减数分裂重组对二核苷偏好性及加工假基因分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进化论是整个生物学的指导思想。生命进化的物质基础是变异,而变异的主要来源是突变和重组。如果没有重组,只有突变发生时才能改变基因组,这无疑将大大降低生命进化的效率。减数分裂重组是真核细胞减数分裂过程中同源染色体之间遗传物质的交换。重组过程通过形成交叉对减数分裂期同源染色体的正确分离起到至关重要的作用。除此之外,重组可通过选择或突变的方式在基因组进化过程中扮演着很多重要角色。尽管随着许多真核基因组测序工作的完成和遗传图谱的不断完善,重组与序列之间的相互作用机理一直在被人们探索并发现,但由于重组与各种序列特征之间的相互影响在基因组这个大环境中显得尤为复杂,还有很多未知问题有待探索和解决。
     二核苷相对丰度谱是反映基因组整体水平上的选择压力或突变偏好性的“基因组指纹”,它在基因组进化研究、系统发生分析中发挥着独特而重要的作用。因此,揭示基因组指纹的形成与进化压力是基因组进化研究的重要内容之一。假基因是丧失蛋白质编码能力的基因拷贝,它从分子水平上记录了基因组序列数百万年的进化路线,为基因组动力学和进化研究提供了理想的材料。尤其,加工假基因由于其反转座起源而在基因组进化研究中备受青睐。揭示加工假基因分布中所蕴含的进化压力对基因组进化研究有重要意义。基于这一思路,本文主要研究了减数分裂重组对基因组序列二核苷偏好性及加工假基因分布和进化的影响,并对其机理性的问题进行了探讨。主要研究内容如下:
     1.在得到果蝇重组率数据的基础上,研究果蝇基因组中二核苷偏好性和重组率的相关性。结果发现,在整个基因组范围内编码和非编码序列的总体二核苷偏好性均与重组率显著正相关。我们给出了不同二核苷偏好性与重组率的关联模式,并讨论了重组与二核苷偏好性的相互作用机理。就重组如何影响二核苷偏好性这一问题,我们提出了一种新的解释模型,即重组可能通过一种在整个基因组范围内普遍存在的机制——依赖紧邻碱基的基因转换影响二核苷偏好性。
     2.利用高密度人类遗传图谱得到重组率数据的基础上,研究人类基因组中二核苷偏好性和重组率的关系。结果发现在整个基因组范围内编码序列的总体二核苷偏好性与重组率显著负相关,而对非编码序列来说却显著正相关。另外,给出了具体二核苷偏好性与重组率的关联模式,讨论了重组与二核苷偏好性的相互作用机理,并与果蝇基因组进行了比较。研究结果表明,重组对基因组指纹的形成与进化有着重要作用。
     3.传统的观点认为,加工假基因在染色体上的插入是随机的。然而,通过分析发现人类加工假基因密度与重组率负相关,这有以下几种可能的解释:重组抑制模型认为,加工假基因可能会通过降低同源染色体同源性的方式起到降低重组率的作用;有害插入模型认为,若加工假基因在染色体上的插入突变是有害的,则在低重组区由于Hill-Robertson干涉较多,选择效率降低,导致加工假基因偏好插入到低重组区;异位重组模型认为,加工假基因在低重组区的偏好分布是对高重组区同源加工假基因之间异位重组事件负选择的结果;弱选择模型认为,由于低重组区Hill-Robertson干涉较多,选择压力会使加工假基因偏好插入到低重组区来减少干涉,促进相邻基因或外显子之间的独立进化。我们还发现,加工假基因密度基因密度正相关,有两种可能的解释:一、加工假基因在基因密区的插入可能具有选择优势,因为这种插入突变可能有助于提高弱选择位点间的重组频率,从而减少Hill-Robertson干涉并促进相邻基因或外显子的独立进化;二、相比基因分布稀少的区域,异位重组在基因密区较少发生,这可以导致加工假基因较多地保留在基因密区。
     4.重组抑制模型、有害插入模型、异位重组模型和弱选择模型均有可能解释人类加工假基因密度与重组率之间的负相关性。区分验证这些不同的模型具有重要意义。通过分析发现,相比其它加工假基因,具有异位重组潜能的加工假基因,即同源相邻加工假基因更加偏好分布于低重组区(0.0-0.4 cM/Mb),差异检验也显示同源相邻加工假基因位点的重组率显著低于其它加工假基因重组率(P<0.0001),这表明同源相邻加工假基因的分布中存在异位重组效应。不具有异位重组潜能的加工假基因也具有偏好分布于低重组区的趋势,这表明加工假基因的分布中还存在与异位重组无关的效应。另外还发现较长的加工假基因更加偏好分布于低重组区的长度效应。
Genetic variation is the material basis of evolution that underlies the whole biology. There are two sources of genetic variation, mutation and recombination. Without recombination, genomes would undergo very little change merely by mutations, and the evolution of organisms would be severely restricted. Meiotic recombination occurs as a consequence of the exchange of genetic information between homologous chromosomes during meiosis. Recombination plays a crucial role in disjunction of the homologous chromosomes through generating chiasma. Besides, it plays various important roles in genome evolution either selectively or neutrally. With the increasing success in genome sequencing and construction of genetic maps, much progress has been made in the science of the mechanisms via which the recombination and genome interacts. Due to the complicity of the interaction between the recombination and genomic sequences in the whole genome background, however, many open questions still requires further investigation.
