小麦矮秆基因Rht1染色体区段微共线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦Rht-B1与Rht-D1基因以及水稻sd1(OSGA20ox2)基因的开发与利用对世界小麦与水稻的产量产生了巨大的推动作用,引发了一场举世闻名的“绿色革命”。然而人们对于小麦Rht-B1与Rht-D1基因也仅限于基因本身的研究,所以对这一重要基因位点的同源区段的序列组成结构进行分析研究,以及该基因在小麦多倍化进程中的遗传特点与进化规律的研究必将有助于我们更好的认识这一重要基因。此外人们对于小麦中对应的水稻“绿色革命”基因的组成与功能还不够了解,因此,分离小麦中的水稻“绿色革命基因”的同源基因GA20ox2,深入了解该基因在小麦生长发育中的作用机理,对于小麦的改良可能具有重要的现实意义。一方面本研究利用二倍体、四倍体、六倍体BAC文库资源对小麦Rht-D1(Rht-B1)基因位点进行分子进化研究,以及小麦A、B、D基因组之间的共线性研究,并与水稻、短柄草Rht-D1(Rht-B1)基因区段序列进行比较研究。另一方面本研究以水稻sd1(OSGA20ox2)基因为基础,在小麦中成功克隆TaGA20ox2并对其进行基因结构分析与遗传定位:通过这两方面的研究,本论文获得如下主要结果:
     1.首次对小麦“绿色革命基因”Rht-B1、Rht-D1在小麦A、B、D基因组中的同源区段序列组成结构进行了分析,发现该基因所在同源区段的基因密度为1个基因/33-50Kb,高于小麦基因组中基因的平均密度(1个基因/80-100Kb);该区段重复序列占序列总长度的57-85%,其中以LTR亚类的反转录转座子为主,DNA转座子以CACTA与MITE序列为主;序列分析发现了一些新的重复序列元件,包括一个新的LTR反转录转座子,4个新的MITE序列。
     2.Rht-A1、Rht-B1、Rht-D1所在A、B、D三个直向同源基因组区段序列比较发现:(1)基因的共线性远高于重复序列与其它基因间序列的共线性;(2)发现了一个共线性很好的WIS亚类的反转录转座子及两个3Kb的未知序列,这些序列可能为小麦属特有基因组序列;(3)重复序列及基因间序列大部分为基因组特异序列;(4)分别发现了1个B基因组、2个D基因组特异的候选基因或非共线性候选基因。分析认为这些共线性与非共线性的基因、重复序列与其它类型的基因间序列是造成小麦三个基因组的“部分同源”关系的基础。
     3.不同基因组之间的同源区段序列比较分析揭示了同一物种在进化过程中不同的基因组进化速度并不一致,该区段B基因组要先于A、D基因组分化;在A、D基因组的序列上发现一个共有反转录转座子Carmilla-1,但是8在B基因组该共线性区段没有发现这个转座子:比较分析Rht-A1、Rht-B1、Rht-D1基因序列在二倍体、四倍体、六倍体中的差异时发现B基因组的序列差异要明显大于A、D基因组;A、D基因组在同源区段的序列相似性要明显高于A、B以及B、D基因组的相似性。
     4.采用同源克隆结合BAC文库筛选的方法,依据水稻“绿色革命”基因GA20ox2基因序列获得了小麦中GA20ox2基因:TaGA20ox2-A1、TaGA20ox2-B1、TaGA20ox2-D1的基因组序列和cDNA序列;利用中国春缺体-四体材料将小麦中的TaGA20ox2基因分别定位于3A、3B、3D染色体上;根据TaGA20ox2-D1基因序列在国际作图亲本W7984与Opata85之间的差异设计InDel标记GA20ox2-3i,将TaGA20ox2-D1基因定位于xfba330与xgwm664标记之间,遗传距离分别为4.1cM和5.3cM。分子标记结果结合QTL定位信息可以初步推断TaGA20ox2-D1在小麦中的功能与水稻相似,都是控制株高的重要基因。
The wheat Rht-B1,Rht-D1 and rice semidwarf-1(sd1) genes are well known as the "green revolution genes",and have contributed to the significant increase in wheat and rice production seen in the 1960s and 1970s.So investigation on the sequence structure and molecular evolution in the Rht-D1 locus region is very important to study on wheat Rht-B1 and Rht-D1 genes.On the other hand,we have a little knowledge about the composition and function of homologous sd1 gene in wheat,therefore, Cloning and identifying inheritance mode of this gene is significant to wheat genetic improvement.In this study,we investigated the molecular evolution of wheat Rht-D1 locus region by using sequenced Rht-D1 locus in six wheat genome from diploid,tetraploid and hexaploid species and compared the orthologous regions with Brachypodium and rice.Meanwhile,we obtained full length GA20ox genes from hexaploid wheat(Triticum aestivum) and located GA20ox genes on wheat genomes to give a better understanding of the character and evolutionary relationships of GA20ox genes in wheat.The results obtained are as follows:
     1.It is the first analyzing sequence structure in the homologus regions of Rht-D1 gene.The results showed gene density is one gene/33-50Kb in this region,which is high to average gene density in the wheat genome(one gene/80-100Kb).Repetitive sequences accounted for about 57-85%of the homologus region sequences.LTR retrotransposons are major types of the repetitive sequences, whereas CACTA and MITE are major of the DNA transposons.Additionally,a new LTR retrotransposons and four MITE sequences were reported in this paper.
     2.The sequences of a physical contig covering the Rht-D1 locus from the A genome of durum wheat were compared with the orthologous regions from the B and D genome of hexaploid wheat.The results suggested:(1) the colinearity of gene were much better than repetitive or intergenic other sequences.(2) it was found that a WIS element and two three-Kb unknown sequences were retained good colinearity, these sequences maybe unique for wheat genome.(3) most of the repetitive or intergenic other sequences are genome-specific sequence.(4) a gene of B genome specific and two genes of D genome specific were to be found.From this results,it is deduced that collinearity or no collinearity genes, repetitive sequences and intergenic other sequences lead to homeologous between wheat subgenomes.
     3.By comparison of homology sequences among different genome,it was found that wheat subgenomes have the different evolution speed.The fact that Carmilla-1 element shared by the A and D genomes,but not by the B genome,indicated that the A and D genomes share a common ancestor that had previously diverged from the B genome ancestor.Several other lines of evidence discovered in this study,including the difference of Rht-B1 sequence between tetraploid and hexaploid more higher than Rht-A1 sequence between tetraploid and hexaploid,and higher sequence homology in the Rht-1 regions between the A and D genomes than the B genome,also support this conclusion.
