自控锻炼对术后康复期恶性肿瘤患者机体免疫机能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     探讨自控锻炼对术后康复期恶性肿瘤患者红细胞免疫及其抗氧化功能、淋巴细胞亚群及血清相关因子的影响,为恶性肿瘤患者在常规治疗后的康复期,通过非药物疗法进行康复锻炼提供理论依据和科学指导,为自控锻炼对癌症患者机体机能影响的研究提供资料。
     研究对象与方法:
     1受试对象:以上海市癌症康复学校新入校学员新入学员40名为研究对象,其中男性17名,平均年龄为59.82±7.97(42岁~71岁);女性23名,平均年龄为55.78±5.42(48岁~66岁),平均癌龄为1.50±0.77年。实验至12周时,由于病情等原因,有3例患者缺失,2例患者病逝,共有35名受试者参加测试。病种分别为乳腺癌17例,消化系统癌14例,其他类型恶性肿瘤患者9例(包括卵巢癌2例、肺癌3例、甲状腺癌2例、肉瘤1例、前列腺癌1例、),所有受试对象均通过癌症病史及一般性健康检查,自愿参加本研究,签署知情同意书;均经临床诊断确诊,并经手术~+化疗常规治疗后,由医生综合病史资料、运动适宜性和体格检查的总体情况签署医学批准书,接受有指导的自控锻炼。
     2锻炼方案:受试者结束手术结合放化疗常规治疗后,在专门人员指导下,首先进行3周的自控锻炼学习,然后进行24周的自控锻炼,平均每天锻炼时间2小时,平均锻炼频率为每周5天。
     3跟踪随访:通过预约定点公园有计划对受试者进行锻炼指导和医务监督。同时不定期电话、家访、E-mail等通讯方式进行追踪随访。
     4指标测试:于实验第0周、12周、24周分别采用流式细胞仪方法测定患者外周血红细胞CD35、CD58平均荧光强度、淋巴细胞CD3~+、NK细胞(CD3-/CD16~+CD56~+)、NKT细胞(CD3~+/CD16~+CD56~+)分子表达、腺嘌呤氧化酶法测定红细胞抗氧化酶SOD活性、DTNB法测红细胞GSH-Px活性、硫代巴比妥酸法测血浆MDA含量、酶联免疫法测血清β-内啡肽及IL-2含量等指标,并且对实验期间相关指标进行相关分析。
     研究结果:
     1自控锻炼对恶性肿瘤患者红细胞CD35、CD58分子表达的影响与实验第0周比较,实验第12周、24周不同性别患者红细胞计数、血红蛋白含量及红细胞压积均无明显变化(P>0.05)。与实验第0周比较,患者红细胞CD35荧光强度第12周明显升高(P<0.01);第24周较第12周表现为明显下降(P<0.01),但仍显著高于实验第0周(P<0.01)。第12周红细胞CD58荧光强度较第0周显著下降(P<0.01);第24周明显高于实验第12周(P<0.01),回升到实验第0周水平(P>0.05)。
     2自控锻炼对恶性肿瘤患者红细胞抗氧化能力的影响自控锻炼12周后,术后康复期恶性肿瘤患者E-SOD活性显著高于实验第0周(P<0.01),第24周较第12周明显下降(P<0.01),但仍略高于实验第0周,虽然差异无统计学意义(P>0.05)。
     12周自控锻炼干预后,患者E-GSH-Px活性较第0周有升高趋势,但差异无统计学意义(P>0.05);第24周,E-GSH-Px活性继续保持升高的趋势,然而与实验第0周、第12周比较,均无统计学意义(P>0.05)。
     与实验第0周比较,实验第12、24周,肿瘤患者血浆MDA水平均明显降低(P<0.01,P<0.01),实验第24周与第12周无明显差异(P>0.05)。3自控锻炼对恶性肿瘤患者淋巴细胞亚群的影响
     实验第12周CD3~+淋巴细胞较第0周有升高趋势,但差异无统计学意义(P>0.05),然而实验进行至第24周时,CD3~+淋巴细胞较实验第12周持续升高(P>0.05),明显高于实验第0周(P<0.01);
     与实验第0周比较,实验第12周CD3-CD16~+CD56~+NK细胞百分比明显升高(P<0.05),实验第24周,CD3-CD16~+CD56~+NK细胞百分比不仅明显高于实验第0周(P<0.01),还显著高于实验第12周(P<0.05)。
     实验第12周患者外周血CD3~+CD16~+CD56~+NKT表达明显高于第0周(P<0.05),第24周较第12周呈下降趋势(P>0.05),但仍略高于第0周(P>0.05)。4自控锻炼对恶性肿瘤患者血清β-内啡肽及IL-2的影响
     恶性肿瘤患者血清β-EP含量实验第12周较第0周有升高趋势,但无统计学差异(P>0.05);实验第24周较实验第12周显著降低(P<0.01),并且较实验第0周偏低,但无统计学意义(P>0.05)。
     血清IL-2水平随着自控锻炼的持续进行呈升高趋势,然而与实验第0周比较,无论是实验第12周,还是实验至24周,差异均无统计学意义(P>0.05)。
     研究结论:
     1 24周自控锻炼能够提高术后康复期恶性肿瘤患者红细胞CD35相对数量,为红细胞发挥其免疫粘附功能提供必要的物质基础;然而对红细胞CD58表达无明显影响。2 24周自控锻炼能够改善术后康复期恶性肿瘤患者红细胞抗氧化酶活性,有效提高红细胞抗氧化功能;降低恶性肿瘤患者血浆脂质过氧化物水平,减少氧化应激对机体造成的过氧化损伤,对于维持恶性肿瘤患者机体内环境稳态具有积极意义。3 24周自控锻炼能够明显提高术后康复期恶性肿瘤患者外周血CD3~+、NK、NKT细胞相对含量,有利于促进机体对肿瘤的免疫调控及免疫杀伤作用。4 24周自控锻炼对于术后康复期恶性肿瘤患者血清β-EP和IL-2水平无明显影响。
Objective:
     The aim of this study was to make it clear the effect of Self-Control Exercise on erythrocyte immunity, antioxidant function of erythrocyte, subsets of lymphocyte and relative factors in serum on malignant tumor patients during their rehabilitation stage after surgery, which could offer a guideline for cancer patients to improve health after conventional therapy, and try to enrich refernce material about study on physical activity and cancer rehabilitation.