     The profile of the dinucleotide relative abundances is a "genomic signature" that reflects the overall selective pressures or mutational biases in the genome, and plays a unique and important role in the study of genome evolution and phylogeny. Therefore, revealing the pressures or factors that contribute to the formation and evolution of the genomic signature has been an important issue in the study of genome evolution. Pseudogene is a disabled copy of gene that lost the ability to encode protein. It records the evolution footprints at the molecular level and thus provides an ideal material for the study of the genome dynamics and evolution. Processed pseudogene has been a subject applied more in the study of genome evolution due to its reverse transcribed origin. It is very important to explore the evolutionary pressures that impose on the distribution of the processed pseudogenes. The present paper focus on the effect of the meiotic recombination on dinucletide bias and processed pseudogene distribution, and the underlying mechanisms are discussed. The main contributions are summarized as follows:
     1. The recombination data of the Drosophila melanogaster is obtained first and then the correlation between dinucleotide bias and recombination is investigated. The results show that the overall dinucleotide bias is positively correlated with recombination rate for both non-coding and coding sequences. The correlation patterns of individual dinucleotide biases with recombination rate are presented and possible mechanisms of interaction between recombination and dinucleotide bias are discussed. We propose that recombination might influence the dinucleotide bias through a genome-wide universal mechanism, which is likely to be neighbor-dependent biased gene conversion.
     2. Based on the recombination data obtained from high resolution genetic map of human genome, the correlation between meiotic recombination rate and dinucleotide bias is analyzed. Our results show that the overall dinucleotide bias is positively correlated with recombination rate for coding sequences while negatively correlated for introns and intergenic sequences that both are non-coding sequences. The correlation patterns of individual dinucleotide biases with recombination rate are presented and possible mechanisms of interaction between recombination and dinucleotide bias are discussed comparing human with Drosophila melanogaster. Our results indicate that recombination has been playing an important role in the formation and evolution of the genomic signature.
     3. It is conventionally thought that the integration of the processed pseudogenes into genome is random. Our analysis, however, shows that the density of the processed pseudogene is correlated negatively with recombination rate and positively with gene density in human genome. Several possible models that could be invoked to explain the phenomena are proposed. The suppressor model describes an effect that processed pseudogene may act as a sppressor of recombination by reducing homology of the homologous chromosmomes. The deleterious insertion model refers to selection against deleterious insertion of processed pseudogene into the genome, which expects an accumulation of processed pseudogenes in regions of reduced recombination where selection efficiency decreased due to Hill-Robertson interference. The ectopic recombination model states processed pseudogenes will accumulate in regions of reduced recombination as a passive consequence of their elimination from high recombination rate regions, where ectopic recombination, supposed to be intense, would have more deleterious effects. The weak selection model, however, assumes that the insertion of processed pseudogenes into regions of low recombination rates might be favored by selection due to its effect of decreasing the Hill-Robertson interference between weakly selected mutations, which allows adjacent genes or exons evolve more efficiently. The positive correlation between processed pseudogene density and gene density has two possible interpretations. First, the processed pseudogene insertion into gene-dense regions might be selectively beneficial, because such insertion, as the effect descrbed in the weak selection model, could increase recombination between weakly selected mutations and facilitate adjacent genes or exons evolve more efficiently. Second, processed pseudogenes tend to be retained more in gene-dense regions than gene-rare regions probably because ectopic recombination less occurs in gene-dense regions.
