玉米C组促分裂原活化蛋白激酶(MAPK)基因ZmMPK7的分离及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MAPK级联途径是存在于真核生物中进化上保守的信号通路,在细胞信号的转换和放大过程中起重要作用。MAPK级联途径由三个成员组成,分别是MAPK、MAPKK (MAPK kinase)及MAPKKK(MAPKK kinase),此三个信号组分按照MAPKKK-MAPKK-MAPK的方式依次磷酸化将外源信号级联放大向下传递。植物中的MAPK通常分为四组,即A, B, C, D。关于A, B组MAPK的报道较多,研究较为详细。关于C组MAPK的分析较为欠缺。但近年研究发现,C组MAPK同样参与介导环境胁迫及信号分子(如ABA, H_2O_2等)的传递。由于不同物种中C组MAPK编码基因相继报道,所以有理由推测不同物种间C组MAPK调控的信号转导通路可能存在某些相似性。玉米作为一种重要的禾本科粮食作物,其C组MAPK基因迄今未见报道。ABA,H2O2是植物逆境信号转导中重要的信号分子, C组MAPK是否介导这两种信号的传递?与抗氧化系统关系如何?这一问题亟待回答。本研究从玉米栽培种鲁单50幼苗中分离到一个C组MAPK基因,命名为ZmMPK7,对其序列特征、表达模式、以及过表达转基因烟草的抗逆生理功能做了初步研究。主要结果如下:
     1. GenBank中玉米MAPK基因信息的收集及整理
     根据拟南芥20个MAPK的基因序列,逐一在GenBank中比对,共得到39条玉米序列的信息。其中许多基因序列存在重复提交的现象。经分析后共保留下12条特异的基因全序列,它们都具有植物MAPK的序列特征,分属于四组,即A, B, C, D。其中C,D组成员占大多数,由此推测C,D组MAPK的多样性可能与其介导信号转导的特异性有关。
     2.玉米C组MAPK基因ZmMPK7的分离及序列分析
     根据玉米MAPK基因信息分析结果,设计特异引物从玉米幼苗中特异性扩增DNA片段。该扩增片段包含一个1113bp的ORF,编码370个氨基酸,预测蛋白质分子量为42.5kD,命名为ZmMPK7。序列分析显示,ZmMPK7包含11个植物MAPK保守的Ser/Thr蛋白激酶亚区以及一个TEY基序。进化树分析显示其与水稻OsMSRMK3,拟南芥ATMPK1、ATMPK2、ATMPK7、ATMPK14,烟草NtNTF3及豌豆PsMPK2的同源性较高,属于C组MAPK。
     3. ZmMPK7的表达分析
     为了研究ZmMPK7对不同胁迫刺激的响应模式,我们首先进行Northern blot分析。ZmMPK7具有较高的本底水平表达,100μM ABA或1.5 mM H_2O_2明显诱导该基因的表达,而PEG-6000及4oC低温处理未能检测到该基因的诱导表达。ABA及H2O2对该基因的诱导呈现不同的时间效应,并且依赖于Ca~(2+)的存在。Imidazole、Tiron及DMTU为ROS效应剂,其中Imidazole是NADPH oxidase的抑制剂,而Tiron及DMTU是细胞内源ROS淬灭剂。使用以上药剂预处理玉米幼苗,半定量RT-PCR分析显示不同程度地抑制了ABA对ZmMPK7的诱导表达。正常生长状态下的玉米幼苗,ZmMPK7的本底表达呈现稳态水平,未检测到节律周期性。
     4.过表达ZmMPK7的转基因烟草在渗透胁迫下抗氧化能力增强
     为进一步研究ZmMPK7在介导ABA、H2O2信号转导过程中的详细功能,本研究构建该基因的正义过表达载体,农杆菌介导法转化烟草,挑取T3代纯合阳性转基因株系及野生型烟草进行生理分析。发现渗透胁迫下转基因烟草各株系内H2O2及丙二醛(MDA)积累量较野生型烟草少。以PEG-6000模拟渗透胁迫处理烟草,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的总酶活在转基因烟草和野生型烟草中未检测到明显差异,而过表达ZmMPK7显著增强了转基因烟草的过氧化物酶(POD)及抗坏血酸过氧化物酶(APX)总酶活。转基因烟草各株系的总抗坏血酸(AsA)及脱氢抗坏血酸(DAsA)含量明显高于野生型烟草。根据以上证据有理由推测过表达ZmMPK7的转基因烟草抗氧化系统得以改善,渗透胁迫下受到的氧化伤害较轻。此外,利用不同浓度的甲基紫精(MV)模拟氧化胁迫,分析烟草幼苗生长受到的影响。结果显示转基因各株系在较高或较低浓度的MV处理培养基中,均表现为较好的长势。该证据再次说明过表达ZmMPK7的转基因烟草在耐受氧化胁迫方面的优势。
     5. ZmMPK7定位于细胞核
     生物信息学软件预测ZmMPK7细胞核内定位的几率较高,瞬时转化ZmMPK7-GFP于洋葱表皮细胞的实验验证了该推测,即ZmMPK7为细胞核定位。
     6.玉米B组MAPKK基因ZmMKK3的分离及序列分析