     Setting and participants:
     1 Participants: 40 new malignant tumor patients were recruited from Shanghai Cancer Club, of which there were 17 men (aged from 42 to 71 years old ) and 23 women(aged from 48 to 66 years old). The mean cancer age of them all was 1.50±0.77years, and the type of tumor included breast cancer (17 patients), digestive cancer (14 patients) and others including ovary cancer, lung cancer, thyroid gland cancer, sarcoma,and prostate cancer). All the patients were diagnosed pathologically and were treated with surgery and chemotherapy. They were all willing to participate in this study, After signing their names on informed consent form, they performed 24-week moderate intensive training program of Self-Control Exercise.
     2 Protocal: After conventional treatment of surgery and chemotherapy, all the patients learned to practice Self-Control Exercise for 3 weeks, then they left the club and began to do exercise regularly for two stages, and the fist stage lasted from 0 or 12th week while the second stage was from the 13rd to 24th week. The patients finished Self-Control Exercise about 5 days per week and each day the total exercise time was about 2 hours.
     3 Following-up: Going to the park to meet them and providing help on exercise and medical supervision to them.
     4 Main outcomes: Erythrocyte CD35, erythrocyte CD58, lymphocyte CD3~+, CD3-/CD16~+CD56~+NK and CD3~+/CD16~+CD56~+ NKT were measured by the method of flow cytometry; the activity of erythrocyte SOD , E-GSH-Px were tested by xanthine oxidase and DTNB respectively, plasma MDA was measured by thiobarbituric acid and serumβ-EP and IL-2 was measured by ELISA.
     Results:
     1 Effects of Self-Control Exercise on erythrocyte CD35 and CD58 in malignant tumor patients during rehabilitation stage after surgery.. The count of red blood cell, level of hemoglobin and hematocrit did not change significantly after 12 or 24 weeks’exercerse in malignant tumor patients after surgery during rehabilitation.(P>0.05).
     Erythrocyte CD35 increased significantly after 12 weeks’intervention (P<0.01), it attenuated in the 24th week compared with 12th week(P<0.01), however, it still remained a higher level than that before experiment(P<0.01). Erythrocyte CD58 decreased significantly after 12-week’s intervention (P<0.01), while it increased in the 24th week compared with that of the 12th week (P<0.01) and there was no significant difference between 0 and 12 week.
     2 Effects of Self-Control Exercise on erythrocyte antioxidant in malignant tumor patients during rehabilitation stage after surgery.
     The activity of erythrocyte SOD increased significantly after the patients took 12-week’s exercise (P<0.01), though it decreased in the 24th week.(P<0.01), it still remained a higher trend compared with that before experiment(P>0.05).
     The activity of erythrocyte GSH-Px kept an increasing trend during the 12- and 24-week’s Self-Control Exercise intervention, however, there was no significant difference between the 12th and 0th week, 24th and 0th week..
     Plasma MDA of patients both at the 12th week and 24th week after exercise intervention was much lower than 0 week respectively(P<0.01, P<0.01), though there was no significant difference between 12th and 24th week.
     3 Effects of Self-Control Exercise on lymphocyte subsets in malignant tumor patients during rehabilitation stage after surgery..
     Peripheral blood CD3~+ did not change significantly after 12-week’s exercise intervention (P>0.05), while it increased significantly in the 24th week (P<0.01). CD3-CD16~+CD56~+NK increased significantly in the 12th week compared with 0 week (P<0.05), and in the 24’s week, it was not only higher than 0 week (P<0.01), but higher than the 12th week (P<0.05).
     NKT increased significantly in the 12th week after exercise intervention (P<0.05), however it had a decreasing trend in the 24th week (P>0.05), but it still showed a little higher than the 0 week (P>0.05).
     4 Effects of Self-Control Exercise on serumβ-EP and IL-2 in malignant tumor patients during rehabilitation stage after surgery..
     Serumβ-EP and IL-2 both had an increasing trend after 12-week’s exercise intervention, though it had no significance statistically(P>0.05, P>0.05). And serumβ-EP in the 24th week decreased significantly compared with the 12th week, (P<0.01), however it has no difference compared with the 0 week (P>0.05); serum IL-2 still kept an increasing trend in the 24th week, though there was no significant difference between 0 week and 24 week (P>0.05).
     Conclusions:
     1 24-week’s Self-Control Exercise could improve erythrocyte CD35 in malignant tumor patients after surgery, which might help erythrocyte to execute its immune function, however, erythrocyte CD58 had no significant change after 24-week’s Self-Control Exercise intervention.
