球孢白僵菌的繁殖与自然群体交配型关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球孢白僵菌是最广泛和最重要的虫生真菌,在持续控制害虫和维护生态平衡方面具不可替代的作用,故倍受国内外生物防治界的关注。由于球孢白僵菌以无性繁殖为主导的生殖方式和我们关于其有性型的发现,引发了其无性型流行的原因和有性型在自然界发生的分子机理的问题。本研究通过PCR-DGGE技术结合Bloc和TEF位点序列分析,对国内各有性型、无性型发生地的球孢白僵菌系统发育种进行鉴定,通过交配型基因(Mat)的扩增和SSR分子标记,对这些种群的交配型类型和基因流做深入分析,拟揭示球孢白僵菌有性型发生和无性型流行与自然种群交配型之间的关系,进一步分析不同的球孢白僵菌系统发育种存在有性型的可能性,最终为阐明该菌有性型发生及无性型流行的分子机理提供理论依据。主要结果如下:
     1、基于Bloc和TEF位点的序列,分别对国内6个地区共582株球孢白僵菌进行了系统发育分析。结果表明,随着地理位置和环境条件的不同,球孢白僵菌系统发育种在各地区的分布有很大差异。各地区系统发育种的数量由多到少依次顺序是鼎湖山(4)>漫水河和牯牛降(3)>宽阔水和琅琊山(2)>净月潭(1)。综合来看,这些菌株可划分为5个不同的系统发育种,分别是Europe/N. Africa1(271株),AFNEO_1(27株),Asia3(60株),Asia4(212株)和N. America2(12株)。其中Asia4在6个地区均有分布,菌株数量占总数的36.4%,仅次于Europe/N. Africa1,表明该系统种在国内的分布区域很广。46.6%的菌株属于有性发生系统Europe/N.Africa1,在牯牛降、漫水河、琅琊山、宽阔水地区发现,这4个地区该系统种的菌株数量分别为120、61、60和30株。5%的菌株属于AFNEO_1,只在牯牛降和鼎湖山地区发现,分别为4和23株。其寄主范围相对较窄,多数侵染鞘翅目昆虫,暗示着菌株和寄主间可能存在潜在的关联。10%的菌株属于Asia3,只在漫水河和鼎湖山地区发现,分别为23和37株。该系统种全部由中国不同地区的菌株构成,为中国特有系统种。仅有2%的菌株属于于N.America2,仅在鼎湖山地区发现,而且均分离自土壤。
     2、对6个地区球孢白僵菌菌株交配型数量和比例进行了研究。582株球孢白僵菌菌株中存在两种交配型,MAT1或MAT2,不存在含有两种交配型基因的菌株,这些菌株的交配模式是异宗配合。从系统发育种的水平上看,大部分地区球孢白僵菌系统种内的交配型都不缺失(除净月潭)。有性型发生系统种Europe/N.Africa1的交配型比例都较均匀,分别为51:69(牯牛降)、37:24(漫水河)、39:21(琅琊山)、15:15(宽阔水),在净月潭和鼎湖山没有发现此系统种。不仅Europe/N. Africa1的交配型比例较均衡(142:129),但大部分无性系统种内的交配型比例也并不悬殊。AFNEO_1、Asia3和Asia4内的比值分别为11:16,33:27和125:87。鼎湖山地区的N. America2交配型比例不均衡(10:2)。就某一地区而言,有些系统种的交配型比例是不均衡的,如:Asia4在净月潭和鼎湖山的比例分别为39:1和2:7。因此在球孢白僵菌有性型产生的过程中交配型比例均匀只是必要条件,而不是充分条件。
     3、对6个地区球孢白僵菌群体的遗传多样性进行了初步调查。结果显示各地区球孢白僵菌种群Nei’s基因多样性指数(h)和Shannon信息指数(Is)由大到小依次为琅琊山(h=0.290,Is=0.449)>净月潭(h=0.260,Is=0.402)>漫水河(h=0.226,Is=0.361)>鼎湖山(h=0.213,Is=0.349)>宽阔水(h=0.175,Is=0.294)>牯牛降(h=0.165,Is=0.271)。从有性系统种和其他系统种的遗传多样性比较来看,各地区Europe/N. Africa1系统种的遗传多样性水平往往不是最高的。可能的原因是在采集样品的过程中,取样过于集中于球孢虫草发生的核心区域,生态环境差异小,因此造成了种群的遗传多样性较低。
     4、研究了5个地区球孢白僵菌系统发育种间的基因流和遗传分化。从数据来看,存在有性型系统种的4个地区各系统发育种间的基因交流明显。其中宽阔水地区基因流最大(Nm=6.8987),而琅琊山最小(Nm=1.2126)。琅琊山地区(Gst=0.1709)各系统发育种间表现为高度分化,牯牛降(Gst=0.1447)和漫水河地区(Gst=0.0889)表现为中度分化,宽阔水地区(Gst=0.0350)各群体间则不存在分化。而鼎湖山地区各系统发育种的基因分化系数值(Gst=0.3157)超过了Wright重度分化阈值0.25,其中N. America产生的遗传分化很明显,可能是一个不同的生物种。
     5、综合分析发现,牯牛降和漫水河地区确实存在球孢虫草发生的必要条件,而宽阔水和琅琊山地区的球孢虫草资源有待进一步调查。依据Europe/N.Africa1系统种的交配型比例和遗传多样性指标,各地有性型产生的可能性由高到低次序为琅琊山>牯牛降>宽阔水>漫水河。净月潭的系统种Asia4内MAT1/2=39:1,互补交配型的缺失会限制有性重组发生。鼎湖山发现的4个系统种均为无性系统种,因此无有性生殖。以上研究明确了存在有性系统发育种和交配型比例均匀是发生有性型的必要条件。
     6、基于核基因间区Bloc位点对中国不同地区的189株白僵菌进行了物种多样性分析,发现国内存在6个白僵菌种。分别为B. bassiana, B. brongniartii, B.australis, B. asiatica, B. pseudobassiana和B. caledonica。其中B. australis为国内新纪录种。这是首次对中国白僵菌属做出系统的分类研究。证明通过Bloc位点的引入,可以对白僵菌属内菌株进行准确鉴定。
Beauveria bassiana is one of the most important and common species inentomopathogenic fungi. It plays important roles in regulating densities of pestpopulation and maintaining ecological balances in nature, and received considerableattention as a microbial control agent from many biocontrol researchers.Predominantly clonal reproduction for B. bassiana and the discovery of sexual speciesCordyceps bassiana lead us to explore the molecular mechanism of teleomorphproduction in nature as well as the cause of anamorphic prevailing. Phylogeneticspecies of B. bassiana from all over the country and places where teleomorphic andanamorphic strains occurred will be identified by PCR-DGGE