     4. Several models including the suppressor model, deleterious insertion model, ectopic recombination model, and weak selection model might explain the negative correlation between the processed pseudogene density and recombination rate. It is of great importance to distinguish the various models. Our analysis shows that the homologous adjacent processed pseudogenes which have the potential of ectopic recombination more preferentially accumulate in the regions of low recombination rate (0.0-0.4 cM/Mb) than other processed pseudogenes, and the recombination rates of the regions where the homologous adjacent processed pseudogenes distribute are significantly lower (P<0.0001) than that corresponds to other processed pseudogenes. The results definitely indicate that there exists selective effect associated with ectopic recombination in the distribution of the homologous adjacent processed pseudogenes. Although not strong as the homologous adjacent processed pseudogenes, the processed pseudogenes that do not have the potential of ectopic recombination also exhibit a biased distribution in regions of low recombination, suggesting the existence of the effects that are not associated with ectopic recombination. Additionally, we found a length effect that long processed pseudogenes more preferentially accumulate in regions of low recombination rates.
引文
[1]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23:87-94
    [2]张玉静.分子遗传学.北京:科学出版社,2000
    [3]杨金水.基因组学.北京:高等教育出版社,2002
    [4]Brown TA.Genomes(2~(nd) edtion).New York:Wiley-Liss,2002
    [5]Ringo J.Fundamental genetics.Cambridge:Cambridge University Press,2004
    [6]Lewin B.Genes;Ⅷ.Upper Saddle River,NJ:Pearson Prentice Hall,2004
    [7]Watson JD编著,杨焕明等译.基因的分子生物学.北京:科学出版社,2005
    [8]Strachan T,Read AP编著,孙开来主译.人类分子遗传学.北京:科学出版社,2007
    [9]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2007
    [10]Galtier N.Gene conversion drives GC content evolution in mammalian histones.Trends Genet,2003,19:65-68
    [11]Galtier N.Recombination,GC-content and the human pseudoautosomal boundary paradox.Trends Genet,2004,20:347-349
    [12]Galtier N,Piganeau G,Mouchiroud D,et al.GC-content evolution in mammalian genomes:the biased gene conversion hypothesis.Genetics,2001,159:907-911
    [13]Galtier N,Duret L.Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution.Trends Genet,2007,23:273-277
    [14]Marais G.Biased gene conversion:implications for genome and sex evolution.Trends Genet,2003,19:330-338
    [15]Birdsell JA.Integrating genomics,bioinformatics,and classical genetics to study the effects of recombination on genome evolution.Mol Biol Evol,2002,19:1181-1197
    [16]Lupski JR.Hotspots of homologous recombination in the human genome:not all homologous sequences are equal.Genome Biology,2004,5:(article 242)
    [17]Spencer CCA.Human polymorphism around recombination hotspots.Biochemical Society Transactions,2006,34:535-536
    [18]Mezard C.Meiotic recombination hotspots in plants.Biochemical Society Transactions,2006,34:531-534
    [19]高玲,慕小倩,林煜等.真核生物减数分裂重组热点的研究进展.遗传,2005,27:641-650
    [20]徐伟.酵母基因组减数分裂重组的生物信息学分析.硕士学位论文,南京:东南大学,2004
    [21]Hill WG,Robertson A.The effect of linkage on limits to artificial selection.Genet Res,1966,8:269-294
    [22]Felsenstein J.The evolutionary advantage of recombination.Genetics,1974,78:737-756
    [23]Lercher MJ,Hurst LD.Human SNP variability and mutation rate are higher in regions of high recombination.Trends Genet,2002,18:337-340
    [24]Hellmann I,Ebersberger I,Ptak SE,et al.A neutral explanation for the correlation of diversity with recombination rates in humans.Am J Hum Genet,2003,72:1527-1535
    [25]Hellmann I,Pr(u|¨)fer K,Ji H,et al.Why do human diversity levels vary at a megabase scale?Genome Res,2005,15:1222-1231
    [26]Carvalho AB,Clark AG.Intron size and natural selection.Nature,1999,401:344
    [27]Comeron JM,Kreitman M.The correlation between intron length and recombination in Drosophila:dynamic equilibrium between mutational and selective forces.Genetics,2000,156:1175-1190