     2 24-week’s Self-Control Exercise could increase activity of erythrocyte antioxidant in malignant tumor patients after surgery, and decrease the level of plasma MDA, so that it could help the body to avoid damage from oxidative stress and keep an internal environment homeostasis.
     3 24-week’s Self-Control Exercise could increase the level of peripheral blood CD3~+, NK and NKT in malignant tumor patients after surgery, which indicates an improved immune supervision and immune cytotoxicity.
     4 There was no significant effect of 24-week’s Self-Control Exercise on serumβ-EP and IL-2 in malignant tumor patients after surgery during rehabilitation..
引文
[1]世界卫生组织.关于身体活动有益健康的全球建议[M].瑞士日内瓦:世界卫生组织. 2010.
    [2]今日晨报.肿瘤是慢性非传染性疾病[EB/OL]. http://jrzb.zjol.com.cn/html/2010-06/29/content_429806.htm?div=-1?2010-6-29.
    [3]曾利明.世界癌症研究基金会:中国每年62万例癌症可预防[EB/OL]. http://www.zsr.cc/ExpertHome/StudyDatum/201102/558534.html 2011-2-9.
    [4]中国癌症死亡人数占全球1/4发病呈年轻化趋势[EB/OL].《瞭望》新闻周刊, http://www.chinanews.com.cn/jk/jk-hyxw/news/2010/06-21/2353282.shtml 2010-6-21.
    [5] Global health risks: mortality and burden of disease attributable to selected major risks. Geneva, World Health Organization, 2009.
    [6]汪继兵.自控锻炼对癌症长期生存者的健康状况及生活质量影响的研究[D].上海体育学院. 2010: 40-44.
    [7]赵继峰.郭林气功抗癌机理的探讨[R].中国医学气功学会2007年研讨会论文集[C]. 2007.
    [8]袁正平.郭林气功的传承与发展[EB/OL]. http://www.shcrc.cn/XXLR1. 2010-9-10.
    [9] Zhu WM, Wang RW, Yuan ZP, et al. Guo-lin qinggong exercise for cancer care practice: a preliminary report[R]. Med Sci sport Exerc, 2010, 42(5 Suppl): 42.
    [10] Wang RW, Zhu WM, Yuan ZP, et al. Social support for physical activity in cancer survivorship: a survey study[R]. Med Sci sport Exerc, 2010, 42(5 Suppl): 42-43.
    [11] Schneidher CM, Dennhy CA, Carter SD. Exercise and cancer recovery[M]. Champaign: Human Kinetics Publisher. 2003: 159-183.
    [12] Thomas S, Reading J, Shhard RJ. Revision of the physical activity readiness questionair (PAR-Q)[J]. Can J. Sport Sci. 1992, 17(4): 338-345.
    [13]郭峰,钱宝华,张乐之.现代红细胞免疫学[M].上海:第二军医大学出版社. 2002, 6: 21-23.
    [14] Hess C, Schifferli JA. Immune adherence revisited: novel players in an old game[J].News Physiol Sci, 2003, 18(3):104-108.
    [15]郭峰,卢培恩,王海滨,等.新鲜血对癌细胞快速自然免疫反应的发现与实验方法的创建[J].深圳中西医结合杂志. 1999, 9(5): 7-11.
    [16]郭峰,黄盛东,郝丽等.红细胞中肿瘤免疫反应中的作用.中华微生物学和免疫学杂志. 1995,15(3):183-187.
    [17]郭峰.红细胞天然免疫与获得性免疫[J].自然杂志. 2004, 26(4):194-199.
    [18] Billaud M, Rousset F, Calender A, et al. Low expression of lymphocyte function-associated antigen (LFA)-1 and LFA-3 adhesion molecules is a common trait in Burkitt’s lymphoma associated with and not associated with Epstein-Barr virus[J]. Blood. 1990, 75(9):1827-1833.
    [19] Schirren CA, V olpel H, Meuer SC. Adhesion molecules on freshly recovered T leukemias promote tumor-directed lympholysis[J]. Blood. 1992, 79(1): 138-143.
    [20] De-Rossi G, Zarcone D, Mauro F, et al. Adhesion molecule expression on B-cell chronic lymphocytic leukemia cells: malignant cell phenotypes define distinct disease subsets[J]. Blood. 1993, 81(10): 2679-2687.
    [21] Yannelli JR, Thurman GB, Mrowca-Bastin A, et al. Enhancement of human lymphokine-activated killer cell cytolysis and a method for increasing lymphokine-activated killer cell yields to cancer patients[J]. Cancer Res. 1988, 48(20): 5696-5700.
    [22]胡金川.红细胞免疫及其临床应用研究进展[J].国际检验医学杂志. 2008, 29(7): 621-622.
    [23]郭峰,钱宝华,花美仙,等.肿瘤患者红细胞天然免疫分子CD35、CD59相关性研究[J].中国免疫学杂志. 2004, 20(2):136-137.
    [24]郭峰,张俊洁,赵书平,等.肿瘤患者红细胞CR1基因组密度多态性的变化[J].中华微生物学和免疫学杂志. 1998, 18(4): 282-285.
    [25]郭峰,张乐之,许育,等.原发性肝癌患者红细胞免疫分子CR1活性和循环免疫复合物的变化[J].第二军医大学学报. 2004, 25(7):810-811.
