人与其他高等真核生物基因组isochore和超级保守序列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基因组测序技术的蓬勃发展,越来越多的全基因组序列完成测序。这带给我们一个前所未有的机会,使我们可以在序列水平上研究基因组结构特征,可以对多个物种进行全基因组水平上的比较研究。已有的研究工作揭示了基因组结构的许多基本特征。本论文主要致力于人与其他高等真核生物基因组的isochore结构和超级保守序列的研究。
     论文第一部分介绍了生命科学研究的新动态和生物信息学相关知识。简要介绍了Z曲线理论和方法,以及在基因组研究中的应用。
     论文第二部分主要致力于人与其他高等真核生物基因组isochore结构的研究。着眼于人类基因组isochore边界的生物学意义,使用最新开发的基于Z曲线理论的基因组序列分段算法,在单核苷酸精度的水平上重新定位了人类基因组56个isochore的边界,共得到79个独立的边界。通过与其他的生物学特征相比较,我们发现isochore边界与很多有生物学意义的生物学元件的边界重合,如:重复元件(repeat),GpG岛分布,保守序列等。另外isochore边界附近的序列组成高度保守。通过和已被实验证实的MHC序列中的复制开关点附近的序列相比较,有理由推断这79个isochore边界都有可能是人类基因组中的复制开关位点。结果表明,isochore的边界可能发挥着重要的功能,并且为理解人类基因组的结构提供新的方向。论文还分析了六个基因组(人,鼠,牛,斑马鱼,脂鲤,杨树)的isochore结构,发现温血脊椎动物,冷血脊椎动物,和植物基因组中都具有isochore结构,并且分析了isochore结构特征的异同。发现植物基因组中内含子(外显子)的平均G+C含量与它们所在的isochore的G+C含量的关系,明显不同于脊椎动物。
     论文第三部分是围绕植物基因组中超级保守序列的问题展开的。我们选择了模式生物拟南芥,水稻和杨树基因组。研究发现了拟南芥和水稻两个基因组间的33个独立的超级保守序列片段。论文详细分析了这些超级保守序列的长度,数量,序列特征,它们的基因功能,以及和其它物种之间的序列相似程度等诸多问题。
With the development of the sequencing technology, the whole genomic sequences of numerous organisms have become publicly available. It gave us an unprecedented opportunity to analyze the features of genome organizations at sequence level and to study differences among organisms by comparing the whole genomic sequences. Previous research works have revealed many basic features of the genome organizational structures. In this thesis, the isochore structures and ultraconserved sequences of human and other eukaryotic genomes were analyzed.
     The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions. Biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization. By the analysis of the whole genomes of human, mouse, cow, zebrafish, tetraodon and poplar, we have found that all the genomes are composed of isochores. They share some common characters, but in some aspects they differ from each other. The features of isochores in the poplar genome are obviously different from others.
     The discovery of the ultraconserved elements in the human genome has caused wide attentions. The ultraconserved elements in insect genomes have also been studied. But the instance of the ultraconserved sequences in the plant genomes remains untouched. In this thesis we found 33 independent ultraconserved segments which are absolutely conserved between A. thaliana and rice genomes. Many problems about these ultraconserved sequences have been analyzed, such as lengths of the ultraconserved sequences, the total number of them, the sequence features, the genetic functions, and the sequence similarities with other plant genomes.
