacetic acid in the rat. Teratology,1989.40(5):445-451.
    64. Toth, G.P., Kelty, K. C, George, E. L., Read, E. J., Smith, M. K., Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate. Fundam Appl Toxicol,1992.19(1):57-63.
    65. Linder, R.E., Klinefelter, G R., Strader, L. F., Suarez, J. D., Roberts, N. L., Dyer, C. J., Spermatotoxicity of dibromoacetic acid in rats after 14 daily exposures. Reprod Toxicol,1994.8(3):251-259.
    66. Joyce, S.J., et al., Water disinfection by-products and pre-labor rupture of membranes. Am J Epidemiol,2008.168(5):514-521.
    67. Hoffman, C.S., et al., Drinking water disinfection by-product exposure and duration of gestation. Epidemiology,2008.19(5):738-746.
    68. MacLehose, R.F., et al., Drinking water disinfection by-products and time to pregnancy. Epidemiology,2008.19(3):451-458.
    69. Cedergren, M.I., et al., Chlorination byproducts and nitrate in drinking water and risk for congenital cardiac defects. Environ Res,2002.89(2):124-130.
    70. Hunter, E.S.,3rd, et al., Bromochloro-haloacetic acids:effects on mouse embryos in vitro and QSAR considerations. Reprod Toxicol,2006.21(3):260-266.
    71. Wilcox, A.J., On the importance-and the unimportance-of birthweight. Int J Epidemiol,2001.30(6):1233-1241.
    72. Gelbaya, T.A. and L.G Nardo, Customised fetal growth chart:a systematic review. J Obstet Gynaecol,2005.25(5):445-450.
    73. Gardosi, J., New definition of small for gestational age based on fetal growth potential. Horm Res,2006.65 Suppl 3:15-18.
    74. Plewa, M.J., Wagner, E. D., Muellner, M. G, Hsu, K.-M.& Richardson, S. D., ed. Comparative mammalian cell toxicity of N-DBPs and C-DBPs..American Chemical Society., ed. S.W.K. T. Karanfil, P. Westerhoff& Y. Xie.2008: Washington, DC:.
    75. DeMarini, D.M., et al., Glutathione S-transferase-mediated induction of GC->AT transitions by halomethanes in Salmonella. Environ Mol Mutagen,1997.30(4): 440-447.
    76. Pegram, R.A., et al., Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium:contrasting results with bromodichloromethane off chloroform. Toxicol Appl Pharmacol,1997.144(1): 183-188.
    77. Scholl, T.O., Stein, T. P., Oxidant damage to DNA and pregnancy outcome. J Matern Fetal Med,2001.10(3):182-185.
    78. Meek, M.E., et al., Chloroform:exposure estimation, hazard characterization, and exposure-response analysis. J Toxicol Environ Health B Crit Rev,2002.5(3): 283-334.
    79. Myatt, L. and X. Cui, Oxidative stress in the placenta. Histochem Cell Biol,2004. 122(4):369-82.
    80. Kim, Y.J., et al., Oxidative stress in pregnant women and birth weight reduction. ReprodToxicol,2005.19(4):487-492.
    81. Beddowes, E.J., Faux, S. P., Chipman, J. K., Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress. Toxicology,2003.187(2-3):101-115.
    82. Yuan, J., Wu, X. J., Lu, W. Q., Cheng, X. L., Chen, D., Li, X. Y, Liu, A. L., Wu, J. J., Xie, H., Stahl, T., Mersch-Sundermann, V., Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells. Int J Hyg Environ Health,2005.208(6):481-488.
    83. Tomasi, A., et al., Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique. Chem Biol Interact,1985.55(3):303-316.
    84. Gemma, S., L. Vittozzi, and E. Testai, Metabolism of chloroform in the human liver and identification of the competent P450s. Drug Metab Dispos,2003.31(3): 266-274.
    85. Larson, J.L. and R.J. Bull, Metabolism and lipoperoxidative activity of trichloroacetate and dichloroacetate in rats and mice. Toxicol Appl Pharmacol, 1992.115(2):268-277.
    86. Ni, Y.C., et al., Mouse liver microsomal metabolism of chloral hydrate, trichloroacetic acid, and trichloroethanol leading to induction of lipid peroxidation via a free radical mechanism. Drug Metab Dispos,1996.24(1): 81-90.
    87. Crider, K.S., N. Whitehead, and R.M. Buus, Genetic variation associated with preterm birth:a HuGE review. Genet Med,2005.7(9):593-604.
    88. Engel, S.A., et al., Risk of spontaneous preterm birth is associated with common proinflammatory cytokine polymorphisms. Epidemiology,2005.16(4):469-77.
    89. Engel, S.A., et al., Risk of small-for-gestational age is associated with common anti-inflammatory cytokine polymorphisms. Epidemiology,2005.16(4):478-86.
    90. Sciuto, A.M., et al., The temporal profile of cytokines in the bronchoalveolar lavage fluid in mice exposed to the industrial gas phosgene. Inhal Toxicol,2003. 15(7):687-700.
    91. Weber, L.W., M. Boll, and A. Stampfl, Hepatotoxicity and mechanism of action of haloalkanes:carbon tetrachloride as a toxicological model. Crit Rev Toxicol, 2003.33(2):105-136.
    92. Kamen, B., Folate and antifolate pharmacology. Semin Oncol,1997.24(5 Suppl 18):S18-30-S18-39.
    93. Ray, J.G. and C.A. Laskin, Folic acid and homocyst(e)ine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss:A systematic review. Placenta,1999.20(7):519-529.
    94. Alston, T.A., Inhibition of vitamin B12-dependent methionine biosynthesis by chloroform and carbon tetrachloride. Biochem Pharmacol,1991.42(12):R25-28.
    95. Dow, J.L. and T. Green, Trichloroethylene induced vitamin B(12) and folate deficiency leads to increased formic acid excretion in the rat. Toxicology,2000. 146(2-3):123-136.
    96. Geter, D.R., et al., Tribromomethane exposure and dietary folate deficiency in the formation of aberrant crypt foci in the colons of F344/N rats. Food Chem Toxicol, 2005.43(9):1405-1412.
    97. Chen, J., et al., Bromodichloromethane inhibits human placental trophoblast differentiation. Toxicol Sci,2004.78(1):166-174.
    98. Potter, C.L., et al., Effects of four trihalomethanes on DNA strand breaks, renal hyaline droplet formation and serum testosterone in male F-344 rats. Cancer Lett, 1996.106(2):235-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700