    [26]雷红霞,钱宝华,花美仙等,不同恶性肿瘤患者红细胞免疫黏附功能变化的初步研究.深圳中西医结合杂志. 2007, 17(5): 309-320
    [27]张昊翔,钱宝华,郭峰.恶性肿瘤患者血小板、红细胞粘附分子CD35、CD44、CD62的表达与肿瘤转移的关系[J].实用医学杂志. 2008, 24(18): 3153-3155.
    [28]张利朝,张盈华,陈渝宁等.健康人运动前后红细胞免疫功能与细胞数的变化及关系.细胞与分子免疫学杂志. 2001, 17(2): 197.
    [29]何卫龙,黄玉山.红细胞免疫黏附对运动的应答.体育科学. 2004. 24(4): 34-37.
    [30]廖晓,田文彦.运动员红细胞免疫功能初探.成都体育学院学报. 1994, 20(2): 89-91.
    [31]黄南洁,刘绍曾.有氧锻炼对弱智学生红细胞免疫黏附功能的影响.中国运动医学杂志. 2000, 19(1): 97-98.
    [32]邓树勋,王健,乔德才主编.运动生理学.北京:高等教育出版社(第二版). 2009: 109
    [33] Drouin JS, Young TJ, Beeler J, et al. Random control clinical trial on the effects of aerobic exercise training on erythrocyte levels during radiation treatment for breast cancer [J].2006, 107(10):2490-2495.
    [34]郭峰.构建现代系统免疫学新的实验研究体系[J].解放军医学杂志. 2006, 31(2): 89-91.
    [35] Rafnar B, Traustadottir K, Sigfusson A, et al. An enzyme based assay for the measurement of complement mediated binding of immune complexes to red blood cells[J]. J Immund Methods. 1998, 211(1):171-181.
    [36]刘险峰.红细胞膜表面分子与红细胞免疫[J].国外医学免疫学分册. 2004, 27(4): 221-224.
    [37] Munford RS, Pugin J. The crucial role of systemic responses in the innate (non-adaptive) host defense[J]. J Endotorin Des. 2001, 7(4): 327-332.
    [38] Currie MS, Vala M, Pisetsky DS, et al. Correlation between erythrocyte CR1 reduction and blood proteinase markers in patients with malignant and inflammatory disorders[J]. Blood, 1990, 75(8):1699-1704.
    [39]马庆海,索翠萍,孙涛.肝脏疾病患者红细胞免疫功能变化的临床研究[J].医学检验与临床. 2007, 18(6):74-76.
    [40] Thomsen BS, Radgaard A, Tvede N, et al. Levels of complement receptor type one(CR1, CD35) on erythrocytes, circulating immune complexes and complement C3 split products C3d and C3c are not changed by short-term physical exercise or trainin[J]. Int J Sports Med. 1992, 13(2): 172-175.
    [41]罗琳,张缨.高住高练低训对足球运动员红细胞CD35数量及活性变化的影响[J].中国运动医学杂志. 2006, 25(4):395-398.
    [42] Hu Q, Chia M, Schmidt G, et al. Effects of training status and different treadmill exercises on the activity of complement receptor type 1 of erythrocytes [J]. Biol. Sport. 2008, 25(4):321-338.
    [43]廖晓,田文彦.运动员红细胞免疫功能初探.成都体育学院学报. 1994, 20(2): 89-91.
    [44] Vallejo MC. The immune system in the oxidative stress conditions of aging and hypertension: favorable effects of antioxidants and physical exercise[J]. Antioxid Redox Signal. 2005,7(9-10): 1356-1366.
    [45]张梅,丘跟全,夏天.脾虚患者直至过氧化和红细胞免疫功能的研究[J].安徽中医学院学报. 2001, 20(2):43-44.
    [46]徐培权,王凤超,李同度.大肠癌患者红细胞免疫的变化及其与氧自由基的相关性[J].实用全科医学.2005, 3(4): 289-290.
    [47]王海滨,高永升,叶元芬,等.肿瘤患者红细胞CR1分子数量及基因多态性的变化[J].中国免疫学杂志. 2001, 17(7):382-383.
    [48]郭峰,张乐之,钱宝华,等.肿瘤患者红细胞天然免疫分子CD35和趋化因子受体的变化[J].解放军医学杂志. 2002, 27(11): 179-180.
    [49]雷红霞,钱宝华,花美仙,等.不同恶性肿瘤患者红细胞免疫粘附功能变化的初步研究[J].深圳中西医结合杂志. 2007, 17(5): 309-340.
    [50]王晓红,白淑平,郭莉.肿瘤患者红细胞免疫功能的临床研究[J].中国卫生检验杂志. 2006, 16(12):1525.
    [51]付尚志.肿瘤患者红细胞免疫功能的变化[J].中国肿瘤临床与康复. 2002, 9(6): 128-129.
    [52] Lopez RD, Waller EK, Lu PH, et al. CD58/(LAF-3) and IL-12 provided by activated monocytes are critical in the vitro expansion of CD56+ T cells[J]. Cancer Immunol Immunother.. 2001, 49(12):629-640.
    [53] Schirren CA, Volpel H, Meuer SC. Adhesion molecules on freshily recovered T leukemias promote tumor-directed lympholysis[J]. Blood. 1992, 79(1): 138-143.
    [54]郭晓清,何玉林,王清峰. CD2和CD58在宫颈癌组织中的表达及临床意义[J].细胞与分子免疫学杂志. 2007, 23(5):445-446.