combined with Blocand TEF sequence data. Using molecular technique of SSR and amplification formating gene, the mating types and gene flow in B. bassiana populations are studied toreveal the relationship between mating types in natural population and teleomorphoccurring and anamorphic prevailing, and to speculate possibility of telemorphoccurring in B. bassiana phylogenetic species. The scientific basis for molecularmechanism for teleomorph production in nature and the cause of anamorphicprevailing will be provided finally. The main results are summarized as follows:
     1. Phylogenetic analysis of582isolates of B. bassiana from6different areas inChina was conducted based on Bloc and TEF locus. The results showed that therewere significant differences in the distribution of B. bassiana phylogenetic species indifferent locality. The numbers of phylogenetic species from high to low in the areawere: Dinghu Mountain (4)>Manshuihe and Guniujiang (3)>Kuankuoshui andLangya Mountain (2)>Jingyuetan (1). In general, these isolates could be dividedinto5different phylogenetic species: Europe/N. Africa1(271), AFNEO_1(27), Asia3(60), Asia4(212) and N. America2(12). Asia4including212isolates (36.4%) wasjust fewer than that in Europe/N. Africa1, which is a phylogentic species observed in6areas with national distribution in China.271isolates(46.6%) belong to Europe/N.Africa1, teleomorphic phylogenetic species, were found in4sites inculdingGuniujiang (120), Manshuihe (61), Langya Mountain (60) and Kuankuoshui (30).27isolates(5%) isolated mostly from Coleoptera insect belong to AFNEO_1which wereobserved in Guniujiang (4) and Dinghu Mountain (23), which suggests that thephylogenetic species have potentially relationships with the Coleoptera insect. Asia3consists of60isolates (10%) and was found in Manshuihe (23) and Dinghu Mountain (37). All the isolates were collected from China, indicating the phylogeneitc species isendemic to China. All12strains (2%) isolated from soil only in Dinghu Mountainbelong to N. America2.
     2. The number and proportion of mating types of six Beauveria bassianapopulations were studied. The PCR-based mating-type assay demonstrated thatindividual isolates of B. bassiana possessed either MAT1or MAT2, and weresupposed to be heterothallic. From the perspective of phylogenetic species, bothmating types were detected in most of phylogenetic species. The ratio of mating typesin Europe/N. Africa1(teleomorphic phylogenetic species) was not skewed inGuniuijang, Manshuihe, Langya Mountain and Kuankuoshui with ratio of MAT1toMAT2of51:69,37:24,39:21and15:15, respectively. The ratios were relativelybalance not only in Europe/N. Africa1(142:129), but also in most asexualphylogenetic species. Ratios of MAT1to MAT2in AFNEO_1、Asia3and Asia4were11:16,33:27and125:87, respectively. Mating types ratio of MAT1to MAT2ofN. America2(10:2) in Dinghu Mountain were skewed. In a certain area, mating typesratio in some phylogenetic species were also skewed. For example, Ratios of MAT1to MAT2of Asia4in Jinigyuetan and Dinghu Mountain were39:1and2:7,respectively. Therefore, the balance ratio of MAT1to MAT2in B. bassianapopulation wasn’t sufficient condition for teleomorph occurring, but only therequirement.
