新疆鹰嘴豆根瘤菌的生物学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹰嘴豆是药膳兼用的豆科植物,具有非常好的结瘤固氮能力。但分布在中国境内的能与鹰嘴豆共生固氮的根瘤菌至今未对其做过任何研究。鉴于此,本论文首次针对分布在我国主产区——新疆木垒县和奇台县的鹰嘴豆根瘤菌进行系统的生物学特征研究,以填补此方面研究的空白。
     论文先对我国新疆地区的鹰嘴豆根瘤菌进行了遗传多样性分析。从鹰嘴豆主产区新疆木垒和奇台两个县采集根瘤,经过分离纯化得到95株根瘤菌,采用16S rRNA基因和IGS-PCR RFLP、16S rRNA基因、三个持家基因(atpD、recA和gln11)和两个共生基因(nodC和nifH)的系统发育和分子进化分析。结果表明:1)供试根瘤菌全部属于中慢生根瘤菌属,但不同于该属的已知种,为潜在的新基因种;2)这些根瘤菌的共生基因与国外已报道的鹰嘴豆根瘤菌——Mesorhizobium mediterraneum和M. ciceri的相似性高达98.6%(nodC)和97.9%(nifH)以上,交叉结瘤试验也证明其与宿主植物严格的专一性和对应性;3)采集地的土壤pH值呈碱性(8.24-8.45),这与中慢生根瘤菌在生长时产酸,以中和并适应土壤的碱性特征相关;4)新疆鹰嘴豆根瘤菌种群与M. mediterraneum、M. ciceri和M. temperatum之间的分化系数(Kst*)分别为0.44227、0.48364和0.31383,而基因交流系数(Nm)分别为0.03、0.02和0.04,另外,M.mediterraneum、M. ciceri和M. temperatum相互间的分化系数(Kst*)均为1.0000,而基因交流系数(Nm)均为0.00。说明新疆鹰嘴豆根瘤菌种群与三个已知种之间遗传分化较多,基因交流较少,这表明新疆鹰嘴豆根瘤菌种群既与国外己知的两个鹰嘴豆根瘤菌种群不同,也与遗传距离较近的M. temperatum不同,由此推测,新疆特殊鹰嘴豆根瘤菌种群可能是在长期地理隔离及鹰嘴豆对根瘤菌共生基因选择的共同作用下形成的。
     在以上研究基础上,论文又对新疆鹰嘴豆根瘤菌的潜在新基因种进行多相分类鉴定。经过多序列基因比对、系统发育分析、全细胞蛋白电泳、脂肪酸种类和含量、极性脂种类分析、DNA同源性、数值分类和交叉结瘤试验等综合分析,结果表明:新疆鹰嘴豆根瘤菌种群属于中慢生根瘤菌属的一个新种,命名为木垒中慢生根瘤菌(Mesorhizobium muleiense sp. nov.)。
     为研究根瘤菌在自然条件下的进化规律和生态适应性,在最初采样研究的四年后,又重新采集了原采样点的鹰嘴豆根瘤和土壤样品,开展了鹰嘴豆根瘤菌的持家基因recA分析、生态适应性和竞争结瘤试验等工作。研究发现,田间重采集根瘤菌的持家基因recA较好地保持了木垒中慢生根瘤菌种群recA基因型的多样性和稳定性,与四年前的结果一致;而经过温室条件下鹰嘴豆从土壤中捕捉的方法得到的根瘤菌,其recA序列与四年前相比,缺少了CCBAU83939所代表的recA基因型。但是,两种条件下得到的鹰嘴豆根瘤菌都归属于唯一的种,即M. muleiense。说明种群M. muleiense在新疆土壤中保持着相对的遗传稳定性。
     使用四年前分离的M. muleiense与M. mediterraneum和M. ciceri进行的土壤适应性和竞争结瘤分析表明,灭菌的蛭石和土壤内,M. ciceri的占瘤率最高,M. mediterraneum次之;而未灭菌土壤内,M. muleiense占瘤率最高,表现出土著菌M. muleiense的生态适应性和高竞争性。
Chickpea is a kind of legumes whose seeds can both be used for medicine and food, also can form nodules with rhizobia and fix nitrogen. While rhizobia associated with chickpea grown in China had never been surveyed until now. Therefore it is meaningful to explore the biological characterization of chickpea rhizobia from the cities of Mulei and Qitai in Xinjiang-the main planting area in China. And it will be a necessary supplementary for research of chickpea rhizobia all over the world.
     In this study, the phylogeny and diversity of chickpea rhizobia from Xinjiang were analyzed. The nodules were collected and total of95chickpea rhizobial strains were obtained from Mulei and Qitai in Xinjiang. These strains were analyzed by RFLP of genes of16S rRNA and1GS, the phylogenetic analysis of16S rRNA, three housekeeping genes (atpD, recA and glnⅡ), and symbiotic genes (nodC and nifH), and molecular evolution analysis. It showed that,1) all of the chickpea rhizobia in Xinjiang belonged to the genus of Mesorhizobium which were different from the known species from Mesorhizobium genus and were proposed as a distinctive genomic species;2) there was strong host-specificity of the symbiotic genes among the tested chickpea rhizobia which were above98.6%of nodC and above97.9%of nifH compared with the well studied chickpea rhizob'ia-Mesorhizobium mediterraneum and Mesorhizobium ciceri;3) the soil samples were all with the alkaline characteristic and pH values ranging from8.24to8.45, while the strains from Mesorhizobium can produce acids through the metabolism which may be used for neutralizing and adapting to the alkaline soils;4) The genetic differentiation index Kst*between the chickpea rhizobial group from China and the known species of M. mediterraneum, M. ciceri or M. temperatum was0.44227,0.48364or0.31383respectively, and the gene flow index Nm was0.03,0.02or0.04respectively while Kst*was1.00000and Nm was0.00between each couple of M. mediterraneum, M. ciceri and M. temperatum. It suggested that the tested species were significantly and geneticly differentiated from each other and that the distinct chickpea rhizobial group from China may result from the long history of geogrophical seperation and the selection of symbiotic genes from their host chickpea.
     Based on the research above, the distinctive genomic species of chickpea rhizobia from Xinjiang was further identified by polyphasic taxonomy including the multi locus sequence analysis (MLSA), the analysis of whole cell protein profiles, fatty acids profiles, polar lipids profiles, DNA-DNA hybridization, numerical taxonomy and cross nodulation. It confirmed the chickpea rhizobial group from Xinjiang as a novel species which was named as Mesorhizobium muleiense sp. nov..