    [55]丁志祥,张乐之,郭峰.肝癌患者红细胞CD35、CD44s和CD58分子的检测及临床意义[J]. 2006, 11(1):62-63.
    [56]朱荣,张缨,蔡爱洁.高住高练低训对足球运动员红细胞CD58、CD59和T淋巴细胞CD2表达的影响[J].中国运动医学杂志. 2006, 25(3): 320-323.
    [1] Liotta, LA, Kohn, EC. The microenvironment of the tumor-host interface.[J]. Nature. 2001, 411: 375-379.
    [2] Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases[J]. Clin Biochem.1999, 32(8): 595-603.
    [3] Chiarugi P. PTPs versus PTKs: The redox side of the coin[J]. Free radicRes 2005, 39(4): 353-364.
    [4] Storz P. Reactive oxygen species in tumor progression[J]. Frot. Biosci. 2005, 10: 1881-1896.
    [5] Opara E. Oxidative stress[J]. Disease-a-Month. 2006, 52(5):183-198.
    [6] Valko, M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico- Biological Interactions. 2006, 160(1): 1-40.
    [7] Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure[J]. J Clin Invest.2005,115(3): 500-508.
    [8] Boonstra J, Post JA. Molecular events associated with reactive oxygen species andcell cycle progression in mammalian cells[J]. Gene. 2004, 337(4): 1-13.
    [9] Gourlay, CW, Ayscough KR. The actin cytoskeleton: Akey regulator of apoptosis and aging?[J]. Nature Reviews. Molecular Cell Biology.2005, 6: 583-589.
    [10] Poli G, Leonarduzzi G, Biasi F, et al. Oxidative stress and cell signalling[J]. Current Medicinal Chemistry. 2004, 11(9): 1163-1182.
    [11] Otani H. Reactive oxygen species as mediators of signal transduction in sichemic preconditioning[J]. Antioxidants and Redox Signalling. 2004. 6(2): 449-469
    [12] Ceriello A. Oxidative stress and diabetes-associated complications[J]. Endocrine Practice. 2006. 12(1): S60-62.
    [13] Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation[J]. Biochem Soc Trans. 2003, 31:1441-1444.
    [14] Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein[J]. J Clin Ivest. 2003, 111:583-593.
    [15] Zawadzak-Bartczak E. Activities of red blood cell anti-oxidative enzymes(SOD, GPx) and total anti-oxidative capacity of serum(TAS) in men with coronaty atherosclerosis and in healthy pilots[J]. Med Sci MONIT. 2005, 11(9): CR440 -444.
    [16] Pasupathi P, Saravanan G, Chinnaswamy P, et al. Effect of chronic smoking on lipid peroxidation and antioxidant status in gastric carcinoma patients [J]. Indian J Gastroenterol. 2009, 28(2): 65-67.
    [17] Senthil K, Aranganathan S, Nalini N. Evidence of oxidative stress in the circulation of ovarian cancer patients[J]. Clinica Chimica Acta. 2004, 339(1-2): 27-32.
    [18] Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history [J]. Dynamic Medicine. 2009, 8: http: //www.dynamic-med.com/content/8/1/1
    [19] Radak Z, Chung HY, Koltai E, et al. Exercise, oxidative stress and hormesis [J].Aging Res Rev. 2008, 7(1):34-42.
    [20] Mahapute HH, Shete SU, Bera TK. Effect of yogic exercise on super oxide dismutase levels in diabetics[J]. Int. J, Yoga. 2008, 1(1):21-25.
    [21] Kim KS, Paik IY, Woo JH. The effect of training type on oxidative DNA damage and antioxidant capacity during three-dimensional space exercise[J].Med Princ Pract. 2010, 19(2): 133-141.
    [22] Karolkiewicz J, Michalak E, Pospieszna B, et al. Response of oxidative stress markers and antioxidant parameters to an 8-week aerobic physical activity program in healthy, postmenopausal women[J]. Arch Gerontol Geriatr. 2009, 49(1):67-71.
    [23] Ordonez FJ, Rosety M, Rosety-Rodriguez M. Regular Physical Activity Increases Glutathione Peroxidase Activity in Adolescents With Down Syndrome[J]. Clin. J Sport Med. 2006, 16(4): 355-356.
    [24] Ordonez FJ, Rosety M, Rosety-Rodriguez M. Regular exercise did not modify significantly superoxide dismutase activity in adolescents with Down’s syndrome[J]. Br J Sports Med 2006;40(8): 717-718.
    [25] Aguiar AS, Tuon T, Albuquerque MM, et al. The exercise redox paradigm in the Down’s syndrime improvements in motor function and increases in blood oxidative status in young adults[J]. J Neural Transm. 2008, 115(12):1643-1650.
    [26] SIEMS WG, SOMMERBURG O, GRUNE T. Erythrocyte free radical and energy metabolism[J]. Clin Nephrol. 2000, 53(1): S9-17.
    [27] ATALAY M, LAAKSONEN DE. Diabetes, oxidative stress and physical exercise[J]. J Sports Sci & Med.2002, 1:1-14.
    [28] PEDERSEN BK, SALTIN B. Evidence for prescribing exercise as therapy in chronic diease[J]. Scand J Med Sci Sports. 2006, 16(S1):3-63.
    [29] JI LL. Antioxidant enzymes response to exercise and aging[J].Med Sci Sports exerc. 1993, 25(2): 225-231.