     4.A novel gene encoding GA20-oxidase was cloned from hexaploid wheat(Triticum aestivum) using the homologous cloning method.Sequences analysis showed that wheat GA20-oxidase have three sequences:TaGA20ox2-A1、TaGA20ox2-B1 and TaGA20ox2-D1.Sequence alignment proved wheat GA20-oxidase genes have the highest homology with rice GA20-oxidase(80%cDNA sequence identity).A series of 'Chinese Spring' nulli-terasomic stocks were employed to ascertain the chromosomal location of wheat GA20-oxidase gene.The results showed that TaGA20ox2-Al、TaGA20ox2-B1 and TaGA20ox2-D1 were on wheat chromosome 3A、3B and 3D.Using a population of recombinant inbred lines from the cross W7984×Opata85,TaGA20ox2-D1 was mapped on chromosome 3D,and flanked by SSR markers Xfba330 and Xgwm664 at 4.1 and 5.3 cM,respectively.In this region a plant height loci was reported.Based on these results,we think that TaGA20ox2-D1 gene maybe have an impact on wheat height development.
引文
1.Fu HH,Dooner HK,A Gene-enriched BAC library for cloning large allele-specific fragments from maize:isolation of a 240-kb contig of the bronze region.Genome Research,2000(6),10:866-873
    2.Cregan PB,Mudge J,Fickus EW,et.al.,Targeted isolation of simple sequences repeat markers through the use of bacterial artificial chromosomes.Theoretical and Applied Genetics,1999,98(6-7):919-928
    3.Nakamura S,Asaskawa S,Ohmido N,et.al.,Construction of an 800-Kb contig in the near-centrometic region of the rice blast resistance gene Pi-ta using a highly representative rice BAC library.Molecular Genetics and Genomics,1997,254(6):611-620
    4.Zhu H,Choi S,Johnston AK,et.al.,A large insert bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea:genome analysis,conting assembly,and gene cloning.Fungal Genetics and Biology.1997,21:337-347
    5.Jiang JM,Gill BS,Wang GL,et.al.,Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes.Proceedings of the National Academy of Sciences,1995,92(10):4487-4491
    6.Hanson RE,Zwick MS,Choi S,et.al.,Fluorescent in situ hybridization of a bacterial artificial chromosome.Genome,1995,38(4):646-651
    7.Liu Z,Yue W,Li DY et.al.,Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres.Chromosoma,2008,117(5):445-456
    8.Tomkins JP,Mahalingham R,Miller-Smith H,et.al.,A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance.Plant Molecular Biolog,1999a,41(1):25-32
    9.Sanchez AC,Yang D,Brar DS,et.al.,Genetic and physical mapping of xa13,a recessive bacterial blight resistance gene in rice.Theoretical and Applied Genetics,1999,98(6-7):1022-1028
    10.Bennett MD,Leitch IJ,Nuclear DNA amounts in angiosperms.Annals of Botany,1995,76(2):113-176
    11.Bennetzen JL,Ramakrishna W.Numerous small rearrangements of gene content,order and orientation differentiate grass genomes.Plant Molecular Biology,2002,48(5-6):821-827
    12.Bennetzen JL,Ma JX,The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis.Current Opinion in Plant Biology,2003,6(2):128-133.
    13.Sorrells ME,La Rota M,Bermudez Kandianis CE,et.al.,Comparative DNA sequence analysis of wheat and rice genomes.Genome Rescearch,2003,13(8):1818-1827.
    14.Animal & Microbe Genomes X Conference,http://www.intl-pag.Org/pag/10/abstracts/PAGX_P350.html,2002
    15.Lijavetzky D,Muzzi G,Wicker T,et.al.,Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat.Genome,1999,42(6):1176-1182
    16.陈凡国,张学勇,夏光敏,等.野生一粒小麦BAC文库的构建和鉴定.植物学报,2002,44(4):451-456
    17.刘越,孔秀英,吴佳洁,等.小麦A基因组乌拉尔图小麦(T.riticum urartu)BAC文库的构建.中国的遗传学研究.中国遗传学会编.中国遗传学会第七次代表大会暨学术讨论会论文摘要汇编.海口.2003.98
    18.Moullet O,Zhang HB,Lagudah ES,Construction and characterization of a large DNA insert library from the D genome of wheat.Theoretical and Applied Genetics,1999,99(1-2):305-313
    19.Akhunov ED,Akhunova AR,Dvorak J,BAC libraries of Triticum urartu,Aegilops speltoides and Ae.tauschii,the diploid ancestors of polyploid wheat.Theoretical and Applied Genetics,2005,111(8):1617-22
    20.Cenci A,Chant ret N,Kong XY,et.al.,Construction and characterization of a half million clone BAC library of durum wheat ( Triicum turgidum ssp. durum). Theoretical and Applied Genetics, 2003, 107(5):931-939
    
