荒漠植物H~+-PPase基因的系统发育分析及SaVP1和KcNHX1基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非生物胁迫是导致作物减产甚至植株死亡的重要因素。在非生物胁迫因子中,高温、干旱和盐碱是最常见、最广泛的影响植物生长、发育、生殖及产量等各个方面的逆境因子。高温和干旱主要对植物造成氧化胁迫和渗透胁迫,而盐胁迫主要对植物造成离子毒害和渗透胁迫。所有的逆境因子最终都会通过破坏细胞结构、损害胞内的生理功能从而影响植株的生长和发育。如何让植物在高温、干旱、盐碱等逆境条件下完成生活史并保持相应的产量成为目前亟待解决的问题。本研究从几种荒漠植物中克隆了抗逆相关基因H+转运无机焦磷酸酶(H+-PPase)基因和液泡膜Na+/H+逆向转运蛋白基因(NHX),并对H+-PPase基因的系统发育进行了分析,同时对来自苦豆子的H+-PPase和花花柴的NHX基因功能进行了研究,取得的主要结果如下:
     1、克隆了来自新疆塔里木盆地7种荒漠植物的H+-PPase基因,并对其系统发育进行了分析。
     本研究从荒漠植物苦豆子(Sophora alopecuroides L.)、乌拉尔甘草(Glycyrriza Uralensis Fisch.)、胀果甘草(Glycyrrhiza inflata Bat)、盐穗木(Glycyrrhiza inflata Bat).盐地碱蓬(Suaeda salsa)、硬枝碱蓬(Suaeda rigida)和花花柴(Karelinia caspica)7种荒漠植物中克隆得到了6条H+-PPase基因全长和8条H+-PPase基因片段序列。通过与NCBI数据库中已鉴定的240余条H+-PPase基因比对发现,新获得的这些基因除了具有H+-PPase家族特有的保守结构域外,该基因家族可能还存在两个新的保守结构域。利用17条来自与本研究所选材料亲缘关系较近的植物Ⅰ型H+-PPase基因、8条来自藻类、细菌和原生动物的Ⅰ型H+-PPase基因及9条Ⅱ型H+-PPase基因与本研究新克隆的14条基因进行了系统发育分析。聚类结果显示新克隆的14条基因可能都属于Ⅰ型H+-PPase基因。通过对上述H+-PPase基因编码蛋白质的3D结构预测发现,高等植物的Ⅰ型基因都以二聚体的形式存在,而所有的Ⅱ型基因以及来自低等生物的Ⅰ型基因则以单体的形式存在。SaVP3蛋白也以单体的形式存在,并与其他H+-PPase基因的同源性较低,因此推测SaVP3可能属于Ⅱ型H+-PPase基因或一类新的H+-PPase基因。这可能是由不同物种之间的基因交流所致,或者SaVP3和SaVP1基因可能是一对旁系同源基因。H+-PPase基因在进化上的高度保守性表明其对生物体功能的重要性,同时也表明这类基因在生物进化过程中所受的环境选择压力较小;H+-PPase基因家族的这些特点这对进一步研究其进化起源、基因结构与功能的关系提供了重要的参考。
     2.SaVP1基因不仅能增强转基因植株的耐旱耐盐性,还具有耐高温的功能。
     将来自荒漠植物苦豆子的SaVP1基因在拟南芥中超表达,结果发现转基因植株对干旱、高盐及高温的耐受性都强于野生型。在干旱和盐处理下,转基因植株中SOD酶活增强、MDA的含量降低,使得转基因植株的抗逆性明显强于野生型。将苗期的拟南芥在30-38℃处理4天后转基因植株的存活率在85%以上,而野生型仅为33%;而将结实期的植株在33℃处理1周后,转基因植株的结实性为野生型的2倍。这可能是在高温条件下SaVP1的超量表达增加了植株体内可溶性糖的积累以及POD的酶活,降低了MDA的含量;转基因植株在高温下的结实性也高于野生型,可能与SaVP1基因的超表达能够维持高温条件下花器官中较高的IAA含量有关。IAA的测试结果也说明在高温条件下转基因植株的花器官中IAA含量几乎是野生型的2倍,外施IAA的结果表明IAA的补充确实能部分恢复高温条件下的结实性,说明高温引起的结实性下降确实与IAA含量降低有关,而SaVP1的超表达能增加花器官中IAA的含量。同时在高温条件下,转基因植株叶片的气孔开度也明显增加,而且与K+和Ca2+相关的转运体基因的表达也明显上调,这些结果与转SaVP1基因植株具有耐旱、耐盐及耐高温的表型相吻合。
     3、KcNHX1基因具有广谱抗逆性功能。
     从荒漠植物花花柴中克隆了液泡膜Na+/H’逆向转运蛋自基因(KcNHX1),并对其蛋白质结构进行了分析,发现KcNHX1蛋白具有10次跨膜结构,pI值为6.27,分子量约为60kD。和SaVP1基因相似,将该基因在拟南芥中超表达,结果.显示转基因植株对干旱、高盐及高温的耐受性都强于野生型。苗期高温处理的结果显示转基因植株的存活率在88%以上,而野生型仅为18%;结实期在33℃处理1周后,转基因植株的结实性为野生型的2倍。而且在高温条件下KcNHX1的超量表达增强了转基因植株POD的酶活、增加了可溶性糖的积累、且MDA的含量降低,增加了花器官中IAA的含量,转基因植株在高温下的结实性也高于野生型。外施IAA结果表明IAA的补充确实能部分恢复高温条件下的拟南芥的结实性,说明KcNHX1的超表达能增加花器官中IAA的含量。同时在高温条件下,转基因植株叶片的气孔开度明显增加,而且与K+和Ca2+相关的转运体及离子通道蛋白基因的表达也明显上调,说明KcNHX1基因具有耐高温、耐旱、耐盐的功能。
     通过本研究中所选的两个来自荒漠植物的SaVP1和KcNHX1基因的功能分析,表明来自荒漠植物的抗逆相关基因不仅具有模式甜土植物相应基因的功能,可能还具有一些新的功能尚待发掘。这不仅拓展了抗逆基因的来源,也为荒漠植物资源的开发利用、植物抗逆性机理研究及作物的抗逆性育种提供了重要的参考。