     按照前文相似的分析方式,对GenBank中关于玉米MAPKK推测的基因信息收集整理,根据整理结果设计特异引物,从玉米幼苗中分离到一段DNA序列,该序列具有植物MAPKK的序列特征,包含有1572bp的ORF,编码523个氨基酸,将其命名为ZmMKK3。序列分析显示ZmMKK3含有所有植物MAPKK的保守氨基酸亚区以及磷酸化一致序列S/TxxxxxS/T。进化树分析显示与水稻OsMKK3、拟南芥AtMKK3同源性最高,同属于B组MAPKK。由于已有文献证明拟南芥AtMKK3是C组MAPK的上游激酶,与拟南芥AtMPK7直接互作。所以根据序列同源性分析,我们推测玉米ZmMKK3与ZmMPK7可能也存在互作关系。此推测尚需进一步验证。
The MAPK cascade is an evolutionarily conserved signaling pathway among eukaryotic organisms and plays an important role in the conversion and amplification of extracellular stimuli. The MAPK cascades are composed of MAPK, MAPKK (MAPK kinase) and MAPKKK (MAPKK kinase). They transfer signals through phosphorylation of MAPKKK-MAPKK-MAPK in turn. In plant, MAPKs are classified into four major groups designated A-D according to their sequence homology. Many MAPKs belonging to groups A and B have been studied. Little information, however, is available for group C MAPKs, although recent studies have demonstrated that some group C members are in response to environmental stress and hormonal stimuli, including ABA and H2O2. Since the responses of some group C MAPKs in different species have been characterized, there is evidence that they may have similar functions across species. However, no data regarding group C MAPKs from maize are currently available. There are also no available data that detail how they mediate ABA or H2O2 signaling. In particular, the relationship between group C MAPKs and antioxidant defense systems warrants further research. In the present study, a series of studies based on the materials of Ludan50 seedlings (Zea mays L.) have been conducted on the ZmMPK7 isolation, sequence comparison, expression analysis and further functional studies on the over-expressing ZmMPK7 transgenic tobacco. The main results are as follows:
     1. Collecting and analyzing MAPK genes information of Zea mays from GenBank
     According to the sequences of the 20 Arabidopsis MAPK genes, 39 pieces of information on gene accession have been identified from GenBank. Among them, some are repeated in completed sequences or in partial sequences. After the analysis, 12 specific gene completed sequences were reserved and can be classified into four groups, A-D. Most of the members belong to the Group C and D, which suggests that the diversity of these MAPKs may related to the specific activation of signal transduction.