    21. Nilmalgoda SD, Cloutier S,Walichnowski AZ, et.al., Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome, 2003,46(5):870-878
    
    22. Chalhoub B, Lefevre A, Rouault P,et.al.,Construction of an hexaploid wheat BAC library for studying genome organization and cloning of interesting genes and QTLs. Plant, Animal & Microbe Genomes X Conference, 2002
    
    23. Vrána J, KubalákováM , Simkova H et.al., Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics, 2000, 156:2033-2041
    
    24. Lee JH, Arumuganathan K, Chung YS, et.al., Flow cytometric analysis and chromosome sorting of Barley (Hordeum vulgare L.). Molecular Cell, 2000,10(6): 619-625
    
    25. Lee JH, Ma Y, Wako T, et.al., Flow karyotypes and chromosomal DNA contents of genus Triticum species and ye (Secale cereale). Chromosome Research, 2004, 12:93-102
    
    26. Safá J, Bartox J, Janda J, et.al., Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. The Plant Journal, 2004, 39(6):960-968
    
    27. Janda J, Barto S J, safá r J, et.al., Construction of a subgenomic BAC library specific for chromosomes 1D.4D and 6D of hexaploid wheat. Theoretical and Applied Genetics, 2004, 109(7): 1337-1345
    
    28. Simkova H, Cihalikova J, Vrana J, et.al., Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biologia Plantarum, 2003,46(3):369-373
    
    29. Chalhoub B, Belcram H , Caboche M, Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol Journal, 2004,2(3): 181-188
    