    [28]Comeron JM,Kreitman M.Population,evolutionary and genomic consequences of interference selection.Genetics,2002,161:389-410
    [29]Prachumwat A,Devincentis L,Palopoli MF.Intron size correlates positively with recombination rate in Caenorhabditis elegans.Genetics,2004,166:1585-1590
    [30]Piganeau G,Marais G.Hill-Robertson interference is a minor determinant of variations in codon bias across Drosophila melanogaster and Caenorhabditis elegans genomes.Mol Biol Evol,2002,19:1399-1406
    [31]Duret L,Marais G,Biemont C.Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans.Genetics,2000,156:1661-1669
    [32]Kliman RM,Hey J.Reduced natural selection associated with low recombination in Drosophila melanogaster.Mol Biol Evol,1993,10:1239-1258
    [33]Kliman RM,Hey J.Hill-Robertson interference in Drosophila melanogaster:reply to Marais,Mouchiroud and Duret.Genet Res,2003,81:89-90
    [34]Hey J,Kliman RM.Interactions between natural selection,recombination and gene density in the genes of Drosophila.Genetics,2002,160:595-608
    [35]Marais G,Mouchiroud D,Duret L.Does recombination improve selection on codon usage?Lessons from nematode and fly complete genomes.Proc Natl Acad Sci USA,2001,98:5688-5692
    [36] Piganeau G, Marais G. Hill-Robertson interference is a minor determinant of variations in codon bias across Drosophila melanogaster and Caenorhabditis elegans genomes. Mol Biol Evol, 2002, 19: 1399-1406
    [37] Marais G, Mouchiroud D, Duret L. Neutral effect of recombination on base composition in Drosophila. Genet Res, 2003, 81: 79-87
    [38] Singh ND, Davis JC, Dmitri A, et al. Codon bias and non-coding GC content correlate negatively with recombination rate on the Drosophila X chromosome. J Mol Evol, 2005, 61:315-324
    [39] Fullerton SM, Carvalho AB, Clark AG. Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol, 2001, 18: 1139-1142
    [40] Meunier J, Duret L. Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol, 2004, 12: 984-990
    [41] Webster MT, Smith NGC, Hultin-Rosenberg L, et al. Male-driven biased gene conversion governs the evolution of base composition in human Alu repeats. Mol Biol Evol, 2005, 22: 1468-1474
    [42] Bernardi G, Olofsson B, Filipski J, et al. The mosaic genome of warm-blooded vertebrates. Science, 1985,228:953-958
    
    [43] Bernardi G. The compositional evolution of vertebrate genomes. Gene, 2000, 259: 31-43
    [44] Duret L, Semon M, Piganeau G, et al. Vanishing GC-rich isochores in mammalian genomes. Genetics, 2002, 162: 1837-1847
    [45] Belle EMS, Duret L, Galtier N, et al. The decline of isochores in mammals: an assessment of the GC content variation along the mammalian phylogeny. J Mol Evol, 2004, 58: 653-660
    [46] Jensen-Seaman MI, Furey TS, Payseur BA, et al. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res, 2004, 14: 528-538
    [47] Duret L, Eyre-Walker A, Galtier N. A new perspective on isochore evolution. Gene, 2006, 385: 71-74
    [48] Bartolome C, Maside X, Charlesworth B. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol, 2002, 19: 926-937
    [49] Rizzon C, Marais G, Guoy M, Biemont C. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res, 2002, 12: 400-407
    [50] Song M, Boissinot S. Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene, 2007, 390: 206-213
    [51] Hua-Van A, Rouzic AL, Maisonhaute C, et al. Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res, 2005, 110: 426-440
    [52] Wright SI, Agrawal N, Bureau TE. Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res, 2003, 13: 1897-1903
    [53] Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269-5273
    [54] Begun DJ, Aquadro CF. Levels of naturally-occurring DNA polymorphism correlate with recombination rates in Drosophila melanogaster. Nature, 1992, 356: 519-520
    [55] Begun DJ, Whitley P. Reduced X-linked nucleotide polymorphism in Drosophila simulans. Proc Natl Acad Sci USA, 2000, 97: 5960-5965
    [56] Nachman MW. Single nucleotide polymorphism and recombination rate in humans. Trends Genet, 2001, 17:481-485
    [57] Aquadro CF, DuMont VB, Reed FA. Genome-wide variation in the human and fruitfly: a comparison. Curr Opin Genet Dev, 2001, 11: 627-634