     In order to find the evolution principle and ecological adaptation of rhizobia in natural conditions, four years after the original research, the chickpea nodules and soil samples from the original sites were collected again. Then housekeeping gene (recA), ecological adaptation and competitive nodulation tests were analyzed. It showed that recA sequences of the resampling chickpea rhizobia still kept well of the diversity and stability of recA gene types when compared with representative strains from M, muleiense four years ago; while recA sequences from the chickpea rhizobia trapped from soils in the condition of greenhouse were lack of the recA gene type related with CCBAU83939. However, no matter resampling or trapping, the chickpea rhizobia isolated both belonged to the single species of M. muleiense. It suggested that M. muleiense was the relatively stable species associated with chickpea in Xinjiang.
     Furthermore M. muleiense, isolated four years ago. M. mediterraneum and M. ciceri were tested for their soil adaptation and competitive nodulation. No matter in sterilized vermiculate or sterilized soil samples, M. ciceri showed higher nodule occupancy rates and M. mediterraneum followed behind. While when it comes to the unsterilized soil samples, M. muleiense both in inoculation and uninoculation treatments was the more competitive species and with higher nodule occupancy rates than the other two species.
引文
Abel, K., Deschmertzing, H., and Peterson, J.I. (1963). Classification of Microorganisms by Analysis of Chemical Composition. I. Feasibility of Utilizing Gas Chromatography. Journal of Bacteriololgy 85, 1039-1044.
    Achtman, M., and Wagner, M. (2008). Microbial diversity and the genetic nature of microbial species. Nature Reviews Microbiology 6,431-440.
    Acinas, S.G., Klepac-Ceraj, V., Hunt, D.E., et al. (2004). Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430,551-554.
    Alexandre, A., Brigido, C., Laranjo, M., et al. (2009). Survey of Chickpea Rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microbial Ecology 58,930-941.
    Alexandre, A., Laranjo, M., and Oliveira, S. (2006). Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods. Microbial Ecology 51,128-136.
    Alexandre, A., Laranjo, M., Young, J.P., et al. (2008). dnaJ is a useful phylogenetic marker for alphaproteobacteria. International Journal of Systematic and Evolutionary Microbiology 58,2839-2849.
    Alexandre, A., and Oliveira, S. (2011). Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiology Ecology 75,28-36.
    Allen, E.E., Tyson, G.W., Whitaker, R.J., et al. (2007). Genome dynamics in a natural archaeal population. Proceedings of National Academy of Sciences 104,1883-1888.
    Arsac, J.F., and Cleyet-Marel, J.C. (1986). Serological and ecological studies of Rhizobium spp. (Cicer arietinum L.) by immunofluorescence and ELISA technique:Competitive ability for nodule formation between rhizobium strains. Plant and Soil 94,411-423.
    Babber, S., Sheokand, S., and Malik, S. (2000). Nodule structure and functioning in chickpea (Cicer arietinum L.) as affected by salt stress. Journal of Biologia Plantarum 43,269-273.
    Baldy-Chudzik, K. (2001). Rep-PCR-a variant to RAPD or an independent technique of bacteria genotyping? A comparison of the typing properties of rep-PCR with other recognised methods of genotyping of microorganisms. Acta Microbiology Polonica 50,189-204.
    Becraft, E.D., Cohan, F.M., Kuhl, M., et al. (2011). Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park. Applied and Environmental Microbiology 77,7689-7697.
    Bradley, D.J., Butcher, G.W., Galfre, G., et al. (1986). Physical association between the peribacteroid membrane and lipopolysaccharide from the bacteroid outer membrane in Rhizobium-infected pea root nodule cells. Journal of Cell Science 85,47-61.
    Bras, C.P., Spaink, H.P., and Stuurman, N. Structure and function of nod factors. In:E.W. Triplett, eds. Prokaryotic nitrogen fixation-a model system for the anylysis of a biological process. Wymondham: Horizon Scientific Press,2000.365-383.
    Brencic, A., and Winans, S.C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiology and Molecular Biology Reviews 69,155-194.
    Brewin, N.J. (2004). Plant cell wall remodelling in the Rhizobiun-legume symbiosis. Critical Reviews in Plant Sciences 23,293-316.
    Brigido, C., Alexandre, A., Laranjo, M., et al. (2007). Moderately acidophilic mesorhizobia isolated from chickpea. Letters in Applied Microbiology 44,168-174.
    Brigido, C, and Oliveira, S. (2013). Most acid-tolerant chickpea mesorhizobia show induction of major chaperone genes upon acid shock. Microbial Ecology 65,145-153.
    Cadahia, E., Leyva, A., and Ruiz-Argueso, T. (1986). Indigenous plasmids and cultural characteristics of rhizobia nodulating chickpeas (Cicer arietinum L.). Archives of Microbiology 146,239-244.
    Cadillo-Quiroz, H., Didelot, X., Held, N.L., et at. (2012). Patterns of gene flow define species of thermophilic Archaea. PLoS Biology 10, e1001265.
    Cai, T., Cai, W., Zhang, J., Zheng, H., et al. (2009). Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Molecular Microbiology 73,507-517.
    Campbell, G.R., Reuhs, B.L., and Walker, G.C. (2002). Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Proceedings of National Academy of Sciences 99,3938-3943.
    Catalano, C.M., Lane, W.S., and Sherrier, D.J. (2004). Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis 25,519-531.
    Cebolla, A., Vinardell, J.M., Kiss, E., et al. (1999). The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. The EMBO Journal 18,4476-4484.
    Chen, W.F., Guan, S.H., Zhao, C.T., et al. (2008). Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges. FEMS Microbiology Letters 283,203-209.
    Chen. W.X., Wang, E.T., and Kuykendall, D. Genus Ⅵ. Mesorhizobium. In:Bergey's manual of systematic bacteriology. New York:Springer,2005.403-408.
    Chen, W.X., Yang, G.H., Li, J.L. (1988). Numberical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. International Journal of Systematic and Evolutionary Microbiology 38,392-397.
    Chenna, R., Sugawara, H., Koike, T., et al. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31,3497-3500.
    Cohan, F.M. (2002). Sexual isolation and speciation in bacteria. Genetica 116,359-370.