    30. Osoegawa K, Woon PY, Zhao BH, et.al., An improved approach for construction of bacterial artificial chromosome libraries. Genomics, 1998, 52(1):1-8
    
    31. Yan L, Loukoianov A, Tranquilli G, et.al., Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences , 2003, 100(10):6263-6268
    
    32. FeuilleT C, Travella S, Stein N, et.al., Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences, 2003, 100(25):15253-15258
    
    33. Stein N, Feuillet C, Wicker T,et.al., Subgenome chromosome walking in wheat:a 450kb physical contig in Triticum monococctlm I.Spansthe LrlO resistance locus in hexaploid wheat. Proc. Natl Acad Sci. USA, 2000, 97(24):13436-13441
    
    34. Huang L, Brooks SA, Li W, et.al., Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 2003, 164(2):655-664
    
    35. Simons KJ, Fellers JP, Trick HN, et.al., Molecular characterization of the major wheat domestication gene Q. Genetics, 2006,172(1):547-555
    
    36. Fans JD, Fellers JP, Brooks SA, et.al., A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 2003,164(1):311-321
    
    37. Yahiaoui N, Srichumpa P, Dudler R, et.al., Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. The Plant Journal, 2004, 37(4):528-538
    
    38. KrattingerSG, Lagudah E,Spielmeyer W,et.al., A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science, 2009, 323(5919):1360-1363
    