Abiotic stresses have profound influence on crop growth and production which result in yield decrease or even plant death. Among the abiotic stresses, heat, drought and salt are universal stressors and often have an adverse impacts on plant development, growth, reproduction and yield. Heat and drought stresses mainly impose an oxidative damage and osmotic stress, and salt always led to ion toxicity and osmotic stress, which can disrupt cellular structures and impair key physiological functions through metabolic rearrangements. How to make plant survive and keep relative yield in stress such as high temperature, drought and salinity, is a big challenge for plant biologist. In this work, H+-PPase and Na+/H+antiporter from some eremophyte plants were cloned. The phylogeny of H+-PPase was analyzed, and function of H+-PPase from Sophora alopecuroides(SaVP1) and Na+/H+antiporter from Karelinia caspica (KcNHX1) was evaluated. The major results were presented as following:
     1. Phylogenetic analysis of the novel H+-PPases from eremophytes
     H+-translocating inorganic pyrophosphatases (H+-PPase) were recognized as the original energy donors in the development of plants. A large number of researchers have shown that H+-PPase could be an early origin protein that participated in many important biochemical and physiological processes. In this study we cloned14novel sequences from7eremophytes:Sophora alopecuroid (Sa), Glycyrrhiza uralensis (Gu), Glycyrrhiza inflata (Gi), Suaeda salsa (Ss), Suaeda rigida (Sr), Halostachys caspica (Hc), and Karelinia caspia (Kc). These novel sequences included6ORFs and8fragments, and they were identified as H+-PPases based on the typical conserved domains. Besides the identified domains, the result of sequence alignment showed that there could be two novel conserved motifs. A phylogenetic tree was constructed, including the14novel H+-PPase amino acid sequences and the other34identified H+-PPase protein sequences representing plants, algae, protozoans and bacteria. It was shown that these48H+-PPases were classified into two groups:type I and type II H+-PPase. The novel14H+-PPases from7eremophytes were classified into the type I H+-PPase. The3D structures of these H+-PPase proteins were predicted, which suggested that all type I H+-PPases from higher plants and algae were homodimers, while other type I H+-PPases from bacteria and protozoans and all type II H+-PPases were monomers. The3D structures of these novel H+-PPases were homodimers except for SaVP3which was a monomer. The result of little diversity at the amino acid sequence of H+-PPase implied that these genes play a vital role in the development of the organism and have suffered little selection pressure. But it is possible that different evolutionary histories or lateral gene transfers of H+-PPase between different (micro) organisms exist based SaVP3, or this gene could represent a novel type of H+-PPase, or they could be paralogs between SaVP3and SaVP1in Sophora alopecuroid based their lower homology. This regular structure could provide important evidence for the evolutionary origin and study of the relationship between the structure and function among members of the H+-PPase family.