     3. The genetic diversity of six populations from six collections cites wereanalyzed. The result indicated that Nei’s genetic diversity index (h) and Shannon’sinformation index (Is) followed by Langya Mountain (h=0.290, Is=0.449)>Jingyuetan (h=0.260,Is=0.402)>Manshuihe (h=0.226,Is=0.361)>DinghuMountain (h=0.213,Is=0.349)>Kuankuoshui (h=0.175,Is=0.294)>Guniujiang(h=0.165, Is=0.271). Compared teleomorphic phylogenetic species to asexalphylogenetic species, Europe/N. Africa1was not the highest at the genetic diversitylevel. The main reason is samples of teleomorphic phylogenetic species collectedfrom the small core area of teleomorphic occurrence, which led to the low geneticdiversity for the population.
     4. Genetic differentiation (Gst) and gene flow (Nm) of five collection sites wereinvestigated. The analysis showed that gene flow was obvious among differentphylogenetic species in4area where existed sexual phylogenetic species, and it washighest in Kuankuoshui (Nm=6.8987) while lowest in Langya Mountain (Nm=1.2126). Genetic differentiation (Gst) was0.1709in Langya Mountain indicating there washeight differentiation between phylogenetic species,0.1447in Guniujiang and0.0889in Manshuihe indicating moderate differentiation and0.0350in Kuankuoshuiindicating no differentiation among phylogenetic species. In Dinghu Mountain, thegenetic differentiation (0.3157) exceeded the threshold value of severe differentiation(0.25), indicating N. America may be a different species in B. bassiana because ofreproduction isolation.
     5. Comprehensive analysis showed that conditions necessary for the occurring ofC. bassiana did exist in Guniujiang and Manshuihe area, and further investigation ofC. bassiana collection is necessary in Kuankuoshui and Langya Mountain. Accordingto ratios of mating types and genetic diversity of Europe/N. Africa1, possibility ofsexual reproduction were Langya Mountain>Guniuijang>Kuankuoshui>Manshuihe. The ratio of mating types in Jingyuetan was39:1of MAT1to MAT2,suggesting that reproduction is constrained to asexual modes due to lack ofcomplementary mating types in this locality. Four phylogenetic species found inDinghu Mountain were all asexual phylogenetic species, indicating that sexualreproduction hardly occurred. This study indicated that the presence of teleomorphicphylogenetic species and the balance ratio of MAT1to MAT2are necessary forteleomorph occurrence.
     6. A phylogenetic diversity survey of189exemplar isolates of Beauveria wasconducted based on Bloc nuclear intergenic region. The phylogenetic analysisassigned the Chinese Beauveria isolates to six species lineages corresponding to B.bassiana, B. brongniartii, B. australis, B. asiatica, B. pseudobassiana and B.caledonica. B. australis was reported for the first time in China. This studyrepresented the first phylogenetic analysis of Beauveria species diversity in China anddemonstrates an effective screening strategy to identify Beauveria genetic resourcesbased on Bloc loci.
引文
[1]田鹏,刘占林.分子系统发育树构建的简易方法[J].生物信息学,2009,7(3):232-233
    [2]黄原.分子系统学-原理、方法及应用[M].北京:中国农业出版社,1998,105-160
    [3]韦继光,徐同,黄伟华,等.从分子系统发育探讨内生拟盘多毛孢与病原拟盘多毛孢的关系[J].浙江大学学报(农业与生命科学版),2008,34(4):367-373
    [4] Lumbsch HT, Buchanan PK, May TW, et al. Phylogeography andbiogeography of fungi[J]. Mycological Research,2008,112(4):423-424
    [5]曾东方.真菌分子系统学的产生和发展[J].中国食用菌,1998,18(2):3-4
    [6] Blackwell M, Hibbett DS, Taylor JW, et al. Research coordination networks: aphylogeny for kingdom Fungi (Deep Hypha)[J]. Mycologia,2006,98(6):829-837
    [7]马兰,黄原.单拷贝核基因在昆虫分子系统学中的应用[J].昆虫知识,2006,43(1):6-9
    [8] Friedlander TP, Regier JC, Mitter C. Phylogenetic information content of fivenuclear gene sequences in animals: initial assessment of character sets fromconcordance and divergence studies[J]. Systematic Biology,1994,43(4):511-525
    [9] Friedlander TP, Regier JC, Mitter C, et al. A nuclear gene for higher levelphylogenetics: phosphoenolpyruvate carboxykinase tracks mesozoic-agedivergences within Lepidoptera (Insecta)[J]. Molecular Biology and Evolution,1996,13(4):594-604