    39. FU DL, Uauy C, Distelfeld A, et.al., A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust. Science, 2009, 323(5919): 1357-1360
    40. Paux E,Sourdille P, Jerome S,et.al., A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science, 2008, 322(5898):101-104
    41. Ramakrishna W, Dubcovsky J, Park YJ, et.al., Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics, 2002, 162(3): 1389-1400
    42. Chalupska D, Lee HY, Faris ID, et.al., Ace homoeoloci and the evolution of wheat genomes. Proceedings of the National Academy of Sciences, 2008, 105(28):9691-9696
    43. Gu YQ, Coleman DD, Kong XY, et.al., Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae Genomes. Plant Physiology, 2004, 135(1):459-470
    44. Anderson OD, Rausch C, Moullet O, et.al., The wheat D-genome HMW-glutenin locus:BAC sequencing,gene distribution,and retrotransposon clusters. Funct.Integr.Genomics. 2003, 3(1-2):56-68
    45. Ma JX, SanMiguel PJ, Dubcovsky J,et.al., Comparative sequence analysis of homologous wx1 regions in barley,maiz, pearl millet,rice,sorghum and diploid wheat. Plant,Animal & Microbe Genomes X Conference, http://www.Intl-pag.org/10/abstracts/ PAGX_P38.html, 2002
    46. Zhang P, Li WL, John F, et.al., BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma, 2004, 112(6):288-299
    47. Liu Z, Yue W, Dong YS, et.al., Identification and Preliminary Analysis of Several Centromere -associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library. Journal of Integrative Plant Biology, 2006,48 (3):348-358
    48. Ito H, Nasuda S, Endo TR. A direct repeat sequence associated with the centromeric retrotransposons in wheat. Genome, 2004, 47(4):747-756
    49. Bonierbale MW, Plaisted RL, Tanksley SD. RFLP Maps Based on a common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics, 1988,120(4): 1095-1103
    50. Mccouch S.Toward a plant genomics initiative: Thoughts on the value of cross-species and cross-genera comparisons in the grasses. Proceedings of the National Academy of Sciences, 1998, 95(5): 1983-1985
    51. Chain P, Kurtz S, Ohlebusch E, et.al., An applications-focused review of comparative genomics tools: capabilities, limitations and future challenges. Brief hioinform, 2003, 4(2): 105-123
    52. Contreras-Moreira B, Fitzjohn PW, Bates PA, Comparatives modelling: an essential methodology for protein structure prediction in the post-genomic era. Appl Bioinformatics, 2002, (4): 177-190
    53. Baker EN, Arcus VL, Lott JS, Protein structure prediction and analysis as a tool for functional genomics. Appl Bioinformatics, 2003, 2(3):S3-10
    54. Schmidt D, Roder MS, Dargatz H, et.al., Construction of a YAC library from barely cultivar Franka and identification of YAC-derived markers linked to the Rh2 gene conferring resistance to scald(Rhynchosporium secalis). Genome, 2001, 44:1031-1040
    55. Avison MB, Comparative genomics: digging for data. Methods in Molecular Biology, 2004, 266: 47-70
    56. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796-815
    57. Goff SA, Ricke D, Lan TH, et.al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 96(5565):92-100
    58. Yu J, Hu S, Wang J, et.al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565): 79-92
    59. Paterson A H, Bowers JE, Bruggmann R, et.al., The sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229):551-556
    60.Bonierbale MW,Plaisted RL,Tanksley SD,RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato.Genetics,1988,120(4):1095-1103
    61.Gebhardt C,Ritter E,Barone A,et.al.,RFLP maps of potato and their alignment with the homoeologous tomato genome.Theoretical and Applied Genetics,1991,83(1):49-57
    62.Tanksley SD,Ganal MW,Prince JP,et.al.,High density molecular linkage maps of the tomato and potato genomes.Genetics,1992,132(4):1141-1160
    63.Tanksley SD,Bernatzky R,Lapitan NL,et.al.,Conservation of gene repertoire but not gene order in pepper and tomato.Proceedings of the National Academy of Sciences,1988,85(17):6419-6423
    64.Livingstone KD,Lackney VK,Blauth JR,et.al.,Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae.Genetics,1999,152(3):1183-1202
    65.Devos KM,Gale MD,The genetic maps of wheat and their potential in plant breeding.Outlook on Agriculture,1993,22(3):93-99
    66.Dubcovsky J,Luo MC,Zhong GY,et.al.,Genetic map of diploidwheat,Triticum monococcum L.,and its comparison with maps of Hordeum vulgare L.Genetics,I996,143(2):983-999
    67.Helentjaris T,Weber D,Wright S,Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms.Genetics,1988,118(2):353-363