    Cohan, F.M. (2006). Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philosophical Transactions of the Royal Society B:Biological Sciences 361,1985-1996.
    Cohan, F.M., and Koeppel, A.F. (2008). The origins of ecological diversity in prokaryotes. Current Biology 18,R1024-1034.
    Coico, R. (2001). Gram staining. Current Protocols in Immunology Appendix 3:Appendix 3O. doi: 10.1002/0471142735. ima03os23.
    Cooper, J.E. (2007). Early interactions between legumes and rhizobia:disclosing complexity in a molecular dialogue. Journal of Applied Microbiology 103,1355-1365.
    Davies, B.W., and Walker, G.C. (2007). Disruption of sitA compromises Sinorhizobium meliloti for manganese uptake required for protection against oxidative stress. Journal of Bacteriology 189,2101-2109.
    Day, D.A., Poole, P.S., Tyerman, S.D., et al. (2001). Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cellular and Molecular Life Sciences 58,61-71.
    de Bruijn, F.J. (1992). Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Environmental Microbiology 58,2180-2187.
    de Bruijn, F.J., Rossbach, S., Schneider, M., et al. (1989). Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. Journal of Bacteriololgy 171,1673-1682.
    De Ley, J. (1970). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. Journal of Bacteriololgy 101,738-754.
    Didelot, X., and Maiden, M.C. (2010). Impact of recombination on bacterial evolution. Trends in Microbiology 18,315-322.
    Diouf, A., de Lajudie, P., Neyra, M., et al. (2000). Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). International Journal of Systematic and Evolutionary Microbiology 50,159-170.
    Donate-Correa, J., Leon-Barrios, M., Hernandez, M., et al. (2007). Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia. Systematic and Applied Microbiology 30,615-623.
    Doroghazi, J.R., and Buckley, D.H. (2010). Widespread homologous recombination within and between Streptomyces species. International Society for Microbial Ecology 4,1136-1143.
    Dowling, D.N., and Broughton, W.J. (1986). Competition for nodulation of legumes. Annual Review of Microbiology 40,131-157.
    Downie, J.A. Functions of rhizobial nodulation genes. In:H.P. Spaink, A. Kondorosi, and P.J.J. Hooykaus, eds. The Rhizobiaseae. Netherlands:Kluwer,1998.387-402.
    Dughri, M.H., and Bottomley, P.J. (1983). Effect of acidity on the composition of an indigenous soil population of Rhizobium trifolii found in nodules of Trifolium subterraneum L. Applied and Environmental Microbiology 46,1207-1213.
    Duschak, M. In:Zur Botanik des Talmud. Walluf(bei Wiesbaden):I. Neuer. Pest,1871.105-106.
    El Hadi, E.A., and Elsheikh, E.A.E. (1999). Effect of Rhizobium inoculation and nitrogen fertilization on yield and protein content of six chickpea(Cicer arietinum L.) cultivars in marginal soils under irrigation. Nutrient Cycling in Agroecosystems 54,57-63.
    Elsheikh, E.A.E., and Wood, M. (1990a). Salt effects on survival and multiplication of chickpea and soybean rhizobia. Soil Biology and Biochemistry 22,343-347.
    Elsheikh, E.A.E., and Wood, M. (1990b). Effect of salinity on growth, nodulation and nitrogen yield of chickpea(Cicer arietinum L.). Journal of Experimental Botany 41,1263-1269.
    Esechie, H.A., Al-Saidi, A., and Al-Khanjari, S. (2002). Effect of sodium chloride salinity on seedling emergence in chickpea. Journal of Agronomy and Crop Science 188,155-160.
    Evans. J., Barnet, Y.M., and Vincent, J.M. (1979). Effect of a bacteriophage on the colonisation and nodulation of clover roots by a strain of Rhizobium trifolii. Canadian Journal of Microbiology 25,968-973.
    Falush, D., Torpdahl, M., Didelot, X., et al. (2006). Mismatch induced speciation in Salmonella:model and data. Philosophical Transactions of the Royal Society B:Biological Sciences 361,2045-2053.
    Ferguson, G.P., Datta, A., Baumgartner, J., et al. (2004). Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proceedings of National Academy of Sciences 101,5012-5017.
    Firmin, J.L., Wilson, K.E., Carlson, R.W., et al. (1993). Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Molecular Microbiology 10,351-360.
    Fischer, H.M. (1994). Genetic regulation of nitrogen fixation in rhizobia. Microbiological Research 58, 352-386.
    Fischer, H.M., Babst, M., Kaspar, T., et al. (1993). One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. The EMBO Journal 12,2901-2912.
    Flowers, T.J., Gaur, P.M., Gowda, C.L., et al. (2010). Salt sensitivity in chickpea. Plant Cell Environment 33,490-509.
    Foucher, F., and Kondorosi, E. (2000). Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Molecular Biology 43,773-786.
    Fraser, C., Hanage, W.P., and Spratt, B.G. (2007). Recombination and the nature of bacterial speciation. Science 315,476-480.
    Gage, D.J. (2002). Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. Journal of Bacteriololgy 184,7042-7046.
    Gage, D.J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews 68,280-300.
    Galitski, T., Saldanha, A.J., Styles, C.A., et al. (1999). Ploidy regulation of gene expression. Science 285,251-254.
    Gao, J.L., Sun, J.G, Li, Y., et al. (1994). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province, China. International Journal of Systematic Bacteriology 44,151-158.
    Gao, J.L., Terefework, Z., Chen, W.X., et al. (2001). Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geogrophical regions of China. Journal of Biotechnology 91, 155-168.
    Gao, J.L., Turner, S.L., Kan, F.L., et al. (2004). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. International Journal of Systematic and Evolutionary Microbiology 54,2003-2012.
    Garg, N., and Singla, R. (2004). Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Journal of Plant Physiology 16,137-146.
    Gevers, D., Cohan, F.M., Lawrence, J.G., et al. (2005). Opinion:Re-evaluating prokaryotic species. Nature Reviews Microbiology 3,733-739.
    Gilles-Gonzalez, M.A., Ditta, G.S., and Helinski, D.R. (1991). A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350,170-172.
    Gilson, E., Clement, J.M., Brutlag, D., et al. (1984). A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. The EMBO Journal 3,1417-1421.
    Glazebrook, J., Ichige, A., and Walker, G.C. (1993). A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes and Development 7,1485-1497.