    [10] Burger G, Gray MW, Franz-Lang B. Mitochondrial genomes: anything goes[J].Trends in Genetics,2003,19:709-716
    [11] White TJ, Bruns T, Lee S, et al. PCR protocols a guide to methods andapplications [M]. Academic Press,1990,315-322
    [12] Kirk PM, Cannon PF, Minter DW, et al. Dictionary of the Fungi[M]. Tenth ed.:CABI Publishing,2008
    [13]王征,戴玉成.真菌生命之树项目(Assembling the Fungal Tree of Life)和美国真菌系统学研究现状[J].菌物学报,2009,28(6):878-887
    [14] Cooke DEL, Duncan JM. Phylogenetic analysis of Phytophthora species basedon ITS1and ITS2sequences of the ribosomal RNA gene repeat[J].Mycological Research,1997,101(6):667-677
    [15] Jones KG, Blackwell M. Phylogenetic analysis of ambrosial species in thegenus Raffaelea based on18S rDNA sequences[J]. Mycological Research,1998,102(6):661-665
    [16] Chou HH, Wu WS. Phylogenetic analysis of internal transcribed spacer regionsof the genus Alternaria, and the significance of filament-beaked conidia[J].Mycological Research,2002,106(2):164-169
    [17] Suga H, Hasegawa T, Mitsui H, et al. Phylogenetic analysis of thephytopathogenic fungus Fusarium solani based on the rDNA-ITS region[J].Mycological Research,2000,104(10):1175-1183
    [18] Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among Ascomycetes:evidence from an RNA polymerse II subunit[J]. Molecular Biology andEvolution,1999,16(12):1799-1808
    [19] Matheny PB, Liu YJ, Ammirati JF, et al. Using RPB1sequences to improvephylogentic inference among mushrooms (Inocybe, Agaricales)[J]. AmericanJournal of Botany,2002,89(4):688-698
    [20] Glynn NC, Hare MC, Parry DW, et al. Phylogenetic analysis of EF-1alphagene sequences from isolates of Microdochium nivale leads to elevation ofvarieties majus and nivale to species status[J]. Mycological Research,2005,109:872-880
    [21] Nikoh N, Fukatsu T. Interkingdom host jumping underground: phylogeneticanalysis of entomoparasitic fungi of the genus Cordyceps[J]. MolecularBiology and Evolution,1999,17(4):629-638
    [22] Lindemuth R, Wirtz N, Lumbsch HT. Phylogenetic analysis of nuclear andmitochondrial rDNA sequences supports the view that loculoascomycetes(Ascomycota) are not monophyletic[J]. Mycological Research,2001,105(10):1176-1181
    [23] Yli-Mattila T, Paavanen-Huhtala S, Bulat SA, et al. Molecular, morphologicaland phylogenetic analysis of the Fusarium avenaceum/F. arthrosporioides/F.tricinctum species complex-a polyphasic approach[J]. Mycological Research,2002,106(6):655-669
    [24] Kroon LPNM, Bakker FT, van-den-Bosch GBM, et al. Phylogenetic analysis ofPhytophthora species based on mitochondrial and nuclear DNA sequences[J].Fungal Genetics and Biology,2004,41(8):766-782
    [25] Bischoff JF, Rehner SA, Humber RA. A multilocus phylogeny of theMetarhizium anisopliae lineage[J]. Mycologia,2009,101(4):512-530
    [26] Charnley AK. Microbial pathogens and insect pest control[J]. Letters inApplied Microbiology,1991,12:149-157
    [27] Rehner SA, Buckley EP. Isolation and characterization of microsatellite locifrom the entomopathogenic fungus Beauveria bassiana (Ascomycota:Hypocreales)[J]. Molecular Ecology Notes,2003,3(3):409-411
    [28]李增智.球孢白僵菌的昆虫寄主名录[J].中国虫生真菌研究与应用,1988,1(1):240-255
    [29]农向群.布氏白僵菌的研究与应用[J].植物保护学报,2000,27(1):83-88
    [30] Anderson TE, Hajek AE, Roberts DW, et al. Colorado potato beetle(Coleoptera:Chrysomelidae): effects of combinations of Beauveria bassiana withinsecticides[J]. Journal of Economic Entomology,1989,82(1):83-89
    [31] Macleod DM. Investigation on the genera Beauveria Vuill. and TritirachiumLimber[J]. Canadian Journal of Botany,1954,32:818-890
    [32] De-Hoog GS. The genera Beauveria, Isaria, Tritirachium and Acrodontium gen.nov.[M]. Baarn: Centraalbureau voor Schimmelcultures,1972
    [33] Glare TR, Inwood AJ. Morphological and genetic characterisation of Beauveriaspp. from New Zealand[J]. Mycological Research,1998,102(2):250-256