    68.Ahn S,Anderson JA,Sorrells ME,et.al.,Homoeologous relationships of rice,wheat and maize chromosomes.Mol Gen Genet.1993,241(5-6):483-490
    69.Moore G,Foote T,Helentjaris T,et.al.,Was there a single ancestral cereal chromosome?.Trends in Genetics,1995,11(3):81-82
    70.Gale MD,Devos KM.Comparatives genetics in the grasses.Proceedings of the National Academy of Sciences,1998,95(5):1971-1974
    71.Bennetzen JL,Comparative sequence analysis of plant nuclear genomes:micro-colinearity and its many exceptions.Plant Cell,2000,12(7):1021-1029
    72.Gaut BS,Evolutionary dynamics of grass genomes.New Phytologist,2002,154(1):15-28
    73.Chen M,San MP,Oliveira AC,et.al.,Microcolinearity in sh2-homologous regions of the maize,rice,and sorghum genomes.Proceedings of the National Academy of Sciences,1997,94(7):3431-3435
    74.Chen M,San Miguel P,Bennetzen JL.Sequence organization and conservation in sh2/al-homologous regions of sorghum and rice.Genetics,1998,148(1):435-443
    75.Chao S,Sharp PJ,Worland AJ,et.al.,RFLP-based genetic maps of wheat homoeologous group7 chromosomes.Theoretical and Applied Genetics,1989,78(4):495-504
    76.Chabane K,Abdalla O,Sayed H,et.al.,Assessment of EST-microsatellites markers for discrimination and genetic diversity in bread and durum wheat landraces from Afghanistan.Genetic Resources and Crop Evolution,2007,54(5):1073-1080
    77.Wicker T,Yahiaoui N,Keller B,Contrasting rates of evolution in Pm3 loci from three wheat species and rice.Genetics,2007,177(2):1207-1216
    78.Gu YQ,Coleman-Derr D,Kong XY,et.al.,Type and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes.Genetics,2006,174(3):1493-1504
    79.Akhunov ED,Goodyear AW,Geng S,et.al.,The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms.Genome Research,2003,13(5):753-763
    80.高双成,四倍体小麦“Langdon”低分子量谷蛋白Glu-3位点的BAC序列分析.博士论文.四川,四川农业大学,2006
    81.Chantret N,Salse J,Sabot F,et.al.,Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploidy wheat species(Triticum and Aegilops).Plant Cell,2005,17(4):1033-1045
    82.Devos KM,Atkinson MD,Chinoy CN,et.al.,Chromosomal rearrangements in the rve genome relative to that of wheat.Theoretical and Applied Genetics,1993,85(6-7):673-680
    83.Nath J,McNay JW,Paroda CM,et.al.,Implication of Triticum searsii as the B-genome donor to wheat using DNA hybridizations.Biochem Genet,1983,21(7-8):745-760
    84.Akhunov ED,Akhunova AR,Linkiewicz AM,et.al.,Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates.Proceedings of the National Academy of Sciences,2003,100(19):10836-10841
    85.毛新国,小麦组A、S、D二倍体种全长CDNA文库构建及序列初步分析.博士论文.北京,中国农业科学院,2004
    86.Maughan PJ,Saghai Maroof MA,Buss GR,Molecular-marker analysis of seed-weight:genomic locations,gene action,and evidence for orthologous evolution among three legume species.Theoretical and Applied Genetics,1996,93(4):574-579
    87.兰海,张志明,高世斌等.玉米和小麦种子休眠性QTL比较研究.中国农学通报,2008,24:121-125
    88.Kato K,Miura H,Sawada S.Comparative mapping of the wheat Vrn-AI region with the rice Hd-6 region.Genome,1999,42(4):204-209
    89.Kato K,Nakamura W,Tabiki T,et.al.,Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes.Theoretical and Applied Genetics,2001,102(6-7):980-985
    90.Wang H,Nussbaum-Wagler T,Li B,et.al.,The origin of the naked grains of maize.Nature,2005,436(7051):714-719
    91.Peng J,Richards DE,Hartley NM,et.al.,'Green revolution' genes encode mutant gibberellin response modulators.Nature,1999,400(6741):256-261
    92.Hubner N,Caroline AW,Heike Z,et.al.,Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.Nature Genetics,2005,37(3):243-253
    93.Hubner N,Yagil C,Yagil Y,Novel integrative approaches to the identification of candidate genes in hypertension.Hypertension,2006,47(1):1-5
    94.Weiss D,van R B,Jan M,et.al.,Gibberellic acid regulates chalcone synthase gene transcription in the corolla of Petunia hybrida.Plant Physiology,1992,98(1):191-197
    95.Hooley R.Gibberellins:perception,transduction and responses.Plant Molecular biology.1994,26:1529-1555
    96.王伟,朱平,程克棣,植物赤霉素生物合成和信号传导的分子生物学.植物学通报,2002,19(2):137-149
    97.Phillips A L,Ward D A,knes S U,et.al.,Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.Plant Physiol.1995,108(3):1049-1057
    98.Ait-Ali T,Franees S,Weller JL,et.al.,Regulation of gibberellin20-oxidase and gibberellins 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings.Plant Physiol,1999,121(3):783-791
    99.Carrera E,Jaekson SD,Prat S.Feedback control and diurnal regulation of gibberellins 20-oxidase transcript levels in potato.Plant Physiol,1999,119(2):765-774