     2. Isolation and characterization of a group C MAPK gene ZmMPK7 from Zea mays
     According to the sequences analysis about the MAPK genes information in maize, the specific primers were designed and a DNA fragment was amplified from the maize seedlings. The isolated fragment of the MAPK gene from maize contains a 1113 bp ORF, which encodes a protein of 370 amino acids with a calculated molecular weight of about 42.5 kDa. An alignment of the amino acid sequences of ZmMPK7 and MAPKs from other plants shows that the ZmMPK7 protein contains all 11 subdomains of protein kinases with serine/threonine specificity and the TEY motif. A phylogenetic tree analysis indicates that it is most homologous to Oryza sativa OsMSRMK3, Arabidopsis thaliana ATMPK1, ATMPK2, ATMPK7 and ATMPK14, Nicotiana tabacum NtNTF3, and Pisum sativum PsMPK2, all of which are classified as group C MAPKs.
     3. Expression analysis of ZmMPK7 in Zea mays
     In order to identify the stressors that elicit a response from ZmMPK7, Northern blot analysis was carried out firstly. The ZmMPK7 gene had a relatively high level of basal expression. An increase in the expression of ZmMPK7 was detected in samples treated with 100μM ABA or 1.5 mM H_2O_2, but the samples exposed to 15% PEG-6000 or 4oC demonstrated no obvious increase in ZmMPK7 expression. ABA and H_2O_2-induced expression of ZmMPK7 was time-dependent in a Ca~(2+)-dependent way. Semi-quantitative RT-PCR analysis indicated that several ROS manipulators, including imidazole, an inhibitor of NADPH oxidase, and the H2O2 scavengers Tiron and dimethylthiourea (DMTU) may inhibite the upregulation caused by ABA to varying extents. The basal ZmMPK7 mRNA level was relatively stable across the photoperiods and no rhythmic expression is detected in maize seedlings.
     4. Over-expressing ZmMPK7 in Nicotiana tabacum provides protection against ROS-mediated injury under osmotic stress
     To further test the roles of ZmMPK7 in ABA and H2O2-mediated signaling, ZmMPK7 was over-expressed in transgenic tobacco plants under control of the CaMV 35S promoter. Homozygous T3 seeds of transgenic tobacco and wild-type lines were selected for the physiological analysis. It revealed that ZmMPK7-overexpressing tobacco plants showed less H2O2 accumulation and less MDA content compared with wild-type lines under osmotic stress treatment. After PEG-6000 treatment, no obvious differences in total SOD and CAT activities were detected between wild-type and transgenic tobacco plants. However, differences were detected in total peroxidase (POD) and ascorbic acid peroxidase (APX) activities. In the ZmMPK7-overexpressing tobacco lines, total ascorbic acid and dehydroascorbic acid contents were detected higher than those in wild-type tobacco. It is reasonable to speculate that the enhanced antioxidant system in transgenic tobacco plants may contribute to the protection against ROS-mediated injury under osmotic stress. Moreover, Methyl viologen (MV) in different concentration was used to estimate the effects of the oxidative stress on the growth of the wild-type and transgenic tobacco plants. It showed that the transgenic tobacco lines grew better under both high and low MV concentrations. This suggests again the advantages of anti-oxidative characterization in the ZmMPK7-overexpressing tobacco lines.
     5. ZmMPK7 is localized in the nucleus
     Bioinformatics analysis showed it occupied the nucleus localization characterization. Transient expression of ZmMPK7-GFP fusion gene in onion (Allium cepa) epidermal cells confirmed that ZmMPK7 is a nuclear-localized protein.