     2. Overexpression of the SaVPl enhanced tolerance not only to drought and salt, but also heat stress of Arabidopsis
     The physiological role of a vacuolar H+-PPase (SaVP1) from an eremophyte Sophora alopecuroid was evaluated through overexpressing the gene in Arabidopsis thaliana. Overexpression of SaVP1in Arabidopsis enhanced tolerance to drought and salt stresses. Moreover, the SaVP1overexpressing plants showed enhanced tolerance to heat stress. At seedling stage, the survival rate was above85%for transgenic lines, and it was only33%in WT plants after heat stress. The fertility is twice in transgenic lines compared to WT plants after heat stress. It could be that SaVP1overexpression increased the accumulation of soluble sugar and chlorophyll, enhanced the POD activety, and decreased the MDA content in the transgenic plants. Simultaneously, SaVP1overexpression increased seed yield through maintaining higher content of IAA in flora organ than in wild type plants under high temperature. In addition, application of low concentration of IAA led to higher fertility of SaVP1overexpression plants than plants without IAA treatment and wild-type under high temperature. Bisides, It showed that overexpression of SaVP1resulted in several K+and Ca2+channel/transporters genes up-regulated. And the leaf stomatal aperture were increased in transgenic plants compared to wild type under high temperature stress. The results indicated that genes originated from eremophyte could be used as the candidate for enhancing heat, drought and salt tolerance of other plant species.
     3. KcNHXl overexpressing confers multiple abiotic stress tolerance in Arabidopsis
     The KcNHX1was cloned from eremophyte Karelinia caspia, its cDNA sequence contains1620bp, and codes539amino acid. The protein pI is6.27, the MW is about60kD with10putative transmemberane regions. Like SaVP1, the overexpression of KcNHX1in Arabidopsis enhanced tolerance to drought, salt and teat stress. At seedling stage, the survival rate was about88%for transgenic lines, and it was only18%in WT plants after heat stress. The fertility is higher in transgenic lines than in WT plants after heat stress. The overexpression of KcNHX1resulted in several K+and Ca2+channel/transporters genes up-regulated. Simultaneously, overexpression of KcNHXl maintained higher seed yield and IAA content in flora organ under high temperature than wild type plants. In addition, application of low concentration of IAA led to higher fertility of KcNHXl overexpression plants under high temperature. The results indicate that KcNHX1could be used as a candidate for enhancing drought, salt and heat tolerance of other plant species, too.
     In this work, the results showed that genes related to tolerance might present some unknown function in addition to some identified function of corresponding genes in glycophyte through analyzing characterization of SaVP1and KcNHX1from eremophytes. Our research will expand the sources of stress-tolerance genes, and provide an important reference for the development and utilization of eremophytes, which would benefit crop breeding and the study of plant resistance mechanism.