引文
[1] Collins, F.S., Green, E.D., Guttmacher, A.E. et al., A vision for the future of genomics research, Nature, 2003, 422 (6934): 835-847
    [2] Ge, H., Walhout, A.J., Vidal, M., Integrating 'omic' information: a bridge between genomics and systems biology, Trends. Genet., 2003, 19 (10): 551-560
    [3] Ideker, T., Galitski, T., Hood, L., A new approach to decoding life: systems biology, Annu. Rev. Genomics Hum. Genet., 2001, 2: 343-372
    [4] Sumner, L.W., Mendes, P., Dixon, R.A., Plant metabolomics: large-scale phytochemistry in the functional genomics era, Phytochemistry, 2003, 62 (6): 817-836
    [5]杨胜利, 21世纪的生物学——系统生物学,生命科学仪器, 2004, 2 (2): 5-6
    [6]吴家睿,系统生物学面面观,科学杂志
    [7] Ideker, T., Thorsson, V., Ranish, J. A. et al., Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network, Science, 2001, 292: 929-934
    [8] Noble, D., Modeling the Heart--from Genes to Cells to the Whole Organ, Science, 2002, 295: 1678-1682
    [9] Hood, L., A personal view of molecular technology and how it has changed biology, J Proteome Res, 2002, 1(5) :399-409
    [10] Arbeitman, M.N., Furlong, E.E.M., Imam, F. et al., Gene Expression During the Life Cycle of Drosophila melanogaster, Science, 2002, 297: 2270-2275
    [11] Kitano, H., Systems Biology: A Brief Overview, Science, 2002, 295: 1662-1664
    [12] Boguski, M.S., Bioinformatics - A new era, Trends Biotechnol., 1998, 16 (SUPPL.1): XI-XII
    [13] Fleischmann, R.D., Adams, M.D., White, O. et al., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd, Science, 1995, 269 (5223): 496-512
    [14] Liolios, K., Tavernarakis, N., Hugenholtz, P. et al., The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide, Nucleic Acids Res., 2006, 34 (Database issue): D332-334
    [15] The C. elegans sequencing consortium, Genome sequence of the nematode C. elegans: a platform for investigating biology, Science, 1998, 282 (5396): 2012-2018
    [16] Myers, E.W., Sutton, G.G., Delcher, A.L. et al., A whole-genome assembly of Drosophila, Science, 2000, 287 (5461): 2196-2204
    [17] The Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, 2000, 408 (6814): 796-815
    [18] Goff, S.A., Ricke, D., Lan, T.H. et al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science, 2002, 296 (5565): 92-100
    [19] Lander, E.S., Linton, L.M., Birren, B. et al., Initial sequencing and analysis of the human genome, Nature, 2001, 409 (6822): 860-921
    [20] Sugawara, H., Ogasawara, O., Okubo, K. et al., DDBJ with new system and face, Nucleic Acids Res., 2007, doi:10.1093
    [21]孙啸,陆祖宏,谢建明编著,生物信息学基础,北京:清华大学出版社,2005.5
    [22] Pontius, J.U., Wagner, L., Schuler, G.D., UniGene: a unified view of the transcriptome, In: The NCBI Handbook, Bethesda (MD): National Center for Biotechnology Information, 2003
    [23]张春霆,生物信息学的现状与展望,世界科技研究与发展, 2000, 22 (6): 17-20
    [24]罗静初,网络时代的生命科学和生物信息技术, 21世纪100个交叉科学难题,北京:科学出版社, 2005
    [25]陈润生,当前生物信息学的重要研究任务,生物工程进展, 1999, 19 (4): 11-14
    [26] Zhang, C.T., Zhang, R., Analysis of distribution of bases in the coding sequences by a diagrammatic technique, Nucleic Acids Res., 1991, 19: 6313-6317.
    [27] Zhang, R., Zhang, C.T., Z curves, an intuitive tool for visualizing and analyzing the DNA sequences, J Biomol Struct Dyn., 1994, 11: 767-782.
    [28] Zhang, C.T., Wang, J., Zhang, R., A novel method to calculate the G+C content of genomic DNA sequences, J Biomol Struct Dyn., 2001, 19: 333-341.
    [29] Zhang, R., Zhang, C.T., Identification of genomic islands in the genome of Bacillus cereus by comparative analysis with Bacillus anthracis, Physiological Genomics, 2003, 16:19-23.
    [30] Zhang, R., Zhang, C.T., A systematic method to identify genomic islands and its applications in analyzing the genomes of Corynebacterium glutamicum and Vibrio vulnificus CMCP6 chromosome I, Bioinformatics, 2004, 20: 612-622.