    Graham, P.H. (1964). The application of computer techniques to the taxonomy of the root-nodule bacteria of legumes. Journal of General Microbiology 35,511-517.
    Graham, P.H. (1992). Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology 38,475-484.
    Graham, P.H., Draeger, K.J., Ferrey, M.L., et al. (1994). Acid pH tolerence in strains of Rhizobium and Bradirhizobium, and initial studies on the basis for acid tolerence of Rhizobium tropic Umrl899. Canadian Journal of Microbiology 40,198-207.
    Graham, P.H., Sadowsky, M.J., Keyser, H.H., et al. (1991). Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. International Journal of Systematic Bacteriology 41,582-587.
    Grothuesi, D.T., B. (1991). New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species. Molecular Microbiology 5,2763-2776.
    Gu, C.T., Wang, E.T., Tian, C.F., et al. (2008). Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. International Journal of Systematic and Evolutionary Microbiology 58,1364-1368.
    Guan, S.H., Chen, W.F., Wang, E.T., et al. (2008). Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. International Journal of Systematic and Evolutionary Microbiology 58,2646-2653.
    Gurtler, V., and Mayall, B.C. (2001). Genomic approaches to typing, taxonomy and evolution of bacterial isolates. International Journal of Systematic and Evolutionary Microbiology 57,3-16.
    Gurtler, V.S., V. A. (1996). New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142,3-16.
    Han, L., Wang, E., Han, T., et al. (2009). Unique community structure and biogeography of soybean rhizobia in the saiine-alkaline soils of Xinjiang, China. Plant and Soil 324,291-305.
    Han, T.X., Han, L.L., Wu, L.J., et al. (2008a). Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology 58,2610-2618.
    Han, T.X., Wang, E.T., Han, L.L., et al. (2008b). Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Systematic and Applied Microbiology 37,287-301.
    Han, T.X., Wang, E.T., Wu, L.J., et al. (2008c). Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology 58,1693-1699.
    Hanage, W.P., Fraser, C., and Spratt, B.G. (2005). Fuzzy species among recombinogenic bacteria. BMC Biology 3,6.
    Hanage, W.P., Spratt, B.G., Turner, K.M., et al. (2006). Modelling bacterial speciation. Philosophical Transactions of the Royal Society B:Biological Sciences 361,2039-2044.
    Handelsman, J., and Brill, W.J. (1985). Erwinia herbicola isolates from alfalfa plants may play a role in nodulation of alfalfa by Rhizobium meliloti. Applied and Environmental Microbiology 49,818-821.
    Harrison, S.P., Mytton, L.R., Skot, L., et al. (1992). Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Canadian Journal of Microbiology 38, 1009-1015.
    Hartl, F.U., and Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural and Molecular Biology 16,574-581.
    Heidstra, R., Yang, W.C., Yalcin, Y., et al. (1997). Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124,1781-1787.
    Heirridge, D.F., Peoples, M.B., and Boddey, R.M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311,1-18.
    Higgins, C.F., Ames, G.F., Barnes, W.M., et al. (1982). A novel intercistronic regulatory element of prokaryotic operons. Nature 298,760-762.
    Hou, B.C., Wang, E.T., Li, Y., et al. (2009). Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. International Journal of Systematic and Evolutionary Microbiology 59,3051-3057.
    Huber,I., Selenska-Pobell, S. (1994). Pulsed-field gel electrophoresis-fingerprinting, genome size estimation and rrn loci number of Rhizobium galegae. Journal of Applied Microbiology 77,528-533.
    Hulton, C.S., Higgins, C.F., and Sharp, P.M. (1991). ERIC sequences:a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology 5,825-834.
    Hungria, M., and Vargas, M.A.T. (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research 65,151-164.
    Hunt, D.E., David, L.A., Gevers, D., et al. (2008). Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320,1081-1085.
    Hunt, S., and Layzell, D.B. (1993). Gas exchange of legume nodules and the regulation of nitrogenase activity. Annual Review of Plant Biology 44,483-511.
    James, A.T., and Martin, A.J. (1952). Gas-liquid partition chromatography:the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochemical Journal 50,679-690.
    Jarvis, B.D.W., Berkum, P.VAN., Chen, W.X., et al. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. International Journal of Systematic Bacteriology 47,895-898.
    Jones, K.M., Kobayashi, H., Davies, B.W., et al. (2007). How rhizobial symbionts invade plants:the Sinorhizobium-Medicago model. Nature Reviews Microbiology 5,619-633.
    Jordan, D.C. Familly Ⅲ, Rhizobiaceae Conn 1938. In:J.G. Holt, eds. Bergey's Manual of Systematic Bacteriology. Baltimore:The Williams & Wilkins Co.,1984.234-256.
    Jordan, D.C, and Allen, O.N. Familly Ⅲ Rhizobiaceae Conn 1938. In:R.E. Buchanan, and N.E. Gibbons, eds. Bergey's Mannual of Deterninative Bacteriology,8th ed. Baltimore:The Williams & Wilkins Co.,1974.261-264.
    Jukanti, A.K., Gaur, P.M., Gowda, C.L., et al. (2012). Nutritional quality and health benefits of chickpea(Cicer arietinum L.):a review. British Journal of Nutrition 108, S11-26.
    Kamicker, B.J., and Brill, W.J. (1986). Identification of Bradyrhizobium japonicum Nodule Isolates from Wisconsin Soybean Farms. Applied and Environmental Microbiology 51,487-492.
    Kamst, E., Pilling, J., Raamsdonk, L.M., et al. (1997). Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. Journal of Bacteriology 179,2103-2108.
    Kamst, E., van der Drift, K.M., Thomas-Oates, J.E., et al. (1995). Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. Journai of Bacteriology 177, 6282-6285.
    Kereszt, A., Slaska-Kiss, K., Putnoky, P., et al. (1995). The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for "respiratory" nitrate reduction ex planta and for nitrogen fixation during symbiosis. Molecular and General Genetics 247,39-47.
    Koeppel, A., Perry, E.B., Sikorski, J., et al.. (2008). Identifying the fundamental units of bacterial diversity:a paradigm shift to incorporate ecology into bacterial systematics. Proceedings of National Academy of Sciences 105,2504-2509.
    Kucuk, C.K., M (2008). Preliminary characterization of Rhizobium strains isolated from chickpea nodules. African Journal of Bitotechnolgy 7,772-775.