    [58] Cutter AD, Payseur BA. Selection at linked sites in the partial selfer Caenorhabditis elegans. Mol Biol Evol, 2003, 20: 665-673
    [59] Nordborg M, Innan H. Molecular population genetics. Curr Opin Plant Biol, 2002, 5: 69-73
    [60] Hudson RR. How can the low levels of DNA sequence variation in regions of the Drosophila genome with low recombination rates be explained? Proc Nati Acad Sci USA, 1994,91:6815-6818
    [61] Innan H, Stephan W. Distinguishing the hitchhiking and background delection models. Genetics, 2003, 165: 2307-2312
    [62] Smith JM, Haigh J. The hitchhiking effect of a favourable gene. Genet Res, 1974, 23: 23-35
    [63] Kaplan NL, Hudson RR, Langley CH. The "hitchhiking" effect revisited. Genetics, 1989, 123: 887-899
    [64] Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics, 1993, 134: 1289-1303
    [65] Marais G, Charlesworth B. Genome evolution: recombination speeds up adaptive evolution. Curr Biol, 2003, 13:68-70
    [66] Presgraves DC. Recombination enhances protein adaptation in Drosophila melanogaster. Curr Biol, 2005, 15: 1651-1656
    [67] Lynn A, Ashley T, Hassold T. Variation in human meiotic recombination. Annu Rev Genomics Hum Genet, 2004. 5: 317-349
    [68] Nasar F, Jankowski C, Nag DK. Long palindromic sequences induce double-strand breaks during meiosis in yeast. Mol Cell Biol, 2000, 20: 3449-3458
    [69] Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1999, 63: 349-404
    [70] Luo L, Lee W, Jia L, et al. Statistical correlation in a DNA sequence. Phys Rev E, 1998, 58: 861-871
    [71] Luo L. Theoretical-physical approach to molecular biology. Shanghai: Shanghai Scientific & Technical Publishers, 2004
    [72] Russell GJ, Walker PM, Elton RA, et al. Doublet frequency analysis of fractionated vertebrate nuclear DNA. J Mol Biol, 1976, 108: 1-23
    [73] Russell GJ, Subak-Sharpe JH. Similarity of the general designs of protochordates and invertebrates. Nature, 1977, 266: 533-536
    [74] Burge C, Campbell AM, Karlin S. Over- and under-representation of short oligonucleotides in DNA sequences. Proc Natl Acad Sci USA, 1992, 89: 1358-1362
    [75] Karlin S, Burge C. Dinucleotide relative abundance extremes: a genomic signature. Trends Genet, 1995, 11:283-290
    [76] Karlin S, Ladunga I. Comparisons of eukaryotic genomic sequences. Proc Natl Acad Sci USA, 1994, 91: 12832-12386
    [77] Karlin S, Mrazek J. Compositional differences within and between eukaryotic genomes. Proc Natl Acad Sci USA, 1997, 94: 10227-10232
    [78] Karlin S. Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol, 1998, 1:598-610
    [79] Karlin S, Mrazek J, Campbell AM. Compositional biases of bacterial genomes and evolutionary implications. J Bact, 1997, 179: 3899-3913
    [80] Campbell AM, Mrazek J, Karlin S. Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA, 1999, 96: 9184-9189
    [81] Karlin S, Campbell AM, Mrazek J. Comparative and analysis across diverse genomes. Annu Rev Genet, 1998, 32: 185-225
    [82] Bill CA, Duran WA, Miselis NR, et al. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells: competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics, 1998, 149: 1935-1943
    [83] Varlet I, Radman M, Brooks P. DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches. Proc Natl Acad Sci USA, 1990, 87: 7883-7887
    [84] Kong A, Gudbjartsson D F, Sainz J, et al. A high resolution recombination map of the human genome. Nat Genet, 2002, 31: 241-247
    [85] Gentles AJ, Karlin S. Genome-scale compositional comparisons in eukaryotes. Genome Res, 2001, 11: 540-546
    [86] Mighell AJ, Smith NR, Robinson PA, et al. Vertebrate pseudogenes. FEBS Lett, 2000, 468: 109-114
    [87] Vanin EF. Processed pseudogenes: characteristics and evolution. Annu Rev Genet, 1985, 19: 253-272
    [88] Balakirev ES, Ayala FJ. Pseudogenes: are they "junk" or functional DNA? Annu Rev Genet, 2003, 37: 123-151
    [89] Maestre J, Tchenio T, Dhellin O, et al. mRNA retroposition in human cells: processed pseudogene formation. EMBOJ, 1995, 14: 6333-6338