    [34] Rehner SA, Minnis AM, Sung GH, et al. Phylogeny and systematics of theanamorphic, entomopathogenic genus Beauveria[J]. Mycologia,2011,103(5):1055-1073
    [35] Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS andEF1-a sequences: evidence for cryptic diversification and links to Cordycepsteleomorphs[J]. Mycologia,2005,97(1):84-98
    [36]邱芳,伏健民,金德敏,等.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150
    [37] Coates BS, Hellmich RL, Lewis LC. Beauveria bassiana haplotypedetermination based on nuclear rDNA internal transcribed spacer PCR-RFLP[J].Mycological Research,2002,106(1):40-50
    [38] Bidochka MJ, McDonald MA, St-Leger RJ, et al. Differentiation of species andstrains of entomopathogenic fungi by random amplification of polymorphicDNA (RAPD)[J]. Current genetics,1994,25(2):107-113
    [39] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simplesequence repeat (SSR)-anchored polymerase chain reaction amplification[J].Genome,1994,20(2):176-183
    [40] Castrillo LA, Vandenberg JD, Wraight SP. Strain-specific detection ofintroduced Beauveria bassiana in agricultural fields by use ofsequence-characterized amplified region markers[J]. Journal of InvertebratePathology,2003,82(2):75-83
    [41] Han Q, Inglis GD, Hausner G. Phylogenetic relationships among strains of theentomopathogenic fungus, Nomuraea rileyi, as revealed by partial b-tubulinsequences and inter-simple sequence repeat (ISSR) analysis[J]. Letters inApplied Microbiology,2002,34(5):376-383
    [42] Pathan AAKP, Devi KU, Vogel H, et al. Analysis of differential geneexpression in the generalist entomopathogenic fungus Beauveria bassiana(Bals.) Vuillemin grown on different insect cuticular extracts and syntheticmedium through cDNA-AFLPs[J]. Fungal Genetics and Biology,2007,44(12):1231-1241
    [43] Kuo HC, Su YL, Yang HL, et al. Identification of Chinese medicinal fungusCordyceps sinensis by PCR-single-stranded conformation polymorphism andphylogenetic relationship[J]. Journal of Agricultural and Food Chemistry,2005,53(10):3963-3968
    [44] Mavridou A, Cannone J, Typas MA. Identification of group-I introns at threedifferent positions within the28S rDNA gene of the entomopathogenic fungusMetarhizium anisopliae var. anisopliae[J]. Fungal Genetics and Biology,2000,31(2):79-90
    [45] Manzano M, Cocolin L, Longo B, et al. PCR-DGGE differentiation of strainsof Saccharomyces sensu stricto[J]. Antonie van Leeuwenhoek,2004,85(1):23-27
    [46] Terashima K, Matsumoto T, Hayashi E, et al. A genetic linkage map ofLentinula edodes (shiitake) based on AFLP markers[J]. Mycological Research,2002,106(8):911-917
    [47] Fischer SG, Lerman LS. DNA fragments differing by single base-pairsubstitutions are separated in denaturing gradient gels: correspondence withmelting theory[J]. Proceedings of the National Academy of Sciences,1983,80(6):1579-1583
    [48] Muyzer G, De-Waal EC, Uitterlinden AG. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerasechain reaction-amplified genes coding for16S rRNA[J]. Applied andEnvironmental Microbiology,1993,59(3):695-700
    [49] Sheffield VC, Cox DR, Lerman LS, et al. Attachment of a40-base-pairG+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerasechain reaction results in improved detection of single-base changes[J].Proceedings of the National Academy of Sciences,1989,86(1):232-236
    [50]陆利华,张家洵,朱一川.变性梯度凝胶电泳装置及其在DNA突变检测中的初步应用[J].生物技术通讯,2001,12(3):208-210
    [51]翟祖欢. PCR-DGGE在真菌群落研究中的应用解析[J].齐齐哈尔大学学报,2010,26(3):57-61
    [52] Ben-Omar N, Ampe F. Microbial community dynamics during production ofthe mexican fermented maize dough pozol[J]. Applied and EnvironmentalMicrobiology,2000,66(9):3664-3673
    [53]徐玲玲,刘亚洁,李江,等.变性梯度凝胶电泳在微生物多样性分析中的应用及其技术发展[J].东华理工学院学报,2007,30(3):279-282
    [54]龙良鲲,羊宋贞,姚青,等. AM真菌DNA的提取与PCR-DGGE分析[J].菌物学报,2005,24(4):564-569
    [55]刘上峰,傅俊江.变性梯度凝胶电泳的原理、应用及其进展[J].国外医学遗传学分册,2002,25(2):74-76
    [56] Tautz D. Hypervariability of simple sequences as a general source forpolymorphic DNA markers[J]. Nucleic Acids Research,1989,17(16):6463-6471