    100.Kobayashi M,Yamaguchi I Murofushi N,et.al.,Fuctuation and location of endogenous gibberellions in rice.Agric Biol Chem,1988,52(5):1189-1194
    101.Lange T,Hedden P,Graebe JE,et.al.,Gibberellin biosynthesis in cell-free extracts from developing Cucurbita maxima embryos and the identification of new endogenous gibberellins.Planta,1993,189(3):350-358
    102.Lange T,Hedden P,Graebe JE,Expression cloning of a gibberellins 20-oxidase,a multifunctional enzyme involved in gibberellins biosynthesis.Proc Natl Acad Sci USA,1994,91(18):8552-8556
    103.Monna L,Kitazawa N,Yoshino R,et.al.,Positional cloning of rice Semidwarfing Gene,sd-l:rice "Green Revolution Gene" Encodes a Mutant Enzyme Involved in Gibberellin Synthesis.DNA Research,2002,9(1)11-17
    104.Hedden P,Proebsting WM.Genetic analysis of gibberellins biosynthesis.Plant Physiol,1999,119:365-370
    105.Kang HG,Jun SH,Kim J,et.al.,Cloning and molecular analyses of a gibberellins 20-oxidase gene expressed specifically in developing seeds of watermelon.Plant Physiol,1999,121(2):373-382
    106.Wang J X,Lin L,Pan R C,Gibberellion biosynthesis and its regulation in higher plant(in Chinese).Plant Physiology Communications,2001,5(1):1-8
    107.Xu Y L,Li L,Gage D A,et.al.,Feedback regulation of GA5 expression and metabolic engineering of gibberellion levels in Arabidopsis.The Plant Cell 1999,11(5):927-935
    108.Martin DN,Proebsting WM,Parks TD,et.al.,Feed-back regulation of gibberellins biosynthes is and gene expression in Pisum sativum L.Planta,1996,200(2):159-166
    109.Gawronska H,Yang Y Y,Furukawa K,et.al.,Effects of low irradiance stress on gibberellions levels in pea seedlings.Plant and Cell Physiology,1995,85:87-90
    110.Naik S,Gill KS,Prakas Ran VS,et.al.,Identification of a STS marker linked to the Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat.Theoretical and Applied Genetics,1998,97(4):535-540
    111.Aghaee-Sarbarzeh M,Singh H,Dhaliwal HS,A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat.Plant Breeding,2001,120(3):259-261
    112.Rosalind Morris,Schmidt JW,Johnson VA Chromosomal Location of a Dwarfing Gene in 'Tom Thumb'Wheat Derivative by Monosomic Analysis.Crop Science,1972,12:247-249
    113.Singh R.P,Nelson JC,Sorrells ME,Mapping Yr28 and other genes for resistance to stripe rust in wheat.Crop Science,2000,40(4):1148-1155
    114.刘秉华,杨丽,丁表珍,小麦显性矮秆基因Rht10与着丝点间遗传距离的测定.科学通报,1993,38(12):1128-1130
    115.刘秉华,邓景扬,小麦显性雄性不育单基因的染色体组定位及端体分析.中国科学(B辑),1986,16(2):157-165
    116.刘秉华,杨丽,小麦Rht10基因与ms2基因关系的遗传分析.遗传,1988,10(4):1-3
    117.Draeger R,Gosman N,Steed A,et.al.,Identification of QTLs for resistance to Fusarium head blight,DON accumulation and associated traits in the winter wheat variety Arina.Theoretical and Applied Genetics,2007,115(5):617-625
    118.McCartney CA,Somers DJ,Humphreys DG,et.al.,Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x'AC Domain'.Genome,2005,48(5):870-883
    119.Kunert AA,Naz O,Dedeck,et.al.,AB-QTL analysis in winter wheat-I:synthetic hexaploidwheat(T.turgidum ssp.dicoccoidesxT,tauschii) as a source of favourable alleles for milling and baking quality traits.Theoretical and Applied Genetics,2007,115(5):683-695
    120.Kato K,Nakamura W,Tabiki T,et.al.,Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes.Theoretical and Applied Genetics,2001,102(6-7):980-985
    121.Flintham J,Adlam R,Bassoi,M,et.al.,Mapping genes for resistance to sprouting damage in wheat,Euphytica,2002,126(1):39-45
    122.Hanocq E,Laperche A,Jaminon O,et.al.,Most significant genome regions involved in the control of earliness traits in bread wheat,as revealed by QTL meta-analysis,Theoretical and Applied Genetics,2007,114(3):569-584
    123.Kirigwi FM,van Ginkel M,Brown-Guedira G,et.al.,Markers associated with a QTL for grain yield in wheat under drought.Molecular Breeding,2007,20(4):401-413
    124.肖建会,小麦矮秆基因Rht-D1和Rht-B1序列多样性分析及Rht10致矮机理初探.博士论文.北京,中国农业科学院.2006
    125.Sidhu D,Gill KS,Distribution of genes and recombination in wheat and other eukaryotes.Plant Cell,Tissue and Organ Culture,2005,79(3):257-270
    126.Wicker T,Stein N,Albar L,et.al.,Analysis of a contiguous 211kb sequence in diploid wheat(Triticum monococcum L.) reveals multiple mechanisms of genome evolution.The Plant Journal,2001,26(3):307-316
    127.Wei F,Wing RA,Wise RP,Genome dynamics and evolution of the Mla(powdery mildew) resistance locus in barley.Plant Cell,2002,14(8):1903-1917
    128.Brooks SA,Huang L,Gill BS,et.al.,Analysis of 106kb of contiguous DNA sequence from the D genome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance.Genome,2002,45(5):963-972