    [31]张春霆,人与其他生物基因组若干重要问题的生物信息学研究,自然科学进展, 2004, 14 (12): 1367-1374
    [32] Zhang, C.T., and Wang, J., Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve, Nucleic Acids Res, 2000, 28: 2804-2814
    [33] Zhang, C.T., Wang J., Zhang, R., Using a Euclid distance discriminant method to find protein coding genes in the yeast genome, Comput Chem, 2002, 26: 195-206
    [34] Guo, F.B., Ou H.Y., Zhang, C.T., ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes, Nucleic Acids Res, 2003, 31: 1780-1789
    [35] Ou, H.Y., Guo F.B., Zhang, C.T., GS-Finder: a program to find bacterial gene start sites with a self-training method, Int J Biochem Cell Biol, 2004, 36: 535-544
    [36] Chen, L.L., Ou, H.Y., Zhang R. et al., ZCURVE_CoV: a new system to recognize protein coding genes in coronavirus genomes, and its applications in analyzing SARS-CoV genomes, Biochem Biophys Res Commun, 2003, 307: 382-388
    [37] Wu, Y.H., Liew, A.W.C., Yan H.et al., Classification of short human exons and introns based on statistical features, Physical review E, 2003, 67: 061916
    [38] Charkowski, A.O., Making sense of an alphabet soup: the use of a new bioinformatics tool for identification of novel gene islands. Focus on "identification of genomic islands in the genome of Bacillus cereus by comparative analysis with Bacillus anthracis", Physiol Genomics, 2004, 16: 180-181
    [39] Lobry, J.R., A simple vectorial representation of DNA sequences for the detection of replication origins in bacteria, Biochimie, 1996, 78: 323-326
    [40] Zhang, C.T., Zhang R., Ou, H.Y., The Z curve database: a graphic representation of genome sequences, Bioinformatics, 2003, 19: 593-599
    [41] Zhang, R., Zhang, C.T., Single replication origin of the archaeon Methanosarcina mazei revealed by the Z curve method, Biochem Biophys Res Commun, 2002,297: 396-400
    [42] Zhang, R., Zhang, C.T., Identification of replication origins in the genome of the methanogenic archaeon, Methanocaldococcus jannaschi, Extremophiles, 2004, 8: 253-258
    [43] Zhang, R., Zhang, C.T., Multiple replication origins of the archaeon Halobacterium species NRC-1, Biochem Biophys Res Commun, 2003, 302: 728-734
    [44] Berquist, B.R., DasSarma, S., An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. strain NRC-1, J Bacteriol 2003, 185: 5959-5966
    [45] Zhang, R., Zhang, C.T., Review: Identification of replication origins in archaeal genomes based on the Z-curve method, Archaea 2004, 1: 335-346
    [46] Ou, H.Y., Guo, F.B., Zhang, C.T., Analysis of nucleotide distribution in the genome of Streptomyces coelicolor A3(2) using the Z curve method, FEBS Lett 2003, 540: 188-194
    [47] Chen, L.L., Zhang, C.T., Seven GC-rich microbial genomes adopt similar codon usage patterns regardless of their phylogenetic lineages. Biochem Biophys Res Commun, 2003, 306: 310-317
    [48] Guo, F.B., Wang J., Zhang, C.T., Gene recognition based on nucleotide distribution of ORFs in a hyper-thermophilic crenarchaeon, Aeropyrum pernix K1, DNA Res, 2004, 11: 361-370
    [49] Zhang, C.T., A symmetrical theory of DNA sequences, J. Theor. Biol., 1997, 187: 297-306
    [50] Peiris, J.S., Lai, S.T., Poon, L.L. et al., Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet, 2003, 361: 1319-1325
    [51] Ksiazek, T.G., Erdman, D., Goldsmith, C.S. et al., A novel coronavirus associated with severe acute respiratory syndrome, N Engl J Med, 2003, 348: 1953-1966
    [52] Drosten, C., Gunther, S., Preiser, W. et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome, N Engl J Med, 2003, 348: 1967-1976
    [53] Tsang, K.W., Ho, P.L., Ooi, G.C. et al., A cluster of cases of severe acute respiratory syndrome in Hong Kong, N Engl J Med, 2003, 348: 1977-1985
    [54] Lee, N., Hui, D., Wu, A. et al., A major outbreak of severe acute respiratory syndrome in Hong Kong, N Engl J Med, 2003, 348: 1986-1994
    [55] Poutanen, S.M., Low, D.E., Henry, B. et al., Identification of severe acute respiratory syndrome in Canada, N Engl J Med, 2003, 348: 1995-2005.