引文
1.陈菊培.盐胁迫下植物细胞吸收Na+的可能途径.海南大学学报自然科学版,2005,23(4):383-390
    2.陈阳,王贺,张福锁,郗金标,何奕昆.新疆荒漠盐碱生境柽柳盐分分泌特点及其影响子.生态学报,2010,30(2):511-518
    3.付畅,孙玉刚,傅桂荣.盐生植物耐盐分子机制的研究进展.生物技术通报,2013,2013(1):1-7
    4.高建国,姚清林,强祖基,黄树桃,杜乐天,赵永安,王涌泉,刘京晶,郭增建,黄定华,王彰贵,贾燕.苏门答腊地震海啸影响中国华南天气的初步研究.中国首届灾害链学术研讨会论文集.气象与减灾研究,2007,26(2):8-16
    5.高志民,彭镇华.甜菜碱合成调控基因共表达载体的构建与抗盐初步研究.林业科学研究,2005,18(3):231-235
    6.韩军丽,赵可夫.植物盐腺的结构、功能和泌盐机理的探讨.山东师范大学学报(自然科学版),2001,16(2):194-198
    7.胡红红.水稻逆境相关转录因子的分离和功能鉴定.[博士学位论文].武汉:华中农业大学图书馆,2006
    8.胡佳.鲟鱼目部分种类基于线粒体CO I基因的分子进化研究.[硕士学位论文].武汉:华中农业大学图书馆,2010
    9.贾磊,安黎哲.花花柴脱盐能力及脱盐结构研究.西北植物学报,2004,24(3):510-515
    10.李禄军,蒋志荣,李正平,邵玲玲.树种抗旱性的综合评价及其抗旱指标的选取.水土保持研究,2006,13(6):253-254
    11.李悦,陈忠林,王杰,徐苏南,侯伟.盐胁迫对翅碱蓬生长和渗透调节物质浓度的影响.生态学杂志,2011,30(1):72-76
    12.刘祖洞.分子进化与中立说.遗传,1987,9(2):48-51
    13.吕素莲.转betA和TsVP基因提高棉花耐盐、耐旱性的研究.[博士学位论文].济南:山东大学图书馆,2007
    14.马淼,李博,陈家宽.植物对荒漠生境的趋同适应.生态学报,2006,26(11):3861-3869
    15.毛伟,李玉霖,赵学勇,黄迎新,罗亚勇,赵玮.3种藜科植物叶特性因子对土 壤养分、水分及种群密度的响应.中国沙漠,2009,29(3):468-473
    16.彭志红,彭克勤,胡家金,萧浪涛.渗透胁迫下植物脯氨酸积累的研究进展.中国农学通报,2002,18(4):80-83
    17.司家钢,孙日飞.高温胁迫大白菜耐热性相关生理指标的影响.中国蔬菜,1995,(4):4-6
    18.(美)泰兹,(美)奇格尔主编;宋纯鹏,王学路.植物生理学(第四版),科学出版社,北京.2009
    19.杨铮,钟鸣,张丽.甜菜碱合成途径及其在基因工程育种中的应用.分子植物育种,2006,4(3(S)):67-72
    20.余淑文,汤章城.植物生理与分子生物学.科学出版社,第二版,北京.1999
    21.张道远,尹林克,潘伯荣.柽柳泌盐腺结构、功能及分泌机制研究进展.西北植物学报,2003,23(1):190-194
    22.张满效,安黎哲,拓陈.植物在渗透胁迫下信号转导的级联机制.兰州理工大学学报,2004,30(2):78-81
    23.赵可夫,李法曾,张福锁.中国盐生植物(第二版),科学出版社,北京.2013
    24. Aharon G S, Apse M P, Duan S, Hua X, Blumwald E. Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant and soil,2003,253 (1):245-256
    25. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399
    26. Apse M P, Aharon G S, Snedden W A, Blumwald E. Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science,,1999, 285:1255-1258
    27. Apse M P, Blumwald E. Engineering salt tolerance in plants. Current Opinion in Biotech,2002,13 (2):146-150
    28. Babes V. Beobachtungen liber die metachromatischen Korperchen, Sporenbildung, Verzweigung, Kolbenund Kapselbildung pathogener Bakterien. Medical Microbiology and Immunology,1895,20 (1):412-437
    29. Baisakh N, Ramanarao M V, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A. Enhanced salt stress tolerance of rice plants expressing a vacuolar H^-ATPase subunit cl (SaVHAcl) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnol J,2012,10 (4):453-464
    30. Baltscheffsky H, Persson B, Schultz A, Perez-Castineira J, BALTSCHEFFSKY M. Origin and evolution of very early sequence motifs in enzymes. Life in the universe Kluwer Academic Publishers, Dordrecht, The Netherlands,2004, 107-110
    31. Baltscheffsky H, Von Stedingk L V, Heldt H W, Klingenberg M. Inorganic pyrophosphate:formation in bacterial photophosphorylation. Science,1966,153 (3740):1120-1122
    32. Baltscheffsky M. Inorganic pyrophosphate and ATP as energy donors in chromatophores from Rhodospirillum rubrum. Nature,1967,216:241-243
    33. Baltscheffsky M, Schultz A, Baltscheffsky H. H.H+-proton-pumping inorganic pyrophosphatase:a tightly membrane-bound family. FEBS Lett,1999,452 (3): 121-127
    34. Baltscheffsky N G H H. Links Between Hydrothermal Environments, Pyrophos-phate, Na+, and Early Evolution. Orig Life Evol Biosph,2011,41 (5):485-495
    35. Baron K N, Schroeder D F, Stasolla C. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproduc-tive stage of development in Arabidopsis thaliana. Plant Sci,2012, (188-189): 48-59