    [57] Hughes CR, Queller DC. Detection of highly polymorphic microsatellite loci ina species with little allozyme polymorphism[J]. Molecular Ecology,1993,2(3):131-137
    [58] von-Arx JA. Tolypocladium, a synonym of Beauveria[J]. Mycotaxon,1986,25(1):153-158
    [59] Huang B, Li CR, Li ZG, et al. Molecular identification of the teleomorph ofBeauveria bassiana[J]. Mycotaxon,2002,81:229-236
    [60] Liu ZY, Liang ZQ, Whalley AJS, et al. A new species of Beauveria, theanamorph of Cordyceps sobolifera[J]. Fungal Diversity,2001,7:61-70
    [61] Alexoploulos CJ, Mims CW, Blackwell M.菌物学概论[M].北京:中国农业出版社,2002
    [62] Coppin E, Debuchy R, Arnaise S, et al. Mating types and sexual developmentin filamentous Ascomycetes[J]. Microbiology and Molecular Biology Reviews,1997,61(4):411-428
    [63] Yokoyama E, Yamagishi K, Hara A. Structures of the mating-type loci ofCordyceps takaomontana[J]. Applied and Environmental Microbiology,2003,69(8):5019-5022
    [64] Glass NL, Vollmer SJ, Staben C, et al. DNAs of the two mating-type alleles ofNeurospora crassa are highly dissimilar [J]. Science,1988,241(4865):570-573
    [65] Yokoyama E, Yamagishi K, Hara A. Development of a PCR-based mating-typeassay for Clavicipitaceae[J]. FEMS Microbiology Letters,2004,237(2):205-212
    [66] Groenewald M, Groenewald JZ, Harrington TC, et al. Mating type geneanalysis in apparently asexual Cercospora species is suggestive of crypticsex[J]. Fungal Genetics and Biology,2006,43(12):813-825
    [67] Turgeon BG, Bohlmann H, Ciuffetti LM, et al. Cloning and analysis of themating type genes from Cochliobolus heterostrophus[J]. Molecular and GeneralGenetics,1993,238(1-2):270-284
    [68] Guo LY, Ko WH. Continuing variation in successive asexual generations ofPythium splendens following sexual reproduction[J]. Mycological Research,1995,99(11):1339-1344
    [69] Bidochka MJ, De-Koning J. Are teleomorphs really necessary?: modelling thepotential effects of Muller's ratchet on deuteromycetous entomopathogenicfungi[J]. Mycological Research,2001,105(8):1014-1019
    [70] Meyling NV, Lubeck M, Buckley EP, et al. Community composition, hostrange and genetic structure of the fungal entomopathogen Beauveria inadjoining agricultural and seminatural habitats[J]. Molecular Ecology,2009,18(6):1282-1293
    [71]王滨,丁德贵,樊美珍,等.白僵菌生物防治林中虫生真菌群落结构分析[J].应用生态学报,2005,16(12):2357-2360
    [72]蒲蛰龙,李增智.昆虫真菌学[M].合肥:安徽科学技术出版社,1996
    [73]蔡悦,张胜利,李增智.球孢白僵菌与几种化学杀虫剂和除草剂的相容性[J].中国生物防治学报,2011,27(3):316-323
    [74] O'Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in theopportunistic fungal pathogen Aspergillus fumigatus[J]. Nature,2009,457(7228):471-474
    [75]仇飞,张琪,李春如,等.安徽的虫草及其相关真菌Ⅱ[J].安徽农业大学学报,2012,39(5):803-806
    [76]李增智,李春如,黄勃,等.重要虫生真菌球抱白僵菌有性型的发现和证实[J].科学通报,2001,46(6):470-472
    [77]王滨,樊美珍,李增智.球孢白僵菌选择性培养基的筛选[J].安徽农业大学学报,2000,27(1):23-28
    [78] Pu SC, Chen MJ, Ma ZY, et al. Genotyping isolates of the entomopathogenicfungus Beauveria bassiana sensu lato by multi-locus polymerase chainreaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis[J].African Journal of Biotechnology,2010,9(27):4290-4294
    [79] Myers RM, Fischer SG, Lerman LS, et al. Nearly all single base substitutions inDNA fragments joined to a GC-clamp can be detected by denaturing gradientgel electrophoresis[J]. Nucleic Acids Research,1985,13(9):3131-3145
    [80] Siglera WV, Miniacib C, Zeyer J. Electrophoresis time impacts the denaturinggradient gel electrophoresis-based assessment of bacterial communitystructure[J]. Journal of Microbiological Methods,2004,57(1):17-22
    [81] Rehner Stephen A., Minnis Andrew M., Sung Gi-Ho, et al. Phylogeny andsystematics of the anamorphic, entomopathogenic genus Beauveria[J].Mycologia,2011:
    [82] Rehner SA, Posada F, Buckley EP, et al. Phylogenetic origins of African andNeotropical Beauveria bassiana s.l. pathogens of the coffee berry borer,Hypothenemus hampei[J]. Journal of Invertebrate Pathology,2006,93(1):11-21