    Kumar, S., and Promila, K. (1983). Effects of chloride and sulfate types of salinization and desalinization on nodulation and nitrogen-fixation in chickpea. Indian Journal of Plant Physiology 26, 396-401.
    L'Taief, B., Sifi, B., Gtari, M., et al. (2007). Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Canadian Journal of Microbiology 53,427-434.
    Ladizinsky, G. A new Cicer from Turkey. In:Notes from the Royal Botanic Garden, Edinburgh.1975. 54:201-202.
    Laguerre, G., Allard, M.R., Revoy, F., et al. (1994). Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology 60,56-63.
    Laguerre, G., Louvrier, P., Allard, M.R., et al. (2003). Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Applied and Environmental Microbiology 69,2276-2283.
    Laguerre, G., Mavingui, P., Allard, M.R., et al. (1996). Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions:application to Rhizobium leguminosarum and its different biovars. Applied and Environmental Microbiology 62,2029-2036.
    Laguerre, G., Nour, S.M., Macheret, V., et al. (2001). Classification of rhizobia based on nodC and nifli gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147,981-993.
    Laguerre, G., van Berkum, P., Amarger, N., et al. (1997). Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Applied and Environmental Microbiology 63,4748-4758.
    Lan, R., and Reeves, P.R. (2000). Intraspecies variation in bacterial genomes:The need for a species genome concept. Trends in Microbiology 8,396-401.
    Laranjo, M., Alexandre, A., Rivas, R., et al. (2008). Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiology Ecology 66,391-400.
    Laranjo, M., Branco, C., Soares, R., et al. (2002). Comparison of chickpea rhizobia isolates from diverse Portuguese natural populations based on symbiotic effectiveness and DNA fingerprint. Journal of Applied Microbiology 92,1043-1050.
    Laranjo, M., Machado, J., Young, J.P., et al. (2004). High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiology Ecology 48,101-107.
    Laranjo, M., Rodrigues, R., Alho, L., et al. (2001). Rhizobia of chickpea from southern portugal: symbiotic efficiency and genetic diversity. Journal of Applied Microbiology 90,662-667.
    Laranjo, M., Young, J.P., and Oliveira, S. (2012). Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Systematic and Applied Microbiology 35,359-367.
    Lauter, D.J., Munns, D.N., and Clarkin, K.L. (1981). Salt response of chickpea as influenced by N supply. Agronomy Journal 73,961-966.
    Lu, Y.L., Chen, W.F., Han, L.L., et al. (2009). Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. International Journal of Systematic and Evolutionary Microbiology 59,3006-3011.
    Librado, P. and Rozas, J. (2009). DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25,1451-1452.
    Lie, T., Goktan, D., Engin, M., et al. (1987). Co-evolution of the legume-Rhizobium association. Plant and Soil 100,171-181.
    Limpens, E., Mirabella, R., Fedorova, E., et al. (2005). Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DM12. Proceedings of National Academy of Sciences 102,10375-10380.
    Lin, D.X., Chen, W.F., Wang, F.Q., et al. (2009). Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. International Journal of Systematic and Evolutionary Microbiology 59.1919-1923.
    Lodwig, E.M., Hosie, A.H., Bourdes, A., et al. (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422,722-726.
    Lu, Y.L., Chen, W.F., Wang, E.T., et al. (2009). Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. International Journal of Systematic and Evolutionary Microbiology 59,3012-3018.
    Lukacsi, G., Tako, M., and Nyilasi, I. (2006). Pulsed-field gel electrophoresis:a versatile tool for analysis of fungal genomes. A review. Acta Microbiologica et Immunologica Hungarica 53,95-104.
    Luo, C., Walk, S.T., Gordon, D.M., et al. (2011). Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proceedings of National Academy of Sciences 108,7200-7205.
    Maatallah, J., Berraho, E.B., Munoz, S., et al. (2002). Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. Journal of Applied Microbiology 93,531-540.
    Majewski, J. (2001). Sexual isolation in bacteria. FEMS Microbiology Letters 199,161-169.
    Mallet, J. (2008). Hybridization, ecological races and the nature of species:empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B:Biological Sciences 363,2971-2986.
    Martens, M., Dawyndt, P., Coopman, R., et al. (2008). Advantages of multilocus sequence analysis for taxonomic studies:a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). International Journal of Systematic and Evolutionary Microbiology 58,200-214.
    Martin, B., Humbert, O., Camara, M., et al. (1992). A highly conserved repeated DNA element located in the chromosome of Streptococcuspneumoniae. Nucleic Acids Research 20,3479-3483.
    Materon, L.A., and Hagedorn, C. (1982). Competitiveness of Rhizobium trifolii strains associated with red clover (Trifolium pratense L.) in Mississippi soils. Applied and Environmental Microbiology 44, 1096-1101.
    McNeil, D.L. (1982). Variations in Ability of Rhizobium japonicum strains to nodulate soybeans and maintain fixation in the presence of nitrate. Applied and Environmental Microbiology 44,647-652.
    Mergaert, P., Uchiumi, T., Alunni, B., et al. (2006). Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proceedings of National Academy of Sciences 103, 5230-5235.
    Minder, A.C., Narberhaus, F., Babst, M., et al. (1997). The dnaKJ operon belongs to the sigma32-dependent class of heat shock genes in Bradyrhizobium japonicum. Molecular and General Genetics 254,195-206.
    Minnikin, D.E., O'donnell, A. G., Goodfellow, M., et al (1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of Microbiological Methods 2,233-241.
    Moffett, M.L., and Colwell, R.R. (1968). Adansonian analysis of the Rhiiobiaceae. Journal of General Microbiology 51,245-266.
    Mougel, C., Thioulouse, J., Perriere, G., et al. (2002). A mathematical method for determining genome divergence and species delineation using AFLP. International Journal of Systematic and Evolutionary Microbiology 52,573-586.
    Munevar, F., and Wollum, A.G. (1981). Growth of Rhizobium japonicum Strains at Temperatures Above 27 degrees C. Applied and Environmental Microbiology 42,272-276.
    Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59,651-681.
    Nandasena, K.G., O'Hara G, W., Tiwari, R.P., et al. (2006). Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant. Applied and Environmental Microbiology 72,7365-7367.
    Nandasena, K.G., O'Hara, G.W., Tiwari, R.P., et al. (2007a). In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environmental Microbiology 9,2496-2511.