     6. Isolation and characterization of a MAPKK gene ZmMKK3 in Zea mays
     Similar analysis about the putative sequence information of maize MAPKK in GenBank was conducted. We isolated a specific DNA fragment from maize seedlings, which was speculated to encode a MAPKK. The isolated fragment contains a 1572 bp ORF, which encodes a protein of 523 amino acids and it was designated as ZmMKK3. An alignment of the amino acid sequences of ZmMKK3 and MAPKKs from other plants shows that the ZmMKK3 protein contains all the subdomains of the plant MAPKKs and the consensus sequence S/TxxxxxS/T. A phylogenetic tree analysis indicates that it is most homologous to Oryza sativa OsMKK3 and Arabidopsis thaliana AtMKK3, all of which are classified as group B MAPKKs. It has been indicated in a previous report that the group B MAPKK member, AtMKK3, is upstream of AtMPK7. So we speculated that ZmMKK3 may also interact with ZmMPK7. Further confirmation is required.
引文
梁小娥,张大鹏,贾文锁(2000) ,苹果和葡萄果实蛋白激酶特性分析,植物生理学报, 26(3):257-262
    李亚,吴馥梅(2000) ,神经递质释放的胞吐过程膜融合的新观点,细胞生物学杂志, 22(4):181-184
    刘强,张勇,陈受宜(2000) ,干旱\高盐及低温诱导的植物蛋白激酶,科学通报, 6:561-566
    江静,宋纯鹏(2005),植物胁迫信号转导过程中活性氧和促细胞分裂原活化蛋白激酶的调节作用,植物生理与分子生物学学报,31:1-10
    彭立新,束怀瑞,李德全(2004),水分胁迫下苹果属3种植物抗氧化酶活性的变化,中国生态农业学报,12:44-46
    彭立新,郑成超,李德全,谷令坤,束怀瑞(2003),西府海棠(Malus micromalus)MAPK基因的克隆及表达特性分析,植物生理与分子生物学学报,29:431-436
    孙大业,郭颜林,马力耕,崔素娟主编(2001) ,〈细胞信号转导〉,北京科学出版社王关林,方宏筠主编(2004) ,〈植物基因工程〉,北京科学出版社
    武维华,赵云云(1995),植物细胞G蛋白研究进展,植物学报,38:406-413
    许志宏,刘春明主编(1998),〈植物发育分子机理〉,北京科学出版社
    杨洪强,梁小娥(2001),蛋白激酶与植物逆境信号传递途径,植物生理学通讯,37(3):185-191
    赵世杰主编(1998),〈植物生理学实验指导〉,北京中国农业出版社
    朱玉贤,李毅主编(1997),〈现代分子生物学〉,北京高等教育出版社
    Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19: 1665-1681
    Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003). Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun, 300: 775-783
    Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J (2004). Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J , 40: 512-522
    Allen RD (1995). Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol, 107: 1049-1054
    Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995). Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol, 36: 1687-1691
    Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55: 373-399
    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415: 977-983
    Assmann SM, Wu WH (1994). Inhibition of guard-cell inward K+ channels by abscisic acid: links and gaps in the signal transduction chain. Symp Soc Exp Biol, 48: 193-202
    Bae H, Kim SH, Kim MS, Sicher RC, Lary D, Strem MD, Natarajan S, Bailey BA (2008). The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Biochem, 46: 174-188
    Bailly C, El Maarouf Bouteau H, Corbineau F (2008). Seed dormancy alleviation and oxidative signaling. J Soc Biol, 202: 241-248
    Bakalovic N, Passardi F, Ioannidis V, Cosio C, Penel C, Falquet L, Dunand C (2006). PeroxiBase: a class III plant peroxidase database. Phytochemistry, 67: 534-539
    Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004). Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant, 121: 231-238
    Beaubois E, Girard S, Lallechere S, Davies E, Paladian F, Bonnet P, Ledoigt G, Vian A (2007). Intercellular communication in plants: evidence for two rapidly transmittedsystemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell Environ, 30: 834-844
    Beauchamp C, Fridovich I (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44: 276-287
    Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007). Specific and unspecific responses of plants to cold and drought stress. J Biosci, 32: 501-510
    Berberich T, Sano H, Kusano T (1999). Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol Gen Genet, 262: 534-542
    Bethke PC, Jones RL (1994). Ca2+-Calmodulin Modulates Ion Channel Activity in Storage Protein Vacuoles of Barley Aleurone Cells. Plant Cell, 6: 277-285
    Bodenhausen N, Reymond P (2007). Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact, 20: 1406-1420
    Bogre L, Calderini O, Binarova P, Mattauch M, Till S, Kiegerl S, Jonak C, Pollaschek C, Barker P, Huskisson NS, Hirt H, Heberle-Bors E (1999). A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell, 11: 101-113
    Brown GC, Hoek JB, Kholodenko BN (1997). Why do protein kinase cascades have more than one level? Trends Biochem Sci, 22: 288
    Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, Scarfi S, Millo E, De Flora A, Zocchi E (2007). Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA, 104: 5759-5764
    Burnett EC, Desikan R, Moser RC, Neill SJ (2000). ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot, 51: 197-205