    [56] Marra, M.A., Jones, S.J., Astell, C.R. et al., The Genome sequence of the SARS-associated coronavirus, Science, 2003, 300: 1399-1404.
    [57] Rota, P.A., Oberste, M.S., Monroe, S.S. et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science, 2003, 300: 1394-1399
    [58] Zheng, W.X., Chen, L.L., Ou, H.Y. et al., Coronavirus phylogeny based on a geometric approach, Mol Phylogenet Evol, 2005, 36: 224-132
    [59] Guan, Y., Zheng, B.J., He, Y.Q. et al., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China, Science, 2003, 302: 276-278
    [60] Stavrinides, J., Guttman, D.S., Mosaic evolution of the severe acute respiratory syndrome coronavirus, J Virol., 2004, 78: 76-82
    [61] Grigoriev, A., Mutational patterns correlate with genome organization in SARS and other coronaviruses, Trends Genet., 2004, 20: 131-135
    [62] Gu, W., Zhou, T., Ma, J. et al., Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales, Virus Res, 2004, 101: 155-161
    [63]高雷,戚继,卫海滨等,冠状病毒和人类SARS病毒的分子亲缘关系研究,科学通报,2003,48: 1246-1250
    [64] Bernardi, G., Olofsson, B., Filipski, J., et al. The mosaic genome of warm-blooded vertebrates, Science, 1985, 228: 953-958
    [65] Macaya, G., Thiery, J.P., Bernardi, G., An approach to the organization of eukaryotic genomes at a macromolecular level, J. Mol. Biol., 1976, 108 (1): 237-254
    [66] Bernardi, G., The human genome: organization and evolutionary history, Annu. Rev. Genet., 1995, 29: 445-476
    [67] Bernardi, G., Isochores and the evolutionary genomics of vertebrates, Gene, 2000, 241 (1): 3-17
    [68] Pavlicek, A., Jabbari, K., Paces, J. et al. Similar integration but different stability of Alus and LINEs in the human genome, Gene, 2001, 276: 39-45.
    [69] Lander, E.S.et al, Initial sequencing and analysis of the human genome, Nature, 2001, 409: 860-921
    [70] Bernardi, G., Misunderstanding about isochors. Part 1, Gene, 2001, 276: 3-13
    [71] Haring, D., Kypr, J., No isochors in human chromosome 21 and 22? Biochem. Biophys. Res. Commun, 2001, 280: 567-573
    [72] International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860-921
    [73] Cohen, N., Dagan, T., Stone, L. et al., GC composition of the human genome: in search of isochores, Mol. Biol. Evol., 2005, 22: 1260–1272
    [74] Clay, O., Bernardi, G., How not to search for isochores: a reply to Cohen et Al, Mol Biol Evol., 2005, 22(12): 2315-2317
    [75] Beck, S. et al. The MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex, Nature, 1999, 401: 921-923
    [76] Tenzen, T., Yamagata, T., Fukagawa, T. et al., Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex, Mol Cell Biol., 1997, 17(7): 4043-4050
    [77] Schmegner, C., Berger, A., Vogel, W. et al., An isochore transition zone in the NF1 gene region is a conserved landmark of chromosome structure and function, Genomics, 2005, 86(4): 439-445
    [78] Schmegner, C., Hameister, H., Vogel, W. et al., Isochores and replication time zones: a perfect match. Cytogenet Genome Res., 2007, 116 (3): 167-172
    [79] Costantini, M., Auletta, F., Bernardi, G., Isochore patterns and gene distributions in fish genomes, Genomics, 2007, 90(3): 364-371