    [90] Esnault C, Maestre J, Heidmann T. Human LINE retrotransposons generate processed pseudogenes. Nat Genet, 2000, 24: 363-367
    [91] Pavlicek A, Paces J, Elleder D, et al. Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution. Genome Res, 2002, 12: 391-399
    [92] Pavlicek A, Paces J, Paces V, et al. Length distribution of long interspersed nuclear elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. Gene, 2002, 300: 189-194
    [93] Zhang Z, Gerstein M. Identification and characterization of over 100 mitochondrial ribosomal protein pseudogenes in the human genome. Genomics, 2003, 81: 468-480
    [94] Woischnik M, Moraes CT. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res, 2002, 12: 885-893
    [95] Homma K, Fukuchi S, Kawabata T, et al. A systematic investigation identifies a significant number of probable pseudogenes in the Escherichia coli genome. Gene, 2002, 294: 25-33
    [96] Harrison PM, Kumar A, Lan N, et al. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J Mol Biol, 2002, 316: 409-419
    [97]Harrison PM,Echols N,Gerstein M.Digging for dead genes:an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome.Nucleic Acids Res,2001,29:818-830
    [98]Harrison PM,Milburn D,Zhang Z,et al.Identification of pseudogenes in the Drosophila melanogaster genome.Nucleic Acids Res 2003,31:1033-1037
    [99]Zhang Z,Harrison PM,Gerstein M.Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome.Genome Res,2002,12:1466-1482
    [100]Zhang Z,Carriero N,Gerstein M.Comparative analysis of processed pseudogenes in the mouse and human genomes.Trends Genet,2004,20:62-67
    [101]Zhang Z,Harrison PM,Liu Y,et al.Millions of years of evolution preserved:a comprehensive catalog of the processed pseudogenes in the human genome.Genome Res,2003,13:2541-2558
    [102]Torrents D,Suyama M,Zdobnov E,et al.A genome-wide survey of human pseudogenes.Genome Res,2003,13:2559-2567
    [103]Khelifi A,Duret L,Mouchiroud D.HOPPSIGEN:a database of human and mouse processed pseudogenes.Nucleic Acids Res,2005,33:D59-D66
    [104]周光金,余龙,赵寿元.人类基因组上的假基因.生命科学,2004,16:210-214
    [105]黄志华,薛庆中.假基因的组成、分布及其分子进化.植物学通报,2006,23:402-408
    [106]Friedberg F,Rhoads AR.Calculation and verification of the ages of retroprocessed pseudogenes.Mol Phylogenet Evol,2000,16:127-130
    [107]Zhang Z,Gerstein M.Large-scale analysis of pseudogenes in the human genome.Curr Opin Genet Dev,2004,14:328-335
    [108]Zhang Z,Gerstein M.Patterns of nucleotide substitution,insertion and deletion in the human genome inferred from pseudogenes.Nucleic Acids Res,2003,31:5338-5348
    [109]Echols N,Harrison PM,Balasubramanian S,et al.Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes comparing genes and pseudogenes.Nucleic Acids Res,2002,30:2515-2523
    [110]Petrov DA,Hartl DL.Pseudogene evolution and natural selection for a compact genome.J Hered,2000,91:221-227
    [111]Petrov DA,Hartl DL.High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups.Mol Biol Evol,1998,15:293-302
    [112]Pavlicek A,Gentles AJ,Paces J,et al.Retroposition of processed pseudogenes:the impact of RNA stability and translational control.Trends Genet,2006,22:69-73
    [113]Hirotsune S,Yoshida N,Chen A,et al.An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature, 2003,423: 91-96
    [114] Yano Y, Saito R, Yoshida N, et al. A new role for expressed pseudogenes as ncRNA: Regulation of mRNA stability of its homologous coding gene. J Mol Med, 2004, 82: 414-422
    [115] Woodmorappe J. The potential immunological functions of pseudogenes and other 'junk' DNA. TJ,2003, 17: 102-108
    [116] Woodmorappe J. Pseudogene function: regulation of gene expression. TJ, 2003, 17: 47-52
    [117] Svensson O, Arvestad L, Lagergren J. Genome-wide survey for biologically functional pseudogenes. PLOS Comput Biol, 2006, 2: 358-369
    
    [118] Woodmorappe J. Pseudogene function: more evidence. TJ, 2003, 17: 15-18
    [119] Lee JT. Complicity of gene and pseudogene. Nature, 2003, 423: 26-28
    [120] Martinez-Arias R, Calafell F, Mateu E, et al. Sequence variability of a human pseudogene. Genome Res, 2001, 11: 1071-1085