    [83] Yeh FC, Yang RC, Boyle T. POPGENE, the user-friendly shareware forpopulation genetic analysis[J]. Molecular Biology and Biotechnology Centre,University of Alberta,1997
    [84] Wright S. Evolution in mendelian populations[J]. Genetics,1931,16(3):97-159
    [85] Takahata N, Nei M. Fstand Gststatistics in the finite island model[J]. Genetics,1984,107(3):501-504
    [86]张昊,张争,许景升,等.一种简单快速的赤霉病菌单孢分离方法—平板稀释画线分离法[J].植物保护,2008,34(6):134-136
    [87] Schluter D. Evidence for ecological speciation and its alternative[J]. Science,2009,323(5915):737-741
    [88] Holzschu DL, Phaff HJ, Tredick J, et al. Resolution of the varietal relationshipwithin the species Pichia opuntiae and establishment of a new species, Pichiathermotolerans comb. nov.[J]. International Journal of Systematic Bacteriology,1985,35(4):457-461
    [89]周娜,陈名君,黄勃,等.引起蜘蛛流行病的紫色野村菌种群异质性[J].菌物学报,2010,29(1):37-43
    [90] Raju NB. Genetic control of the sexual cycle in Neurospora[J]. MycologicalResearch,1992,96(4):241-262
    [91] Turgeon BG, Christiansen SK, Yoder OC. Mating type genes in Ascomycetesand their imperfect relatives [M]//Reynolds DR, Taylor JW. The Fungalholomorph. Wallingford, United Kingdom: CABI.1993:199-215
    [92] Glass NL, Smith ML. Structure and function of a mating-type gene from thehomothallic species Neurospora africana[J]. Molecular and General Genetics,1994,244(4):401-409
    [93] Usami T, Itoh M, Amemiya Y. Mating type gene MAT1-2-1is common amongJapanese isolates of Verticillium dahliae[J]. Physiological and Molecular PlantPathology,2009,73(6):133-137
    [94] Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitatheterogeneity the key?[J]. Trends in Ecology and Evolution,2003,18(4):182-188
    [95] Maudsley MJ. A review of the ecology and conservation of hedgerowinvertebrates in Britain[J]. Journal of Environmental Management,2000,60:65-76
    [96] Honegger R. Functional aspects of the Lichen symbiosis[J]. Annual Review ofPlant Physiology and Plant Molecular Biology,1991,42:553-578
    [97] Fernandes EKK, Moraes AML, Pacheco RS, et al. Genetic diversity amongBrazilian isolates of Beauveria bassiana: comparisons with non-Brazilianisolates and other Beauveria species[J]. Journal of Applied Microbiology,2009,107(3):760-774
    [98] Chapela IH, Rehner SA, Schultz TR, et al. Evolutionary history of thesymbiosis between fungus-growing ants and their Fungi[J]. Science1994,266(5191):1691-1694
    [99] Kurdyla TM, Guthrie RAI, McDonald BA, et al. RFLPs in mitochondrial andnuclear DNA indicate low levels of genetic diversity in the oak wilt pathogenCeratocystis fagacearum[J]. Current genetics,1995,27(4):373-378
    [100] Leslie JF. Fungal vegetative compatibility[J]. Annual Review ofPhytopathology,1993,31:127-150
    [101] Pontecorvo G. The parasexual cycle in Fungi[J]. Annual Review ofMicrobiology,1956,10:393-400
    [102]陈名君,张中,樊美珍,等.利用28S rDNA I型内含子研究琅琊山球孢白僵菌菌株的遗传多样性[J].菌物学报,2006,25(4):559-566
    [103]蒲顺昌.中国白僵菌分子系统学及不同森林生态系球孢白僵遗传多样性SSR分析的研究[D].合肥:安徽农业大学,2010
    [104] Coyne JA. Speciation[M]. Sunderland, MA: Sinauer Associates, Inc,2004
    [105]李增智,黄勃,陈名君,等.分子时代的白僵菌研究[J].菌物学报,2011,30(6):823-835
    [106] Metzenberg RL, Glass NL. Mating type and mating strategies in Neurospora[J].BioEssays,1990,12(2):53-59
    [107]陈名君.不同森林生态系虫生真菌生物多样性研究[D].合肥:安徽农业大学,2008
    [108]王建瑞.净月潭国家森林公园大型真菌多样性研究[D].长春:吉林农业大学,2006
    [109] Brasier CM. Ophiostoma novo-ulmi sp. nov., causative agent of current Dutchelm disease pandemics[J]. Mycopathologia,1991,115:151-161
    [110] Gibbs JN. Role of Ceratocystis piceae in preventing infection by Ceratocystisfagacearum in Minnesota[J]. Transactions of the British Mycological Society,1980,74(1):171-174
    [111] Tanada Y, Kaya HK. Insert Pathology[M]. Academic, New York,1993
    [112] Bidochka MJ, Menzies FV, Kamp AM. Genetic groups of the insect-pathogenicfungus Beauveria bassiana are associated with habitat and thermal growthpreferences[J]. Archives of Microbiology,2002,178(6):531-537