    36. Bassil E, Tajima H, Liang Y C, Ohto M, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E. The Arabidopsis Na+/H+antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell,2011,23 (9):3482-3497
    37. Bavita A, Shashi B, Navtej S B. Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian J Exp Biol,2012,50 (5):372-378
    38. Belogurov G A, Lahti R. A lysine substitute for K+. A460K mutation eliminates K+dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. JBiol Chem,2002,277 (51):49651-49654
    39. Bertorello A M, Zhu J K. SIK1/SOS2 networks:decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Archiv European JPhysiol, 2009,458 (3):613-619
    40. Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells. Biochimica et Biophysica Acta,2000,1465 (1):140-151
    41. Brini F, Hanin M, Mezghani I, Berkowitz G A, Masmoudi K. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. JExp Bot,2007,58 (2):301-308
    42. Britten C J, Turner J C, Rea P A. Identification and purification of substrate-binding subunit of higher plant H+-translocating inorganic pyrophosphatase. FEBS Lett,1989,256(1):200-206
    43. Brosche M, Overmyer K, Wrzaczek M, Kangasjarvi J, Kangasjarvi S. Stress signaling III:Reactive oxygen species (ROS). Abiotic Stress Adaptation in Plants, 2010,91-102
    44. Cecchetti V, Altamura M M, Falasca G, Costantino P, Cardarelli M. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell,2008,20 (7):1760-1774
    45. Chanson A, Pilet P E. Target molecular size and sodium dodecyl sulfate-polyacry-lamide gel electrophoresis analysis of the ATP-and pyrophosphate-dependent proton pumps from maize root tonoplast. Plant Physiol,1989,90 (3):,934-938
    46. Chen S, Polle A. Salinity tolerance of Populus. Plant Biology,2010,12 (2): 317-333
    47. Cho J I, Burla B, Lee D W, Ryoo N, Hong S K, Kim H B, Eom J S, Choi S B, Cho M H, Bhoo S H. Expression analysis and functional characterization of the monosaccharide transporters, OsTMTs, involving vacuolar sugar transport in rice (Oryza sativa). New Phytologist,2010,186 (3):657-668
    48. Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,1998,16 (6):735-743
    49. Darginaviciene J, Pasakinskiene I, Maksimov G, Rognli O A, Jurkoniene S, Sveikauskas V, Bareikiene N. Changes in plasmalemma K+Mg2+-ATPase dephosphorylating activity and H+ transport in relation to seasonal growth and freezing tolerance of Festuca pratensis Huds. J Plant Physiol,2008,165 (8): 825-832
    50. Davenport R. Glutamate receptors in plants. Annals of Botany,2002,90 (5): 549-557
    51. De Angeli A, Monachello D, Ephritikhine G, Frachisse J M, Thomine S, Gambale F, Barbier-Brygoo H. Review. CLCA-mediated anion transport in plant cells. Philos Trans R Soc Lond B Biol Sci,2009,364 (1514):195-201
    52. Demidchik V, Maathuis F J. Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development. New Phytologist,2007, 175 (3):387-404
    53. Docampo R, Moreno S N. Acidocalcisomes. Cell Calcium,2011,50 (2):113-119
    54. Docampo R, Scott D A, Vercesi A E, Moreno S. Intracellular Ca2+storage in acidocalcisomes of Trypanosoma cruzi.Biochem J,1995,310:1005
    55. Docampo R, Ulrich P, Moreno S N J. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philosophical Transactions of the Royal Society B:Biological Sci,2010,365 (1541):775-784