    [80] Oliver, J.L., Bernaola-Galvan, P., Carpena, P. et al., Isochore chromosome maps of eukaryotic genomes, Gene, 2001, 276 (1-2): 47-56
    [81] Li, W., Delineating relative homogeneous G+C domains in DNA sequences, Gene, 2001, 276 (1-2): 57-72
    [82] Li, W., Bernaola-Galvan, P., Haghighi, F. et al., Applications of recursive segmentation to the analysis of DNA sequences, Comput. Chem., 2002, 26 (5): 491-510
    [83] Haiminen, N., Mannila, H., Discovering isochores by least-squares optimal segmentation, Gene, 2007, 394: 53-60
    [84] Melodelima, C., Gueguen, L., Piau, D. et al., A computational prediction of isochores based on hidden Markov models, Gene, 2006, 385: 41-49
    [85] Melodelima, C., Gautier, C., Piau, D., A markovian approach for the prediction of mouse isochores, J Math Biol., 2007, 55 (3): 353-364
    [86] Zhang, C.T., Zhang, R., An isochore map of the human genome based on the Z curve method, Gene, 2003, 317: 127-135
    [87] Zhang, C.T., Zhang, R., Isochore structures in the mouse genome, Genomics, 2004, 83: 384-394,
    [88] Zhang, R., Zhang, C.T., Isochore Structures in the Genome of the Plant Arabidopsis thaliana, J Mol Evol, 2004, 59: 227-238
    [89] Daubechics, I., Ten lectures on wavelets, Philadephia: SIAM, CBMS Lecture Series, 1992
    [90] Daubechics, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Transactions on Information Theory, 1990, 36: 961-1006
    [91] Stephane Mallat著,杨力华,戴道清,黄文良,湛秋辉译,A wavelet Tour of Signal Processing (Second Edition),信号处理的小波导引,机械工业出版社,2002
    [92]胡昌华,张军波,夏军,张伟编著,基于MATLAB的系统分析与设计—小波分析,西安电子科技大学出版社, 1999
    [93] Wen, S.Y., Zhang, C.T., Identification of isochore boundaries in the human genome using the technique of wavelet multiresolution analysis, Biochem Biophys Res Commun, 2003, 311: 215-222
    [94] Zhang, C.T., Zhang, R., A nucleotide composition constraint of genome sequences, Comput Biol Chem, 2004, 28: 149-153
    [95] Zhang, C.T., Gao F., Zhang, R., Segmentation algorithm for DNA sequences, Physical Review E, 2005, 72: 041917 (1-6)
    [96] Gao, F., Zhang, C.T., Isochore structures in the chicken genome, FEBS J., 2006, 273: 1637-1648
    [97] Saccone, S., De Sario, A., Wiegant, J. et al., Correlations between isochores and chromosomal bands in the human genome, Proc. Natl. Acad. Sci. USA, 1993, 90: 11929-11933
    [98] Fukagawa, T., Sugaya, K., Matsumoto, K. et al., A boundary of long-range G+C% mosaic domains in the human MHC locus: pseudoautosomal boundary-like sequence exists near the boundary, Genomics, 1995, 25: 184-191
    [99] Fukagawa, T., Nakamura, Y., Okumura, K. et al., Human pseudoautosomal boundarylike sequences: expression and involvement in evolutionary formation of the present-day pseudoautosomal boundary of human sex chromosomes, Hum.Mol. Genet., 1996, 5: 123-132
    [100] Stephens, R., Horton, R., Humphray, S. et al., Gene organization, sequence variation and isochore structure at the centromeric boundary of the human MHC, J. Mol. Biol., 1999, 291: 789-799
    [101] Li, W., Bernaola-Galvan, P., Carpena, P. et al., Isochores merit the prefix 'iso', Comput. Biol. Chem., 2003, 27: 5-10
    [102] Carpena, P., Bernaola-Galvan, P., Coronado, A.V. et al., Identifying characteristic scales in the human genome, Phys. Rev. E, 2007, 75: 032903