    Nandasena, K.G., O'Hara, G.W., Tiwari, R.P., et al. (2007b). Mesorhizobium ciceri biovar biserrulae, a novel biovar nodulating the pasture legume Biserrula pelecinus L. International Journal of Systematic and Evolutionary Microbiology 57,1041-1045.
    Nandwal, A.S., Kukreja, S., Kumar, N., et al. (2007). Plant water status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in (Cicer arietinum L.) nodules as affected by short-term salinization and desalinization. Journal of Plant Physiology 164,1161-1169.
    Nandwani, R., and Dudeja, S.S. (2009). Molecular diversity of a native mesorhizobial population of nodulating chickpea(Cicer arietinum L.) in Indian soils. Journal of Basic Microbiology 49,463-470.
    Nick, G.A.L., K. (1994). Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomic DNA of Rhizozium galegae strains and to identify the DNA obtained by sonication liquid cultures and root nodules. Systematic and Applied Microbiology 17,165-237.
    Nour, S.M., Cleyet-Marel, J.C., Normand, P., et al. (1995). Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. International Journal of Systematic Bacteriology 45,640-648.
    Nour, S.M., Fernandez, M.P., Normand, P., et al. (1994). Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas{Cicer arietinum L.). International Journal of Systematic Bacteriology 44,511-522.
    Oakley, B.B., Carbonero, F., van der Gast, C.J., et al. (2010). Evolutionary divergence and biogeography of sympatric niche-differentiated bacterial populations. International Society for Microbial Ecology 4,488-497.
    Oldroyd, G.E., and Downie, J.A. (2004). Calcium, kinases and nodulation signalling in legumes. Nature Reviews Molecular Cell Biology 5,566-576.
    Ott, T., van Dongen, J.T., Gunther, C., et al. (2005). Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current Biology 15, 531-535.
    Peck, M.C., Fisher, R.F., and Long, S.R. (2006). Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. Journal of Bacteriology 188,5417-5427.
    Perret, X., Staehelin, C., and Broughton, W.J. (2000). Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews 64,180-201.
    Poole, P., and Allaway, D. (2000). Carbon and nitrogen metabolism in Rhizobium. Advances in Microbial Physiology 43,117-163.
    Power, E.G. (1996). RAPD typing in microbiology-a technical review. Journal of Hospital Infection 34, 247-265.
    Prell, J., and Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14,161-168.
    Rai, R., Dash, P.K., Mohapatra, T., and Singh, A. (2012). Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Indian Journal of Experimental Biology 50,340-350.
    Rangaraj, P., Johnson, C.R., Shah, V.K., et al. Biosynthesis of the iron-molybdenum and iron-vanadium cofactors of the nif- and vnf- encoded nitrogenases. In:E.W. Triplett, ed. Prokaryotic nitrogen fixation-a model system for the anylysis of a biological process. Wymondham, UK:Horizon Scientific Press, 2000.55-79.
    Rao, D.L.N., Giller, K.E., Yeo, A.R., et al. (2002). The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum L.). Annuals of Botany 89,563-570.
    Rao, D.L.N., and Sharma, P.C. (1995). Effectiveness of rhizobial strains for chickpea under salinity stress and recovery of nodulation on desalinization. Indian Journal of Experimental Biology 33,500-504.
    Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany 57,1017-1023.
    Retchless, A.C., and Lawrence, J.G. (2010). Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proceedings of National Academy of Sciences 707,11453-11458.
    Rivas, R., Laranjo, M., Mateos, P.F., et al. (2007a). Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Letters in Applied Microbiology 44,412-418.
    Rivas, R., Laranjo, M., Mateos, P.F., et al. (2007b). Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Letters in Applied Microbiology 44,412-418.
    Robertson, J.G., and Lyttleton, P. (1984). Division of peribacteroid membranes in root nodules of white clover. Journal of Cell Science 69,147-157.
    Roche, P., Maillet, F., Plazanet, C., et al. (1996). The common nodABC genes of Rhizobium meliloti are host-range determinants. Proceedings of National Academy of Sciences 93,15305-15310.
    Rodrigues, C.S., Laranjo, M., and Oliveira, S. (2006). Effect of heat and pH stress in the growth of chickpea mesorhizobia. Current Microbiology 53,1-7.
    Rodriguez-Quinones, F., Maguire, M., Wallington, E.J., et al. (2005). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Archives of Microbiology 183,253-265.
    Romdhane, B.S., Tajini, F., Trabelsi, M., et al. (2007a). Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulating chickpea (Cicer arietinum L.) in Tunisia. World Journal of Microbiology and Biotechnology 23,1195-1201.
    Romdhane, S.B., Aouani, M.E., and Mhamdi, R. (2007b). Inefficient nodulation of chickpea (Cicer arietinum L.) in the arid and Saharan climates in Tunisia by Sinorhizobium meliloti biovar medicaginis. World Journal of Microbiology and Biotechnology 23,1195-1201.
    Rupela, O. Nodulation and nitrogen fixation in chickpea. In:M. Saxena, and K.B. Singh, eds. The chickpea. Wallingford, UK:CAB International,1987.191-206.
    Rupela, O.P., and Sudarshana, M.R. (1990). Displacement of native rhizobia nodulating chickpea (Cicer arietinum L.) by an inoculant strain through soil solarization. Biology and Fertility of Soils 70(3),207-212.
    Saikia, S.P., and Jain, V. (2007). Biological nitrogen fixation with non-legumes:An achievable target or a dogma? Current Science 92,317-322.
    Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. In:MIDI Technical Note. Newark, DE:MIDI Incorporated,1990.101
    Sauviac, L., Philippe, H., Phok, K., et al. (2007). An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. Journal of Bacteriology 189,4204-4216.
    Saxena, A.K., and Rewari, R.B. (1992). Differential responses of chickpea (Cicer arietinum L.)-Rhizobium combinations to saline soil conditions. Biology and Fertility of Soils 13,31-34.
    Schloss, P.D., Westcott, S.L., Ryabin, T., et al. (2009). Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75,7537-7541.
    Schultze, M., Quiclet-Sire, B., Kondorosi, E., et al. (1992). Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proceedings of National Academy of Sciences 89,192-196.
    Sekhon, B.S., Sandhu, H.S., Dhillon, K.S., et al. (1987). Effect of salinity and nitrogen on nitrogenase and nitrate reductase activity in chickpea. Indian Journal of Ecology 14,289-291.