    56. Dong Q L, Liu D D, An X H, Hu D G, Yao Y X, Hao Y J. MdVHPl encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol,2011,168 (17):2124-2133
    57. Doyle S M, Diamond M, McCabe P F. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. JExp Bot,2010,61 (2):473-482
    58. Dreyer I, Horeu C, Lemaillet G, Zimmermann S, Bush DR, Alonso Rodriguez-Navarro, Daniel P. Schachtman, Edgar P. Spalding, Herve'Sentenac and Richard F. Gaber. Identification and characterization of plant trans-porters using heterologous expression systems.1999. JExp Bot,50:1073-1087
    59. Drozdowicz Y M, Kissinger J C, Rea P A. AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol,2000,123 (1):353-362
    60. Drozdowicz Y M, Rea P A. Vacuolar H+ pyrophosphatases:from the evolutionary backwaters into the mainstream. Trends in plant sci,2001,6 (5):206-211
    61. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno M J, Alcobendas R, Artlip T, Hernandez J A. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. JExp Bot,2011,62 (8):2599-2613
    62. Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta,2011,233 (1): 175-188
    63. Gassmann W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. The Plant J,1996,10 (5):869-882
    64. Gaxiola R A, Li J, Undurraga S, Dang L M, Allen G J, Alper S L, Fink G R. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A,2001,98 (20):11444-11449
    65. Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem,2010,48 (12):909-930
    66. Gouiaa S, Khoudi H, Leidi E O, Pardo J M, Masmoudi K. Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol, 2012,79 (1-2):137-155
    67. Guan B, Hu Y, Zeng Y, Wang Y, Zhang F. Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHXl) from Halostachys caspica. Mol Biol Rep,2011,38 (3):1889-1899
    68. Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol,2000,51: 463-499
    69. Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters:a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ,2010,33 (4): 552-565
    70. Hedlund J, Cantoni R, Baltscheffsky M, Baltscheffsky H, Persson B. Analysis of ancient sequence motifs in the H+-PPase family. FEBS J,2006,273 (22): 5183-5193
    71. Horie T, Schroeder J I. Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol,2004,136 (1):2457-2462
    72. Horie T; Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant J,2001,27 (2):129-138
    73. Jaspers P, Kangasjarvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plantarum,2010,138 (4):405-413
    74. Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants. FEBS Lett,2007,581 (12):2237-2246
    75. Kohler C, Merkle T, Neuhaus G. Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J,1999,18 (1):97-104
    76. Koonin E V. Orthologs, paralogs, and evolutionary genomics 1. Annu Rev Genet, 2005,39:309-338
    77. Kronzucker H J, Britto D T. Sodium transport in plants:a critical review. New Phytologist,2011,189 (1):54-81
    78. Kudla J, Batistic O, Hashimoto K. Calcium signals:the lead currency of plant information processing. Plant Cell,2010,22 (3):541-563
    79. Lebaudy A, Very A A, Sentenac H. K+ channel activity in plants:Genes, regulations and functions. FEBS Lett,2007,581 (12):2357-2366
    80. Lerner HR. Introduction to the response of plants to environmental stresses. In Plant Responses to Environmental Stresses, ed. HR Lerner, New York/Basel: Marcel Dekker,1999,1-26.