    [103] Costantini, M., Clay, O., Auletta, F. et al., An isochore map of human chromosomes, Genome Res., 2006, 16 (4): 536-541
    [104] Costantini, M., Clay, O., Federico, C. et al., Human chromosomal bands: nested structure, high-definition map and molecular basis, Chromosoma, 2007, 116 (1): 29-40
    [105] Bernardi, G., The neoselectionist theory of genome evolution, Proc Natl Acad Sci U S A, 2007, 104 (20): 8385-8390
    [106] Gao, F., Zhang, C.-T., GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences, Nucleic Acids Res, 2006, 34: W686-W691
    [107] Kent, W.J., Sugnet, C.W., Furey, T.S. et al., The human genome browser at UCSC, Genome Res, 2002, 12: 996-1006
    [108] Smit, A.F., Interspersed repeats and other mementos of transposable elements in mammalian genomes, Curr Opin Genet Dev., 1999, 9: 657-663
    [109] Tuskan, G.A. et al., The genome of black cottonwood, Populus trichocarpa (Torr. & Gray), Science, 2006, 313(5793): 1596-1604
    [110] Sterky, F. et al., A Populus EST resource for plant functional genomics, Proc Natl Acad Sci U S A, 2004, 101(38): 13951-13956
    [111] Wullschleger, S.D. et al., Genomics and forest biology: Populus emerges as the perennial favorite, Plant Cell, 2002, 14(11):2651-2655
    [112] Bejerano, G., Pheasant, M., Makunin, I. et al., Ultraconserved elements in the human genome, Science, 2004, 304(5675): 1321-1325
    [113]Chen, C.T., Wang, J.C., Cohen, B.A., The strength of selection on ultraconserved elements in the human genome, Am J Hum Genet, 2007, 80(4): 692-704
    [114] Katzman, S., Kern, A.D., Bejerano, G. et al., Human genome ultraconserved elements are ultraselected, Science, 2007, 317(5840): 915
    [115] Derti, A., Roth. F.P., Church, G.M. et al., Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants, Nat Genet., 2006, 38(10): 1216-1220
    [116] Glazov, E.A., Pheasant, M., McGraw, E.A. et al., Ultraconserved elements in insect genomes: a highly conserved intronic sequence implicated in the control of homothorax mRNA splicing, Genome Res, 2005, 15(6): 800-808
    [117] Siepel, A., Bejerano, G., Pedersen, J.S. et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res, 2005, 15(8): 1034-1050
    [118]李衍达、孙之荣等译,生物信息学基因和蛋白质分析的实用指南,清华大学出版社,2000
    [119]布朗T.A.著,袁建刚等译,基因组,北京:科学出版社,2002.9
    [120] Robertson, M.P., Ellington, A.D., How to make a nucleotide, Nature, 1998, 395: 223-225
    [121] Szathmary, E., Maynard Smith, J., The origin of chromosomes. II. Molecular mechanisms, J. Theoret. Biol., 1993, 164: 447-454
    [122] Bird, A.P., Gene number, noise reduction and biological complexity, Trends Genet., 1995, 11: 94-100
    [123] Woese, C.R., Fox, G.E., Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A., 1977, 74: 5088-5090
    [124] Woese, C.R., Kandler, O., Wheelis, M.L., Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A., 1990, 87: 4576-4579
    [125] Sun, H., Skogerb?, G., Chen, R., Conserved distances between vertebrate highly conserved elements, Hum Mol Genet, 2006, 15(19): 2911-2922
    [126] Knuth, D.E., Morris, J.H., Pratt, V.R., Fast Pattern Matching in Strings, SIAM Journal of Computing, 1977, 6 (2): 323-350
    [127]王国钧,数据结构,C语言描述,北京:科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700