    [30] CLARKSON PM, THOMPSON HS. Antioxidants: what role do they play in physical activity and health?[J]. Am J Clin Nutr. 2000, 72(suppl): 637s-646s
    [31] DEATON CHM, MARLIN DJ. Exercise-associated oxidative stress[J]. Clin Tech Equine Prac. 2003, 2(3): 278-291
    [32] TOSKUIKAO C, GLINSUKON T. Endurance exercise and muscle damage: relationship to lipid peroxidation and scavenging enzymes in short and long distance runners [J]. Jpn J Phys Fitness Sports Med. 1996, 45(1): 63-70.
    [33] ALIPOUR M, MOHAMMADI M, ZARGHAMA N, et al. Influence of chronic exercise on red cell antioxidant defense, plasma malondialdehyde and total antioxidant capacity in hypercholesterolemic rabbits[J]. J sports Sci Med. 2006, 5:682-691.
    [34] LAATIKAINEN LE, CASTELLONE MD, HEBRANT A, et al. Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer[J].Endocr relat cancer. 2010, 17(3): 785-796. [ 35 ] WEYDERT CJ, WAUGH TA, RITCHIE JM, et al. Overe-xpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth[J]. Free Rad Biol. Med. 2006, 41(2):226-237.
    [36]沈征,钱凯先,张曙云.长期长跑运动对老年人超氧化物歧化酶和过氧化脂质的影响[J].中国老年学杂志. 2004, 24(11):1024-1-25.
    [37] MOFFARTS BD, PORTIER K, KIRSCHVINK N, et al. Effects of exercise and oral antioxidant supplementation enriched in (n-3) fatty acids on blood oxidant markers and erythrocyte membrane fluidity in horses[J]. Vet J. 2007, 174(1): 113-121.
    [38]童华,赵歌.运动与红细胞膜研究进展[J].武汉体育学院学报. 2004, 38(2):57-62.
    [39] MONNIER JF, BENHADDAD-AISSA A, MICALLEF JP, et al. Relationships between blood viscosity and insulin-like growth factor status in athletes[J]. Clin Hemoreheol Microcire. 2000, 22(4):277-286.
    [40] BALAKRISHNAN SD, ANURADHA CV. Exercise, depletion of antioxidants and antioxidant manipulation[J].Cell Biochem Funct. 1998, 16(4):269-275.
    [41] ELOSUA R, MOLINA L, FITO M, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women[J]. Atherosclerosis. 2003, 167(2):327-334.
    [42] TAULER P, AGUILO A, GIMENO I, et al. Response of blood cell antioxidant enzyme defences to antioxidant diet supplementation and to intense exercise[J].Eur J Nutr 2006, 45(4): 187-195.
    [43] RUSH, JW, SANDIFORD SD. Plasma glutathione peroxidase in healthy young adults: influence of gender and physica activity[J]. Clin Biochem. 2003, 36(5): 345-351.
    [44] ABIAKA C, AL-AWADI F, AL-SAYER H, et al. Activities of erythrocyte antioxidant enzymes in cancer patients[J]. J Clin Lab Anal. 2002, 16(4): 167-171.
    [45] GUPTA A, BHATT MLB, MISRA MK. Lipid peroxidation and antioxidant status in head and neck squamous cell carcinoma patients[J]. Oxid Med Cell Longev. 2009, 2(2): 68-72.
    [46] KOSTKA T, DRAI J, BERTHOUZE SE, et al. Physical activity, aerobic capacity and selected markers of oxidative stress and the anti-oxidant defence system in healthy active elderly men[J]. Clin Physiol. 2000, 20(3): 185-190.
    [47] MARZATICO F, PANSARASA O, BERTORELLI L, et al. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes[J]. J Sports Med Phys Fitness. 1997, 37(4): 235-239.
    [48] SANTOS-SILVA A, REHELO MI, CASTRO EM, et al. Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents[J]. Clin Chim Acta. 2001, 306(1-2): 119-126. [ 49] ZAWADZAK-BARTCZAK E. Activities of red blood cell anti-oxidative enzymes(SOD, GPx) and total anti-oxidative capacity of serum(TAS) in men with coronaty atherosclerosis and in healthy pilots[J]. Med Sci MONIT. 2005,11(9): CR440 -444.
    [50] SHIN YA, LEE JH, SONG WOOK S, et al. Exercise training improves the antioxidant enzyme activity with no changes of telomere length[J]. Mech Ageing devel. 2008, 129(5): 254-260.
    [1] Lissni P, Brivio F, Ferranle R, et al. Circulating immature and mature dendritic cells in relation to lymphocyte subsets in patients with gastrointestinal tract cancer[J]. Int J Biol Markers. 2000, 15(1): 22-25.
    [2] Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of ageneral population[J]. Lancet. 2000,356(9244): 1795-1799.
    [3]陈慰峰.医学免疫学[A].第三版,北京:人民卫生出版社: 147-159.
    [4]曹雪涛主编.免疫学前沿进展[A].第一版,北京:人民卫生出版社: 36-37.
    [5] Taniguchi M, Seino K, Nakayama T. The NKT cell system: bridging innate and acquired immunity[J]. Nat Immunol. 2003, 4(12):1164-1165.
    [6] Ambrosino E, Terabe M, Halder, RC, et al. Cross-regulation between typeⅠand typeⅡNKT cells in regulating tumor immunity: a new immunoregulatory axis[J]. J Immuol. 2007,179(8):5126-5136.