    Sellstedt, A., Wullings, B., Nystrom, U., et al. (1992). Identification of Casuarina-Frankia strains by use of polymerase chain reaction (PCR) with arbitrary primers. FEMS Microbiology Letters 72,1-5.
    Serraj, R., Krishnamurthy, L., and Upadhyaya, H.D. (2004). Screening chickpea mini-core germplasm for tolerance to soil salinity. International Chickpea and Oigeonpea Newsletter 11,29-32.
    Shapiro, A.L., and Maizel, J.V., Jr. (1969). Molecular weight estimation of polypeptides by SDS-polyacrylamide gel electrophoresis:further data concerning resolving power and general considerations. Analytical Biochemistry 29,505-514.
    Shapiro, A.L., Vinuela, E., and Maizel, J.V., Jr. (1967). Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and Biophysical Research Communications 28,815-820.
    Sharpies, G.J., and Lloyd, R.G. (1990). A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic acids Research 18,6503-6508.
    Sheokand, S., Dhandi, S., and Swaraj, K. (1995). Studies on nodule functioning and hydrogen peroxide scavenging enzymes under salt stress in chickpea nodules. Plant Physiology and Biochemistry 33,561-566.
    Siddique, K.H., Johansen, C., Kumarrao, J.V.D.K., et al. Legumes in sustainable cropping systems. In: The fourth international food legumes research conference. New Delhi, India,2005.
    Siddique, K.H., Loss, S.P., Regan, K.L., et al. (1999). Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Australian Journal of Agricultural Research 50,375-387.
    Sikorski, J., and Nevo, E. (2005). Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at "Evolution Canyons" Ⅰ and Ⅱ, Israel. Proceedings of National Academy of Sciences 102,15924-15929.
    Singh, B., Singh, B.K., Kumar, J., et al. (2005). Effects of salt stress on growth, nodulation, and nitrogen and carbon fixation of ten genetically diverse lines of chickpea(Cicer arielinum L.). Australian Journal of Agricultural Research 56,491-495.
    Sneath, P.H. (1957). The application of computers to taxonomy. Journal of General Microbiology 17, 201-226.
    Sneath, P.H. Numberical taxonomy. In:N.R. Krieg, and J.G. Holt, eds. Bergey's Manual of Systematic Bacteriology. Baltimore:The Williams & Wilkins Corporation,1984.5-7.
    Sneath, P.H.A., Sokal, R.R. (1973). The principles and practice of numberical classification. In: Numberical taxonomy. San Francisco:Freeman,1973.573.
    Sobral, B.W., Honeycutt, R.J., and Atherly, A.G. (1991). The genomes of the family Rhizobiaceae:size, stability, and-rarely cutting restriction endonucleases. Journal of Bacteriology 173,704-709.
    Soltani, H. (2002). Midwifery research:the past, present and future. RCM Midwives 5,384-388.
    Somasegaran, P., and Bohlool, B.B. (1990). Single-strain versus multistrain inoculation:effect of soil mineral N availability on rhizobial strain effectiveness and competition for nodulation on chick-pea, soybean, and dry bean. Applid and Environmental Microbiology 56,3298-3303.
    Somasegaran, P., and Hoben, H.J. Methods in legume-Rhizobium technology. In:Handbook for rhizobia. New York:Spinger-Verlag,1994.450.
    Soussim, M., Lluch, C., and Ocana, A. (1999). Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arietinum L.) cultivars under salt stress. Journal of Experimental Botany 50,1701-1708.
    Spaink, H.P. (1995). The molecular basis of infection and nodulation by rhizobia:the ins and outs of sympathogenesis. Annual Review of Phytopathology 33,345-368.
    Sullivan, J.T., Eardly, B.D., van Berkum, P., et al. (1996). Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Applied and Environmental Microbiology 62,2818-2825.
    Sullivan, J.T., and Ronson, C.W. (1998). Evolution of rhizobia by acquisition of a 500kb symbiosis island that integrates into a phe-tRNA gene. Proceedings of National Academy of Sciences 95,5145-5149.
    Tamura, K., Dudley, J., Nei, M., et al. (2007). MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24,1596-1599.
    Tamura, K., Peterson, D., Peterson, N., et al. (2011). MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28,2731-2739.
    Tan, Z.Y., Hurek. T., Vinuesa, P., et al. (2001). Specific detection of Bradirhizoibum and Rhizobium strains colonizaing rice (Oryza sativa) roots by 16S-23S rizosomal DNA intergenic spacer-targeted PCR. Applied and Environmental Microbiology 67,3655-3664.
    Tan, Z.Y., Xu, X.D., Wang, E.T., et al. (1997). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. International Journal of Systematic Bacteriology 47, 874-879.
    Tejera, N.A., Soussi, M., and Lluch, C. (2006). Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany 58,17-24.
    Terefework, Z., Kaijalainen, S., and Lindstrom, K. (2001). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega offlcinalis. Journal of Biotechnology 91,169-180.
    Terefework, Z., Nick, G., Suomalainen, S., et al. (1998). Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. International Journal of Systematic Bacteriology 48 (Pt 2),349-356.
    Thies, J.E., Bohlool, B.B., and Singleton, P.W. (1992). Environmental effects on competition for nodule occupancy between introduced and indigenous rhizobia and among introduced strains. Canadian Journal of Microbiology 38,493-500.
    Thomas-Oates, J., Bereszczak, J., Edwards, E., et al. (2003). A catalogue of molecular, physiological and symbiotic properties of soybean-nodulating rhizobial strains from different soybean cropping areas of China. Systematic and Applied Microbiology 26,453-465.
    Thruman, N.P., Lewis, D.M., and Gareth Jones, D. (1985). The relationship of plasmid number to growth, acid tolerance and symbiotic efficiency in isolates of Rhizobium trifolii. Journal of Applied Microbiology 58,1-6.
    Tian, C, Wang, E., Wu, L., et al. (2008a). Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. International Journal of Systematic and Evolutionary Microbiology 58,2871.
    Tian, C.F., Wang, E.T., Wu, L.J., et al. (2008b). Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. International Journal of Systematic and Evolutionary Microbiology 58,2871-2875.
    Timmers, A.C., Auriac, M.C., and Truchet, G. (1999). Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126,3617-3628.