    Calderini O, Bogre L, Vicente O, Binarova P, Heberle-Bors E, Wilson C (1998). A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci, 111 ( Pt 20): 3091-3100
    Calderini O, Glab N, Bergounioux C, Heberle-Bors E, Wilson C (2001). A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem, 276: 18139-18145
    Capell T, Bassie L, Christou P (2004). Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA, 101: 9909-9914
    Cardinale F, Meskiene I, Ouaked F, Hirt H (2002). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell, 14: 703-711
    Casson S, Gray JE (2008). Influence of environmental factors on stomatal development. New Phytol, 178: 9-23
    Chang C (2003). Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci, 8: 365-368
    Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008). Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. J Exp Bot, 59: 155-163
    Crowell DN, Huizinga DH, Deem AK, Trobaugh C, Denton R, Sen SE (2007). Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine. Plant J, 50: 839-847
    De Smet I, Zhang H, Inze D, Beeckman T (2006). A novel role for abscisic acid emerges from underground. Trends Plant Sci, 11: 434-439
    Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004). ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot, 55: 205-212
    Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001). Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol, 126: 1579-1587
    Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GE (2008). Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell, 20: 2681-2695
    Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell, 19: 3266-3279
    Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 33: 751-763
    Du J, Zhu Z, Li WC (2006). Over-expression of exotic superoxide dismutase gene MnSOD and increase in stress resistance in maize. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 32: 57-63
    Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci, 5: 199-206
    Fan LM, Zhao Z, Assmann SM (2004). Guard cells: a dynamic signaling model. Curr Opin Plant Biol, 7: 537-546
    Feldman LJ (1985). Root gravitropism. Physiol Plant, 65: 341-344
    Finkelstein RR, Gampala SS, Rock CD (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell, 14 Suppl: S15-45
    Frye CA, Tang D, Innes RW (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA, 98: 373-378
    Gao Y, Zeng Q, Guo J, Cheng J, Ellis BE, Chen JG (2007). Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J, 52: 1001-1013
    Garcia-Mata C, Lamattina L (2007). Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide, 17: 143-151
    Grill E, Himmelbach A (1998). ABA signal transduction. Curr Opin Plant Biol, 1: 412-418
    Guan LM, Zhao J, Scandalios JG (2000). Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J, 22: 87-95
    Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 11: 192-198
    Hardie DG (1999). PLANT PROTEIN SERINE/THREONINE KINASES: Classification and Functions. Annu Rev Plant Physiol Plant Mol Biol, 50: 97-131
    He C, Fong SH, Yang D, Wang GL (1999). BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact, 12: 1064-1073
    Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 125: 189-198
    Hirayama T, Shinozaki K (2007). Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci, 12: 343-351
    Hirt H (2000). Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA, 97: 2405-2407
    Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B (2000). Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot, 51: 177-185
    Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985). A Simple and General Method for Transferring Genes into Plants. Science, 227: 1229-1231
    Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000). Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol, 43: 103-111
    Hu X, Jiang M, Zhang A, Lu J (2005). Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 223: 57-68
    Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ (2000). ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol, 122: 1301-1310
    Hunter T (1995). Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell, 80: 225-236
    Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998). Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun, 253: 532-543
    Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J, 24: 655-665
    Im YJ, Han O, Chung GC, Cho BH (2002). Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cells, 13: 264-271
    Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P (2002). Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 84: 1127-1135
    Jiang J, Wang P, An G, Wang P, Song CP (2008). The involvement of a P38-like MAP kinase in ABA-induced and H2O2-mediated stomatal closure in Vicia faba L. Plant Cell Rep, 27: 377-385