    [7] Smyth MJ, Godfrey DI. NKT cells and tumor immunity- a double-edged sword[J]. Nat. Immunol. 2000,1(6):459-460.
    [8] Hayakawa Y, Takeda K, Yagita H, et al. Differential regulation of Th1 and Th2 function of NKT cells by CD28 and CD40 costimulatory pathways[J]. J Immunol. 2001, 166(10):6012-6018.
    [9]孙林,文江涛,刘海红.乳腺癌患者外周血T淋巴细胞及NK细胞的检测及其临床意义[J].现代肿瘤医学. 2006, 14(9):1069-1071.
    [10]张健.大肠癌患者围手术期CD3+T细胞与NK细胞的改变[J].贵州医药. 2007, 31(12): 1082-1084.
    [11]刘聪敏.恶性肿瘤病人外周血免疫指标的流式细胞仪检测及免疫治疗前后免疫功能变化的研究[D].青岛:青岛大学病理学与病理生理学. 2005.
    [12]邱大鹏,邱双健,吴志全,等. NKT细胞在肝癌组织中的分布状况与肝癌局部免疫的研究[J].中国临床医学. 2004, 11(4):567-569.
    [13]胡永仙. T及NK细胞ζ链与恶性肿瘤的研究进展[J].国外医学肿瘤学分册. 2004, 31(11): 803-806.
    [14] Smith LL, Overtraining, excessive exercise, and altered immunity: is this a T helper-1 versus T helper-2 lymphocyte response?[J]. Sports Med 2003, 33(5): 347-364.
    [15] Yeh SH, Chuang H, Lin LW. Regular tai chi chuan exercise enhances functional mobility and CD4CA25 regulatory T cell[J]. Br. J Sports Med. 200640():238-243.
    [16] Koizumi K, Kimura F, Akimoto T, et al. Effects of long-term exercise training on peripheral lymphocyte subsets in elderly subjects[J]. Jpn. J. Phys. Fitness Sports Med. 2003, 52():193-202.
    [17] Galv?o DA, Nosaka K, Taaffe DR, et al. Endocrine and immune responses to resistance training in prostate cancer patients[J]. Prostate cancer and prostate disease. 2008,11():160-165.
    [18] Na YM, Kim MY, Kim YK, et al. Exercise therapy effect on natural killer cell cytotoxic activity in stomach cancer patients after curative surgery[J]. Arch Phys Med Rehabil. 2000, 81(6): 777-779.
    [19]朱立华,王建中.中国人血液淋巴细胞免疫表型参考值调查[J].中华医学检验杂志, 1998,21(4): 223-226.
    [20]范霞,姜拥军,王亚男,等.中国中北地区成年人外周血自然杀伤细胞和自然杀伤T细胞绝对计数研究[J].中国现代医学杂志, 2007, 17(1): 24-27.
    [21] Couzin J. Cancer: T cells a boon for colon cancer prognosis[J]. Science. 2006, 313(5795): 1868-1869.
    [22] Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5785): 1960-1964.
    [23] Natale VM, Brenner IK, Moldoveanu AI, et al. Effects of three different types ofexercise on blood leukocyte count during and following exercise[J]. Sao Paulo Med J. 2003, 12(1): 9-14.
    [24] Nieman DC. Regular moderate exercise boosts immunity[J]. Agrofood industryhi-tech. 2008, 19(3):8-10.
    [25]刘淑慧,张航.多年太极拳锻炼对人体外周血T淋巴细胞亚群及NK细胞影响的研究[J].中国体育科技. 2002, 38(4) : 50-52.
    [26] Mitchell JB, Paquet AJ, Pizza X, et al. The effect of moderate aerobic training on lymphocyte proliferation[J]. Int J Sports Med. 1996, 17(5): 384-389.
    [27] Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation[J]. Physical Rev. 2000, 80(3):1055-1081
    [28]王公平,冯笑山,周博.贲门癌组织中CD3T细胞的数量与临床病理指标间的关系[J].医学研究杂志. 2009, 38(5): 66-69.
    [29]刘静,陈佩杰,邱丕相.长期太极拳运动对中老年女性NKT细胞的影响[J].中国运动医学杂志. 2007, 26(6): 738-739.
    [30] Wannamethee SG, Lowe GD, Whincup PH, et al. Physical activity and hemostatic and imflammatory variables in elderly men[J]. Circulation. 2002, 105(15):1785-1790. [ 31 ] Abramson JL, Vaccarino V. Relationship between physical activity and inflammation among apparently healthy middle-aged and oleder US adults[J]. Arch Intern Med. 2002, 162(11): 1286-1292.
    [32]赵燕,王玉,王纯.亚健康与辅助T淋巴细胞亚群TH1/HT2漂移及运动的干预作用[J]. 2009,11(6): 401-404.
    [33]陶占泉,陈佩杰,段子才,等. 5周递增负荷训练过程中机体运动能力和免疫细胞数量的变化[J].中国运动医学杂志. 2007, 26(1): 81-83.
    [34]董矜,田亚平,高艳红,等.运动所致淋巴细胞亚群与免疫分子表达变化的研究[J].南方医科大学学报. 2010, 30(10):2277-2280.
    [35] Hulmi, JJ, Myllymaki T, Tenhumaki M, et al. Effects of resistance exercise and protein ingestion on blood leukocytes and platelets in young and older men[J]. Eur J Appl Physiol. 2010. 109(2): 343-353.