    Van der Maesen, L.J.G. Origin, history and taxonomy of chickpea. In:M.C.A.S. Saxena, K.B., eds. The chickpea. Wallingford, Oxon, UK:CAB International,1987.11-34.
    Vandamme, P., Pot, B., Gillis, M., et al. (1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiology and Molecular Biology Reviews 60,407-438.
    Vaneechoutte, M. (1996). DNA fingerprinting techniques for microorganisms. A proposal for classification and nomenclature. Molecular Biotechnology 6,115-142.
    Varshney, R.K., Song, C., Saxena, R.K., et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology 31,240-246.
    Vasse, J., de Billy, F., Camut, S., et al. (1990). Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. Journal of Bacteriology 172,4295-4306.
    Vauterin, L.a.V., P. (1992). Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. European Microbiology 1,37-41.
    Vinardell, J.M., Fedorova, E., Cebolla, A., et al. (2003). Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. Plant Cell 15,2093-2105.
    Vincent, J.M., Nutman, P.S., and Skinner, F.A. The identification and classfication of Rhizobium. In: F.A.L. Skinner, D.W., eds. Identification methods for microbiologists. New York, London:Academic Press,1979.49-69.
    Vinuesa, P., Silva, C., Lorite, M.J., et al. (2005a). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Systematic and Applied Microbiology 28,702-716.
    Vinuesa, P., Silva, C., Werner, D., et al. (2005b). Population genetics and phylogenetic inference in bacterial molecular systematics:the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Molecular Phylogenetics and Evolution 34,29-54.
    Vos, M., and Didelot, X. (2009). A comparison of homologous recombination rates in bacteria and archaea. International Society for Microbial Ecology 3,199-208.
    Vulic, M., Dionisio, F., Taddei, F., et al. (1997). Molecular keys to speciation:DNA polymorphism and the control of genetic exchange in enterobacteria. Proceedings of National Academy of Sciences 94, 9763-9767.
    Wang, E.T., van Berkum, P., Beyene, D., et al. (1998). Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. International journal of Systematic Bacteriology 48,687-699.
    Wasson, A.P., Pellerone, F.I., and Mathesius, U. (2006). Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18,1617-1629.
    Wayne, L.G., and Diaz, G.A. (1987). Intrinsic catalase dot blot immunoassay for identification of Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium intracellulare. Journal of Clinical Microbiology 25,1687-1690.
    Weber, K., and Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sul fate-poly acrylamide gel electrophoresis. The Journal of Biological Chemistry 244,4406-4412.
    Wells, D.H., and Long, S.R.. (2002). The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Molecular Microbiology 43,1115-1127.
    Wernegreen, J.J., and Riley, M.A. (1999). Comparison of the evolutionary dynamics of symbiotic and housekeeping loci:A case for the genetic coherence of rhizobial lineages. Molecular Biology and Evolution 16,98-113.
    Willems, A., Coopman, R., and Gillis, M. (2001). Comparison of sequence analysis of 16S-23S rDNA spacer regions, AFLP analysis and DNA-DNA hybridizations in Bradyrhizobium. International Journal of Systematic and Evolutionary Microbiology 51,623-632.
    Willems, A., Doignon-Bourcier, F., Coopman, R., et al. (2000). AFLP fingerprint analysis of Bradyrhizobium strains isolated from Faidherbia albida and Aeschynomene species. Systematic and Applied Microbiology 23,137-147.
    Williams, J.G., Kubelik, A.R., Livak, K.J., et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18,6531-6535.
    Willis, L.B., and Walker, G.C. (1998). The phbC (poly-beta-hydroxybutyrate synthase) gene of Rhizobium(Sinorhizobium) meliloti and characterization of phbC mutants. Canadian Journal of Microbiology 44,554-564.
    Woese, C.R. (1987). Bacterial evolution. Microbiology and Molecular Biology Reviews 51,221-271.
    Woods, C.R., Versalovic, J., Koeuth, T., et al. (1993). Whole-cell repetitive element sequence-based polymerase chain reaction allows rapid assessment of clonal relationships of bacterial isolates. Journal of Clinical Microbiology 31,1927-1931.
    Yang, W.C., Horvath, B., Hontelez, J., et al. (1991). In situ localization of Rhizobium mRNAs in pea root nodules:nifA and nifH localization. Molecular Plant-Microbe Interactions 4,464-468.
    Zabeau, M., Vos, P. Selective restriction fragment amplification:a general method for DNA fingerprinting. European patent. EP0534858B2,1992-09-24.
    Zhang, J.J., Liu, T.Y., Chen, W.F., et al. (2012a). Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. International Journal of Systematic and Evolutionary Microbiology 62,2737-2742.
    Zhang, J.J., Lou, K., Jin, X., et al. (2012b). Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant and Soil 353,123-134.
    Zhang, X.X., Turner, S.L., Guo, X.W., et al.. (2000). The common nodulation genes of Astragalus sinicus rhizobia are conserved despite chromosomal diversity. Applied and Environmental Microbiology 66,2988-2995.
    Zhang, Y.M., Li, Y., Jr., Chen, W.F., et al. (2011). Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean(Glycine max L.) nodules. International Journal of Systematic and Evolutionary Microbiology 62,1951-1957.
    Zhao, C.T., Wang, E.T., Zhang, Y.M., et al. (2013). Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. International Journal of Systematic and Evolutionary Microbiology 62,2180-2186.
    陈文新,陈文峰.发挥生物固氮作用减少化学氮肥用量.中国农业科技导报,2004,6(6):3-6
    陈文新,汪恩涛.中国根瘤菌.北京:科学出版社,2011,63-130
    巨晓棠,张福锁.氮肥利用率的要以及其提高的技术措施.科学导报,2003,4(5):51-54
    刘春生,杨守祥.土壤农业化学分析.北京:中国农业出版社,1997
    卢杨利.我国内蒙、山西和云南地区锦鸡儿根瘤菌的多相分类、系统发育和生物地理学研究:[博士学位论文].北京:中国农业大学,2009
    王风芹.合欢、金合欢和银合欢根瘤菌多相分类与系统发育研究:[博士学位论文].北京:中国农业大学,2005
    闫洁.鹰嘴豆可提取抗肿瘤蛋白质和多肽.中国科学报,2012,5562:2
    张延明.大豆根瘤菌生物地理分布的生态学特征及基因组学研究:[博士学位论文].北京:中国农业大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700