    81. Li J, Yang H, Peer W A, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards E L, Krizek B, Murphy A S, Gilroy S, Gaxiola R. Arabidopsis H+ -PPase AVP1 regulates auxin-mediated organ development. Science,2005,310:121-125
    82. Liu J, Zhu J K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA,1997,94 (26): 14960-14964
    83. Liu L, Wang Y, Wang N, Dong Y Y, Fan X D, Liu X M, Yang J, Li H Y. Cloning of a Vacuolar H+-pyrophosphatase Gene from the Halophyte Suaeda corniculata whose Heterologous Overexpression Improves Salt, Saline-alkali and Drought Tolerance in Arabidopsis. JIntegr Plant Biol,2011,53 (9):731-742
    84. Liu L, Zeng Y, Pan X, Zhang F. Isolation, molecular characterization, and functional analysis of the vacuolar Na+/H+antiporter genes from the halophyte Karelinia caspica. Mol Biol Rep,2012,39:7193-7202
    85. Liu Q X, Zhang Q S, Burton R A, Shirley N J, Atwell B J. Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol Biol,2010,72:47-60
    86. Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photo synthetic performance. Plant Cell Physiol,2008,49 (8): 1150-1164
    87. Lv S L, Lian L J, Tao P L, Li Z X, Zhang K W, Zhang J R. Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta,2009,229 (4):899-910
    88. Maeshima M, Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. JBiol Chem, 1989,264 (33):20068-20073
    89. Mitsuda N, Enami K, Nakata M, Takeyasu K, Sato M H. Novel type Arabidopsis thaliana H+-PPase is localized to the Golgi apparatus. FEBS Lett,2001,488 (1): 29-33
    90. Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci,2006,11(1):15-19
    91. Mittler R, Blumwald E. Genetic engineering for modern agriculture:challenges and perspectives. Annu Rev Plant Biol,2010,61:443-462
    92. Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends in Bioche Sci,2012,37 (3):118-125
    93. Moreno S, Zhong L. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochemical J,1996,313:655-659
    94. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol,2008, 59:651-681
    95. Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H^-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J,2011,9(1): 88-99
    96. Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Current opinion in plant biology,2011,14 (3):290-295
    97. Perez-Castineira J R, Alvar J, Ruiz-Perez L M, Serrano A. Evidence for a wide occurrence of proton-translocating pyrophosphatase genes in parasitic and free-living protozoa. Biochem Biophys Res Commun,2002,294 (3):567-573
    98. Perez-Castineira J R, Lopez-Marques R L, Losada M, Serrano A. A thermostable K+-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima. FEBS Lett,2001,496 (1):6-11
    99. Plett D C, Maller I S. Na+ transport in glycophytic plants:what we know and would like to know. Plant, Cell and Environ,2010,33:612-626
    100. Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo J M, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell,2007,19 (4):1415-1431
    101. Rea P A, Britten C J, Sarafian V. Common identity of substrate binding subunit of vacuolar H+-translocating inorganic pyrophosphatase of higher plant cells. Plant Physiol,1992a,100 (2):723-32
    102. Rea P A, Kim Y, Sarafian V, Poole R J, Davies J M, Sanders D. Vacuolar H+-translocating pyrophosphatases:a new category of ion translocase. Trends Biochem Sci,1992b,17 (9):348-353
    103. Rea P A, Poole R J. Vacuolar H+-translocating pyrophosphatase. Annu Rev plant Biol,1993,44(1):157-180
    104. Ritter M, Schratzberger P, Rossmann H, W11E, Seiler K, Seidler U, Reinisch N, K hler C, Zwierzina H, Lang H. Effect of inhibitors of Na+/H+-exchange and gastric H+/K+ ATPase on cell volume, intracellular pH and migration of human polymorphonuclear leucocytes. British J of pharmacology,1998,124 (4): 627-638
    105. Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol,2002,130(3):1143-1151
    106. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, and Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol,2004,134(4):1683-1696
    107. Rodriguez-Rosales M P, Galvez F J, Huertas R, Aranda M N, Baghour M, Cagnac O, Venema K. Plant NHX cation/proton antiporters. Plant Signaling & Behavior,2009,4 (4):265-276
    108. Rubio F, Gassmann W, Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science,1995,270(5242):1660-1663
    109. Sakata T, Higashitani A. Male sterility accompanied with abnormal anther development in plants-genes and environmental stresses with special reference to high temperature injury. International J Plant Develop Biol,2008,2 (1):42-51
    110. Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A. Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci U S A,2010,107 (19):8569-8574
    111. Sarafian V, Kim Y, Poole R J, Rea P A. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci USA,1992,89 (5):1775-1779
    112. Sato M H, Maeshima M, Ohsumi Y, Yoshida M. Dimeric structure of H+-transllocating pyrophosphatase from pumpkin vacuolar membranes. FEBS J 1991,290(1.2):177-180
    113. Serrano A, Perez-Castineira J R, Baltscheffsky H, Baltscheffsky M. Proton-pumping inorganic pyrophosphatases in some archaea and other extremophilic prokaryotes. J bioenergetics and biomembranes,2004,36 (1):127-133
    114. Serrano A, Perez-Castineira J R, Baltscheffsky M, Baltscheffsky H. H+-PPases: yesterday, today and tomorrow. IUBMB Life,2007,59 (2):76-83
    115. Seufferheld M J, Kim K M, Whitfield J, Valerio A, Caetano-Anolles G. Evolution of vacuolar proton pyrophosphatase domains and volutin granules:clues into the early evolutionary origin of the acidocalcisome. Biol Direct,2011,6:50,1-15
    116. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol,1997,115 (2):327-334
    117. Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. JExp Bot,2007,58 (2):221-227