    129.Chantret N,Cenci A,Sabot F,et.al.,Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice.Molecular Genetics and Genomics,2004,271(4):377-386.
    130.Komatsuda T,Pourkheirandish M,He C,et.al.,Six-rowed barley originated from a mutationin a homeodomain -leucine zipper I-class homeobox gene.Proceedings of the National Academy of Sciences,2007.23(4):1424-1429
    131.Qi LL,Echalier B,Chao S,et.al.,A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat.Genetics,2004,168(2):701-712
    132.SanMiguel P,Tiknonov A,Jin YK,et.al.,Nested retrotransposons in the intergenic regions of the maize genome.Science,1996,274(5288):765-768
    133.Bennetzen JL,Ma J,Devos KM,Mechanism of recent genome size variation in flowering plants.Annals of Botany,2005,95(1):127-132
    134.SanMiguel PJ,Ramakrishna W,Bennetzen JL,et.al.,Transposable elements,genes and recombination in a 215-kb contig from wheat chromosome 5A(m).Functional & Integrative Genomics,2002,2(1-2):70-80
    135.Wicker,T.,N.Yahiaoui,R.Guyot,E.et.al.,Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat.Plant Cell,2003,15(5):1187-1197
    136.Bureau TE,Wessler SR,Stowaway:A New Family of Inverted Repeat Elements Associated with the Genes of Both Monocotyledonous and Dicotyledonous Plants.Plant Cell,1994,6(6):907-916
    137.Feschotte C,Swamy L,Wessler SR,Genome-wide analysis of mariner-Like transposable elements in rice reveals complex relationship with stowaway miniature inverted repeat transposable elements(MITEs).Genetics,2003,163(2):745-758
    138.Bureau TE,Wessler SR,Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses.Proceedings of the National Academy of Sciences,1994,91(4):1411-1415
    139.Santiago N,Herraiz C,Goni JR,et.al.,Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana.Molecular Biology and Evolution,2002,19(12):2285-2293
    140.ElAmrani A,Marie L,Ainouche A,et.al.,Genome-wide distribution and potential regulatory functions of AtATE,a novel family of miniature inverted-repeat transposable elements in Arabidopsis thaliana.Molecular Genetics and Genomics,2002,267(4):459-471
    141.Guillet-Claude C,Birolleau-Touchard C,Manicacci D,et.al.,Nucleotide diversity of the Zmpox3 maize peroxidase gene:relationships between a MITE insertion in exon 2 and variation in forage maize digestibility.Biomed Central Genetics,2004,5(19):1-11
    142. Levy A, Feldman M, The impact of polyploidy on grass genome evolution. Plant Physiology, 2002, 130(4): 1587-1593
    143. Caldwell KS, Dvorak J, Lagudah ES, et.al., Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics, 2004,167(2):941-947
    144. Huang S, Sirikhachornkit A, Su X, et.al., Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proceedings of the Motional Academy of Sciences, 2002, 99:8133-8138
    145. Maestra B, Naranjo T, Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theoretical and Applied Genetics, 1998, 97(1-2): 181-186
    146. Tarchini R, Biddle P, Wineland R, et.al., The complete Sequence of 340 kb of DNA around the rice Adhl-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell, 2000, 12(3): 381-391
    147. Draper J, Mur LA, Jenkins G, et.al., Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiology, 2001,127(4):1539-1555
    148. Hasterok R, Marasek A, Donnison IS, et.al., Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics, 2006, 173(1): 349-362
    149. Vogel JP, Gu YQ, Twigg P, et.al., EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theoretical and Applied Genetics, 2006, 113(2):186-195
    150. Bossolini E, Wicker T, Knobel PA, et.al., Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. The Plant Journal, 2007,49(49):704-717
    151. Griffiths S, Sharp R, Foote TN, et.al., Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 2006, 439(7077):749-752
    152. Huo N, Lazo GR, Vogel JP, et.al., The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Functional & Integrative Genomics, 2007, 8(2):135-147
    153. Huo N, Vogel JP, Lazo GR et.al., Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Molecular Biology, 2009, 70(1-2):47-61
    154. Faris JD, Zhang ZC, Fellers JP, et.al., Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Functional & Integrative Genomics, 2008, 8(2): 149-164
    155. Liu S-B, Zhou R-H, Dong Y-H, et.al., Development, utilization of introgression lines using a synthetic wheat as donor. Theoretical and Applied Genetics, 2006, 112:1360-1373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700