    Jiang M, Zhang J (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 42: 1265-1273
    Jiang M, Zhang J (2002). Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 215: 1022-1030
    Jiang M, Zhang J (2002). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 53: 2401-2410
    Jiang M, Zhang J (2003). Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ, 26: 929-939
    Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S (2003). Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J, 33: 719-731
    Jonak C, Heberle-Bors E, Hirt H (1994). MAP kinases: universal multi-purpose signaling tools. Plant Mol Biol, 24: 407-416
    Jonak C, Okresz L, Bogre L, Hirt H (2002). Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol, 5: 415-424
    Jouannic S, Hamal A, Leprince AS, Tregear JW, Kreis M, Henry Y (1999). Characterisation of novel plant genes encoding MEKK/STE11 and RAF-related protein kinases. Gene, 229: 171-181
    Kant P, Kant S, Gordon M, Shaked R, Barak S (2007). STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol, 145: 814-830
    Kazuo S, Kazuko Yamaguchi-Shinozakif (1996). Molecular responses to drought and cold stress. Plant biotechnology, 7: 161-167
    Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell, 72: 427-441
    Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, Meskiene I (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 12: 2247-2258
    Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995). Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol, 108: 1387-1394
    Kim CY, Zhang S (2004). Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J, 38: 142-151
    Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002). Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol, 130: 2152-2163
    Kovtun Y, Chiu WL, Tena G, Sheen J (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 97: 2940-2945
    Kovtun Y, Chiu WL, Zeng W, Sheen J (1998). Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature, 395: 716-720
    Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002). An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell, 14: 1109-1120
    Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. Embo J, 22: 2623-2633
    Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003). Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol, 160: 347-353
    Lalle M, Visconti S, Marra M, Camoni L, Velasco R, Aducci P (2005). ZmMPK6, a novel maize MAP kinase that interacts with 14-3-3 proteins. Plant Mol Biol, 59: 713-722
    Lee J, Klessig DF, Nurnberger T (2001). A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell, 13: 1079-1093
    Lee MO, Cho K, Kim SH, Jeong SH, Kim JA, Jung YH, Shim J, Shibato J, Rakwal R, Tamogami S, Kubo A, Agrawal GK, Jwa NS (2008). Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta, 227: 981-990
    Lewis TS, Shapiro PS, Ahn NG (1998). Signal transduction through MAP kinase cascades. Adv Cancer Res, 74: 49-139
    Li J, Wang XQ, Watson MB, Assmann SM (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 287: 300-303
    Link V, Sinha AK, Vashista P, Hofmann MG, Proels RK, Ehness R, Roitsch T (2002). A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett, 531: 179-183
    Liu HY, Yu X, Cui DY, Sun MH, Sun WN, Tang ZC, Kwak SS, Su WA (2007). The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Res, 17: 638-649
    Liu Q, Xue Q (2007). Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol Biochem, 45: 6-14
    Liu Y, Zhang S (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell, 16: 3386-3399
    Lopez-Molina L, Mongrand S, Chua NH (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA, 98: 4782-4787
    Lovisolo C, Perrone I, Hartung W, Schubert A (2008). An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol, 180: 642-651
    Lu C, Han MH, Guevara-Garcia A, Fedoroff NV (2002). Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA, 99: 15812-15817
    Maiti IB, Wagner GJ, Yeargan R, Hunt AG (1989). Inheritance and Expression of the Mouse Metallothionein Gene in Tobacco: Impact on Cd Tolerance and Tissue Cd Distribution in Seedlings. Plant Physiol, 91: 1020-1024
    Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T (2002). Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo:analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J, 29: 637-647
    Menke FL, Kang HG, Chen Z, Park JM, Kumar D, Klessig DF (2005). Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant Microbe Interact, 18: 1027-1034
    Menke FL, van Pelt JA, Pieterse CM, Klessig DF (2004). Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell, 16: 897-907
    Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak C, Rodriguez PL, Jelinek H, Hirt H (2003). Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem, 278: 18945-18952
    Meskiene I, Hirt H (2000). MAP kinase pathways: molecular plug-and-play chips for the cell. Plant Mol Biol, 42: 791-806
    MAPK Group (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 7: 301-308
    McKersie BD, Bowley SR, Harjanto E, Leprince O (1996). Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiol, 111: 1177-1181
    McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D'Halluin K, Botterman J (1993). Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol, 103: 1155-1163
    Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998). Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett, 437: 56-60
    Mizoguchi T, Ichimura K, Shinozaki K (1997). Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol, 15: 15-19
    Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinaseand an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 93: 765-769
    Mockaitis K, Howell SH (2000). Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J, 24: 785-796
    Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA, 100: 358-363
    Moore K, Roberts LJ, 2nd (1998). Measurement of lipid peroxidation. Free Radic Res, 28: 659-671
    Mundree SG (2002). Physiological and molecular insights into drought tolerance. African Journal of Biotechnology, 1(2): 28–38.
    Munnik T, Ligterink W, Meskiene II, Calderini O, Beyerly J, Musgrave A, Hirt H (1999). Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J, 20: 381-388
    Nadeau JA (2009). Stomatal development: new signals and fate determinants. Curr Opin Plant Biol, 12: 29-35
    Nakagami H, Kiegerl S, Hirt H (2004). OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem, 279: 26959-26966
    Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett, 461: 205-210
    Nelson D, Salamini F, Bartels D (1994). Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum. Plant J, 5: 451-458
    Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001). The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev, 15: 352-363
    Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002). Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell, 109: 87-99
    Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999). Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol, 2: 128-134
    Nuhse TS, Peck SC, Hirt H, Boller T (2000). Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem, 275: 7521-7526
    Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett, 532: 279-282
    Orozco-Cardenas M, Ryan CA (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA, 96: 6553-6557
    Ortiz-Masia D, Perez-Amador MA, Carbonell J, Marcote MJ (2007). Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett, 581: 1834-1840
    Ortiz-Masia D, Perez-Amador MA, Carbonell P, Aniento F, Carbonell J, Marcote MJ (2008). Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta, 227: 1333-1342
    Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003). A MAPK pathway mediates ethylene signaling in plants. Embo J, 22: 1282-1288
    Park SY, Ryu SH, Jang IC, Kwon SY, Kim JG, Kwak SS (2004). Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweet potato and its expression in response to stress. Mol Genet Genomics, 271: 339-346
    Passardi F, Longet D, Penel C, Dunand C (2004). The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 65: 1879-1893
    Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007). PeroxiBase: the peroxidase database. Phytochemistry, 68: 1605-1611
    Pilon Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, Dun K van, Voogd E, Verwoerd TC (1998). Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol, 152: 525–532
    Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406: 731-734
    Penna S. (2003). Building stress tolerance through overproducing trehalose in transgenic plants. Trends in Plant Science, 8: 355-357
    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103: 1111-1120
    Peters S (2003). Resurrecting hope: Drought tolerant crop plants. Science in Africa http://www.scienceinafrica.co.za/2003/october/drought.htm
    Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L (1999). Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci USA, 96: 2435-2438
    Quimby BB, Wilson CA, Corbett AH (2000). The interaction between Ran and NTF2 is required for cell cycle progression. Mol Biol Cell, 11: 2617-2629
    Ren D, Yang H, Zhang S (2002). Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem, 277: 559-565
    Sakamoto A, Murata N (2000). Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot, 51: 81-88