    [113] Thompson Ken, Gaston Kevin J., Band Stuart R. Range size, dispersal andniche breadth in the herbaceous flora of central England[J]. Journal of Ecology,1999,87:150-155
    [114]何玲敏.中国北方球孢白僵菌的遗传多样性和种群遗传结构研究[D].合肥:安徽农业大学,2012
    [115]吴兴亮,邹芳伦,连宾,等.宽阔水自然保护区大型真菌分布特征[J].生态学报,1998,18(6):609-614
    [116] Ghikas DV, Kouvelis VN, Typas MA. Phylogenetic and biogeographicimplications inferred by mitochondrial intergenic region analyses andITS1-5.8S-ITS2of the entomopathogenic fungi Beauveria bassiana and B.brongniartii[J]. BMC Microbiology,2010,10(1):174
    [117] Bidochka MJ, Kamp AM, Lavender TM, et al. Habitat association in twogenetic groups of the insect-pathogenic fungus Metarhizium anisopliae:uncovering cryptic species?[J]. Applied and Environmental Microbiology,2001,67:1335-1342
    [118]黄勃,李春如.白僵菌属一新记录种[J].菌物系统,1997,16(4):317-317
    [119]黄勃,陈名君,王四宝,等.分离自小蠹虫的白僵菌属一中国新记录种[J].菌物学报,2007,26(1):139-142
    [120] Fodde R, Losekoot M. Mutation detection by denaturing gradient gelelectrophoresis (DGGE)[J]. Human Mutation,1994,3(2):83-94
    [121] Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windowsinterface: flexible strategies for multiple sequence alignment aided by qualityanalysis tools[J]. Nucleic Acids Research,1997,25(24):4876-4882
    [122] Swofford DL. Phylogenetic analysis using parsimony (*and other methods).version4b10. Sunderland, Massachusetts: Sinauer Associates.[J].2003:
    [123] Felsenstein J. Confidence limits on phylogenies: an approach using thebootstrap[J]. Evolution,1985,39(4):783-791
    [124] Ronquist F, Huelsenbeck JP. MrBayes3: Bayesian phylogenetic inferenceunder mixed models[J]. Bioinformatics,2003,19(12):1572-1574
    [125] Bissett J, Widden P. A new species of Beauveria from Scottish moorland soil[J].Canadia Journal of Botany,1988,66(2):361-362
    [126] Garrido-Jurado I, Márquez M, Ortiz-Urquiza A, et al. Genetic analyses placemost Spanish isolates of Beauveria bassiana in a molecular group withword-wide distribution[J]. BMC Microbiology,2011,11(1):84
    [127] Neuveglise C, Brygoo Y, Riba G.28S rDNA group-I introns: a powerful toolfor identifying strains of Beauveria brongniartii[J]. Molecular Ecology,1997,6(4):373-381
    [128] Maurer P, Couteaudier Y, Girard PA, et al. Genetic diversity of Beauveriabassiana and relatedness to host insect range[J]. Mycological Research,1997,101(2):159-164
    [129] Meyling NV, Pilz C, Keller S, et al. Diversity of Beauveria spp. isolates frompollen beetles Meligethes aeneus in Switzerland[J]. Journal of InvertebratePathology,2012,109:76-82
    [130] Meyling NV, Eilenberg J. Ecology of the entomopathogenic fungi Beauveriabassiana and Metarhizium anisopliae in temperate agroecosystems: potentialfor conservation biological control[J]. Biological Control,2007,43(2):145-155
    [131] Wang CS, Shah FA, Patel N, et al. Molecular investigation on strain geneticrelatedness and population structure of Beauveria bassiana[J]. EnvironmentalMicrobiology,2003,5(10):908-915
    [132] Gaitan A, Valderrama AM, Saldarriaga G, et al. Genetic variability ofBeauveria bassiana associated with the coffee berry borer Hypothenemushampei and other insects[J]. Mycological Research,2002,106(11):1307-1314
    [133]张胜利.引起昆虫地方病的一些昆虫病原真菌种群遗传结构的研究[D].合肥:安徽农业大学,2012
    [134]王四宝,刘竞男,黄勃,等.大别山地区虫生真菌群落结构与生态分布[J].菌物学报,2004,23(2):195-203
    [135]李佳丽,蔡悦,栾丰刚,等.皖南与皖西南蚕区球孢白僵菌种群遗传结构的ISSR分析[J].应用生态学报,2010,21(12):3239-3247
    [136]李旻,王四宝,樊美珍,等.森林生态系中球孢白僵菌遗传多样性的ISSR分析[J].遗传,2006,28(8):977-983
    [137] Beebee TJC, Rowe G.分子生态学[M].广州:中山大学出版社,2009
    [138] Amos W, Harwood J. Factors affecting levels of genetic diversity in naturalpopulations[J]. Philosophical Transactions of the Royal Society B: BiologicalSciences,1998,353(1366):177-186
    [139] Goodwin SB, Legard DE, Smart CD, et al. Gene flow analysis of molecularmarkers confirms that Phytophtora mirabilis and P. infestens are separatespecies[J]. Mycologia,1999,91(5):796-810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700