    [121] Harrison PM, Zheng D, Zhang Z, et al. Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res, 2005, 33: 2374-2383
    [122] Zheng D, Zhang Z, Harrison PM, et al. Integrated pseudogene annotation for human chromosome. J Mol Biol, 2005, 349: 27-45
    [123] Zheng D, Frankish A, Baertsch R, et al. Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. Genome Res, 2007, 17: 839-851
    [124] Kazazian HH. Mobile elements: drivers of genome evolution. Science, 2004, 303: 1626-1632
    [125] Weiner AM, Deininger PL, Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem, 1986, 55: 631-661
    [126] Bischof JM, Chiang AP, Scheetz TE, et al. Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Human Mutation, 2006, 27: 545-552
    [127] Roesler J, Curnutte JT, Rae J, et al. Recombination events between the p47-phox gene and its highly homologous pseudogenes are the main cause of autosomal recessive chronic granulomatous disease. Blood, 2000, 95: 2150-2156
    [128] Cormand B, Diaz A, Grinberg D, et al. A new gene-pseudogene fusion allele due to a recombination in intron 2 of the glucocerebrosidase gene causes Gaucher disease. Blood Cells Mol Dis, 2000, 26: 409-416
    [129] Tanooka H, Ootsuyama A, Sasaki H. Homologous recombination between p53 and its pseudogene in a radiation-induced mouse tumor.Cancer Res,1998,58:5649-5651
    [130]贺林.解码生命——人类基因组计划和后基因组计划.北京:科学出版社,2000
    [131]Tan YD,Fornage M.Mapping functions.Genetica,2008,133:235-246
    [132]Haldane JBS.The combination of linkage values,and the calculation of distances between the loci of linked factors.J Genet,1919,8:299-309
    [133]Kosambi DD.The estimation of the map distance from recombination values.Ann Eugen,1944,12:172-175
    [134]Broman KW,Murray JC,Sheffield VC,et al.Comprehensive human genetic map:individual and sex-specific variation in recombination.Am J Hum Genet,1998,63:861-869
    [135]International Human Genome Sequencing Consortium.Initial sequencing and analysis of the human genome.Nature,2001,409:860-921
    [136]Khelifi A,Meunier J,Duret L,et al.GC content evolution of the human and mouse genomes:insights from the study of processed pseudogenes in regions of different recombination rates.J Mol Evol,2006,62:745-752
    [137]Kong X,Murphy K,Raj T,et al.A combined linkage-physical map of the human genome.Am J Hum Genet,2004,75:1143-1148
    [138]Kong X,Matise T C.MAP-O-MAT:Internet-based linkage mapping.Bioinformatics,2005,21:557-559
    [139]Yu A,Zhao C,Fan Y,et al.Comparison of human genetic and sequence-based physical maps.Nature,2001,409:951-953
    [140]Hampson S,Kibler D,Baldi P.Distribution of over-represented k-mers in noncoding yeast DNA.Bioinformatics,2001,18:513-528
    [141]Kullback S.Information theory and statistics.New York:Wiley,1959
    [142]Singh ND,Arndt PF,Petrov DA.Genomic heterogeneity of background substitutional patterns in Drosophila melanogaster.Genetics,2005,169:709-722
    [143]Abrusan G,Krambeck HJ.The distribution of L1 and Alu retroelements in relation to GC content on human sex chromosomes is consistent with the ectopic recombination model.J Mol Evol,2006,63:484-492
    [144]Medstrand P,Lagemaat LN,Mager DL.Retroelement distributions in the human genome:variations associated with age and proximity to genes.Genome Res,2002,12:1483-1495
    [145]Comeron JM,Aguade M.An evaluation of measures of synonymous codon usage bias.J Mol Evol,1998,47:268-274
    [146]Duret L,Mouchiroud D.Expression pattern and,surprisingly,gene length shape codon usage in Caenorhabditis,Drosophila,and Arabidopsis.Proc Natl Acad Sci USA,1999,96:4482-4487
    [147]Altschul SF,Madden TL,Sch(a|¨)ffer AA,et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res,1997,25:3389-3402
    [148]Gupta V,Oliver B.Drosophila microarray platforms.Briefings in Functional Genomics and Proteomics.2003,2:97-105
    [149]李春喜,姜丽娜,邵云等.生物统计学(第3版).北京:科学出版社,2005
    [150]杜荣骞.生物统计学(第2版).北京:高等教育出版社,2003
    [151]Hurlburt RT.Comprehending behavioral statistics.Belmont,California:Wadsworth Inc,1994