    Samuel MA, Ellis BE (2002). Double jeopardy: both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell, 14: 2059-2069
    Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 23: 319-327
    Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001). Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell, 13: 113-123
    Schoenbeck MA, Samac DA, Fedorova M, Gregerson RG, Gantt JS, Vance CP (1999). The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol Plant Microbe Interact, 12: 882-893
    Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001). Guard Cell Signal Transduction. Annu Rev Plant Physiol Plant Mol Biol, 52: 627-658
    Schroeder JI, Kwak JM, Allen GJ (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 410: 327-330
    Scott P (2000). Resurrection plants and the secrets of eternal leaf. Annals of Botany, 85: 159-166
    Sekiya N, Yano K (2008). Stomatal density of cowpea correlates with carbon isotope discrimination in different phosphorus, water and CO2 environments. New Phytol, 179: 799-807
    Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995). Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science, 270: 1988-1992
    Seo S, Sano H, Ohashi Y (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell, 11: 289-298
    Shou H, Bordallo P, Wang K (2004). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot, 55: 1013-1019
    Smirnoff N (1998). Plant resistance to environmental stress. Curr Opin Biotechnol, 9: 214-219
    Spoel SH, Dong X (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe, 3: 348-351
    Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol, 134: 1536-1545
    Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A, Terauchi R, Kusano T (2004). A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J, 40: 586-595
    Tanaka K, Aono M, Saji H, Kubo A (1996). Stress tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Biochem Soc Trans, 24: 200S
    Tarczynski MC, Jensen RG, Bohnert HJ (1993). Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol. Science, 259: 508-510
    Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996). Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol, 112: 1703-1714
    Vilela BJ, Carvalho LC, Ferreira J, Amancio S (2007). Gain of function of stomatal movements in rooting Vitis vinifera L. plants: regulation by H2O2 is independent of ABA before the protruding of roots. Plant Cell Rep, 26: 2149-2157
    Wang W, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1-14
    Wang M, Van Duijn B, Schram AW (1991). Abscisic acid induces a cytosolic calcium decrease in barley aleurone protoplasts. FEBS Lett, 278: 69-74
    Wang P, Song CP (2008). Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol, 178: 703-718
    Wang Qinghua, Zhai Shumei, Zhang Yongsheng, Yin Xiaoyan, Zhang Juren (2005). Cloning and molecular characterization of a gene encoding MAP kinase from maize and its expression in E . coli. High Tech Lett, 11: 315-319
    Wilson ID, Neill SJ, Hancock JT (2008). Nitric oxide synthesis and signalling in plants. Plant Cell Environ, 31: 622-631
    Xing Y, Jia W, Zhang J (2007). AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J Exp Bot, 58: 2969-2981
    Xiong L, Yang Y (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15: 745-759
    Yang KY, Liu Y, Zhang S (2001). Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA, 98: 741-746
    Yap YK, Kodama Y, Waller F, Chung KM, Ueda H, Nakamura K, Oldsen M, Yoda H, Yamaguchi Y, Sano H (2005). Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol, 139: 127-137
    Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell, 15: 706-718
    Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001). Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol, 42: 1012-1016
    Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006). Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol, 141: 475-487
    Zhang S, Klessig DF (2001). MAPK cascades in plant defense signaling. Trends Plant Sci, 6: 520-527
    Zhang S, Liu Y (2001). Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell, 13: 1877-1889
    Zhu JK (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53: 247-273
    Zhang JX, Klueva NY, Wang Z, Wu R, Ho THD, Nguyen HT (2000). Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell. Dev. Biol.Plant, 36: 108–114
    Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007). Two calcium-dependent protein kinases,CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 19: 3019-3036
    Zwerger K, Hirt H (2001). Recent advances in plant MAP kinase signalling. Biol Chem, 382: 1123-1131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700