    118. V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge, UK:Cambridge Univ. Press.2007,996.
    119. Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol,2009,149 (2): 1141-1153
    120. Suzuki Y, Yasunaga T, Ohkura R, Wakabayashi T, Sutoh K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature, 1998,396 (6709):380-383
    121. Szteyna K, Nurbaevaa E S M K, Yanga W, Munzera P, Kunzelmannb K, Langa F, Shumilinaa E. Expression and Functional Significance of the Ca+-Activated Cl'-Channel AN06 in Dendritic Cells. Cell Physiol Biochem,2012,30: 1319-1332
    122. Tan J F, Tu L L, Deng F L, Wu R, Zhang X L. Exogenous Jasmonic Acid Inhibits Cotton Fiber Elongation. J Plant Growth Regulation,2012,31 (4):599-605
    123. Tu L L, Zhang X L, Liang S G, Liu D Q, Zhu L F, Zeng F C, Nie Y C, Guo X P, Deng F L, Tan J F, Xu L. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep,2007,26 (8):1309-1320
    124. Uozumi N, Kim E J, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E P, Nakamura T, Schroeder J I. The Arabidopsis HKT1 gene homolog mediates inward Na+currents in Xenopus laevis oocytes and Na+uptake in Saccharomyces cerevisiae. Plant Physiol,2000,122 (4):1249-1260
    125. Wang B, Luttge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. JExp Bot,2001, 52 (365):2355-2365
    126. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003,218 (1):1-14
    127. Wang Y, Xu H, Zhang G, Zhu H, Zhang L, Zhang Z, Zhang C, Ma Z. Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat. J Genet Genomics,2009,36 (12):711-720
    128. Weare BC. How will changes in global climate influence California? Calif. Agric. 2009.63:59-66
    129. White P J. The pathways of calcium movement to the xylem. JExp Bot,2001,52 (358):891-899
    130. Wiame J. Etude d'une substance polyphosphoree, basophile et metachromatique chez les levures. Biochimica et Biophysica Acta,1947,1:234-255
    131. Yang H, Knapp J, Koirala P, Rajagopal D, Peer W A, Silbart L K, Murphy A, Gaxiola R A. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J,2007,5 (6):735-745
    132. Ye C Y, Zhang H C, Chen J H, Xia X L, Yin W L. Molecular characterization of putative vacuolar NHX-type Na+/H+exchanger genes from the salt-resistant tree Populus euphratica. Physiol Plantarum,2009,137 (2):166-174
    133. Yeo A. Molecular biology of salt tolerance in the context of whole-plant physiology. JExp Bot,1998,49 (323):915-929
    134. Zhang J A, Li J Q, Wang X C, Chen J. OVP1, a Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiol Bioch,2011,49 (1):33-38
    135. Zhang X Q, Wu K L, Xue D W. Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes. J Zhejiang University (Agriculture and Life Sci),2009,35 (3):315-320
    136. Zhang Z, Liu Q, Song H, Rong X, Ismail A. The Salinity Tolerance of Rice (Oryza sativa L.) Genotypes as Affected by Nutrients (K+, Ca+ and Mg+) at Seedling Stage. Sci Agric Sin,2010,43 (15):3088-3097
    137. Zhen R G, Kim E J, Rea P A. Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. JBiol Chem,1997,272 (35):22340-22348
    138. Zhu J K. Plant salt tolerance. Trends Plant Sci,2001,6 (2):66-71
    139. Zhu J K. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003,6 (5):441-445
    140. Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002,53:247-273
    141. Zhu J K, Qiu Q S, Guo Y, Dietrich M A, Schumaker K S. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA,2002,99 (12):8436-8441
    142. Zhu LF, Tu LL, Zeng FC, Liu DQ, Zhang XL. An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agr Sinica,2005,31:1657-1659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700