    [152]何艳频,孙爱峰.Spearman等级相关系数计算公式及其相互关系的探讨.中国现代药物应用,2007,1:72-73
    [153]王晓燕,李美洲.浅谈等级相关系数与斯皮尔曼等级相关系数.广东轻工职业技术学院学报,2006,5:26-27
    [154]万永奇,谢维.生命科学与人类疾病研究的重要模型--果蝇.生命科学,2006,5:425-429
    [155]朱玉贤,李毅,郑晓峰.现代分子生物学(第3版).北京:高等教育出版社,2007
    [156]Bergman CM,Kreitman M.Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences.Genome Res,2001,11:1335-1345
    [157]Lyko F,Ramashoye BH,Jaenisch R.DNA methylation in Drosophila melanogaster.Nature,2000,408:538-540
    [158]Arndt PF,Hwa T.Identification and measurement of neighbor-dependent nucleotide substitution processes.Bioinformatics,2005,21:2322-2328
    [159]Maloisel L,Rossignol JL.Suppression of crossing-over by DNA methylation in Ascobolus.Genes Dev,1998,12:1381-1389
    [160]Li H,Luo L.The relation between codon usage,base correlation and gene expression level in Escherichia coli and yeast.J Theor Biol,1996,181:111-124
    [161]Hess ST,Blake JD,Blake RD.Wide variations in neighbor-dependent substitution rates.J Mol Biol,1994,236:1022-1033
    [162]Arndt PF,Burge CB,Hwa T.DNA sequence evolution with neighbor-dependent mutation.J Comput Biol,2003,10:313-322
    [163]Zhang Z,Gerstein M.Patterns of nucleotide substitution,insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res, 2003, 31: 5338-5348
    [164] Montoya-Burgos JI, Boursot P, Galtier N. Recombination explains isochors in mammalian genomes. Trends Genet, 2003, 19: 128-130
    [165] Ptak SE, Hinds DA, Koehler K, et al. Fine-scale recombination patterns differ between chimpanzees and humans. Nat Genet, 2005, 37: 429-434
    [166] Crawford DC, Bhangale T, Li N, et al. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet, 2004, 36: 700-706
    [167] Serre D, Nadon R, Hudson TJ, et al. Large-scale recombination rate patterns are conserved among human populations. Genome Res, 2005, 15: 1547-1552
    [168] Pavlicek A, Jabbari K, Paces J, et al. Similar integration but different stability of Alus and LINEs in the human genome. Gene, 2001, 276: 39-45
    
    [169] Bernardi G. The compositional evolution of vertebrate genomes. Gene, 2000, 259: 31-43
    [170] Liu G, Li H. The correlation between recombination rate and dinucleotide bias in Drosophila melanogaster. J Mol Evol, 2008, 67: 358-367
    [171] The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447: 799-816
    [172] Cost GJ, Boeke JD. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry, 1998,37: 18081-18093
    [173] Brouha B, Schustak J, Badge RM, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA, 2003, 100: 5280-5285
    
    [174] 刘波.基因组中可移动元素的研究. 硕士学位论文, 呼和浩特:内蒙古大学, 2007
    
    [175] Drouin G. Processed pseudogenes are more abundant in human and mouse X chromosomes than in autosomes. Mol Biol Evol, 2006, 23: 1652-1655
    [176] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673-4680
    [177] Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5: 150-163
    [178] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16: 111-120
    [179] Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci, 1997, 13: 555-556
    [180] Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.Mol Biol Evol,1986,3:418-426
    [181]刘国庆,李宏,赵朝霞.人类加工假基因演化过程中的两种信息流.生物信息学,2009,(in press)
    [182]Brenner DA,Smigocki AC,Camerini-Otero RD.Effect of insertions,deletions,and double-strand breaks on homologous recombination in mouse L cells.Mol Cell Biol,1985,5:684-691
    [183]Godwin AR,Liskay RM.The effects of insertions on mammalian intrachromosomal recombination.Genetics,1994,136:607-617
    [184]Petrov DA,Aminetzach YT,Davis JC,et al.Size matters:Non-LTR retrotransposable elements and ectopic recombination in Drosophila.Mol Biol Evol,2003,20:880-892
    [185]Freudenberg J,Fu YH,Ptacek LJ.Human recombination rates are increased around accelerated conserved regions-evidence for continued selection? Bioinformatics,2007,23:1441-1443
    [186]刘国庆,李宏.人类基因组中减数分裂重组对二核苷偏好性的影响.科学通报,2009,54:448-456
    [187]Bejerano G,Pheasant M,Makunin I,et al.Ultraconserved elements in the human genome.Science,2004,304:1321-1325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700