    [36]陈不尤,郁玮玮,赵洪瑜.放射治疗对恶性肿瘤患者T淋巴细胞亚群影响的研究[J].南通医学院学报. 2000, 20(3): 247-248.
    [37] Pedersen BK, Hoffman-Goetz L. Exercise and immune system: regulation, integration, and adaptation[J]. Physiol Rev. 2000, 80(3):1055-1081.
    [38] Rogers, CJ, Colbert LH, Greiner JW, et al. Physical activity and cancer prevention: pathways and targets for intervention[J]. Sports Med. 2008, 38(4):271-296.
    [39]陈晓琳,戴勇,李富荣,等.恶性肿瘤患者T细胞及NK细胞功能研究及临床医院[J].中国现代医学杂志. 2002, 12(2):41-43.
    [40] Tvede N, Steensberg J, Baslund B, et al. Cellular immunity in highly trained elite racing cyclists during periods of training with high and low intensity[J]. Scand J Med Sci Sports 1991, 1(3):163-166.
    [41]王凤妹,杨翼, Park JY.有氧运动和气功对老年女性免疫功能的影响[J].武汉体育学院学报. 2006, 40(7): 47-50.
    [42]陈佩杰,孙凤华. NK细胞及其与运动的关系[J].沈阳体育学院学报. 2003, 3(1): 5-9.
    [43]李志阳,王金龙,杨波.肿瘤患者外周血淋巴细胞绝对值的变化及意义[J].实用医学杂志. 2008, 24(22): 3957-3958.
    [44] Terabe M, Berzofsky AB. NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis[J]. Trends Immunol. 2007, 28(11): 491-496.
    [45] Terabe M, Matsui S, Noben-Trauth N, et al. NKT cell-mediated repression of tumor immunosurvellance by IL-13 and the IL-4R-STAT6 pathwany[J]. Nat Immunol. 2000, 1(6):515-520.
    [46] Molling JW, Kolgen W, van der Vliet HJJ, et al. Peripheral blood IFN-γ-secreting Vα24+Vβ11+NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load[J]. Int J Cancer. 2005, 116(1):87-93.
    [47] Yoneda K, Morii T, Nieda M, et al. The peripheral blood Vα24+NKT cell numbers decrease in patients with haematopoietic malignancy[J]. Leuk Rev. 2005, 29(2): 147-152.
    [48] Ishikawa A, Motohashi S, Ishikawa E, et al. A phaseⅠstudy ofα-galactosylceramide(KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer[J]. Clin Cancer Res. 2005,11(5): 1910-1917.
    [49] Kenna T, Golden-Mason L, Porcelli SA, et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from nurine NKT cells[J]. J Immunol. 2003, 171(4): 1775-1779.
    [50] Molling JW, Langius JAE, Langendijk JA, et al. Low levels of circulating invariant natural killer T cells predict poor clinical ooutcome in patients with head and neck squamous cell carcinoma[J]. J Clin Oncol. 2007, 25(7): 862-868.
    [51] Carlson LE, Speca M, Patel KD, et al. Mindfulness-based stress reduction in relation to quatlity of life, mood, symptoms of stress, and immune parameters in breast and prostate cancer outpatients[J]. Psychosom Med. 2003, 65(4): 571-581.
    [1] Lewis JW, Shavit Y, Terman GW, et al. Apparent involvement of opioid peptides in stress-induced enhancement of tumor growth [J]. Peptiteds. 1983, 4(5): 635-638.
    [2]程金莲.针刺对不同应激源所致免疫功能失调影响的机制研究[D].北京中医药大学. 2001.
    [3]韩济生,关新民.医用神经生物学.武汉出版社,湖北. 1995. 181-191.
    [4]孙志扬,过宗南,郭峰.β-内啡肽对正常人红细胞免疫功能的调控实验研究[J].上海免疫学杂志. 1994, 14(4):199-191.
    [5] Koehl M, Meerlo P, Gonzales D, et al. Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin[J]. FASEB J. 2008, 22(7): 2253-2262.
    [6]于冰,孙治君,沈洪彦.乳腺癌中IL-2、IL-4表达与化疗药物敏感性关系的研究[J].重庆医科大学学报. 2008, 33(7):835-838.
    [7] Romano F, Cesana G, Berselli M, et al. Biological, histological, and clinical impact of preoperative IL-2 administration in radically operable gastric cancer patients[J]. J Surg Oncol. 2004, 88(4):240-247.
    [8]唐双阳,李乐,陈熙,等.运动对慢性疲劳综合症小鼠NK细胞活性和IL-2水平的影响[J].南华大学学报·医学版. 2008, 36(1):12-14.
    [9]尹剑春,孙开宏,童昭岗,等.运动训练对心理应激大鼠血清皮质酮、白细胞介素2和肿瘤坏死因子α的影响[J].天津体育学院学报. 2005, 20(2):27-30.
    [10]孙小华,丁仁瑞,华明.长跑锻炼对老年人PBMC产生IL-2能力和对外源IL-2的反应性的影响[J].中国康复. 1990, 5(2): 73-75.
    [11] Colt EWD. The effect of running on plasmaβ-endorphin[J]. Life Sci. 1981,28(14):1637-1640.
    [12] Walker EM. Relationship of fasting plasma insulin andβ-endorphin levels to weight loss and meal feeding in in-normal weight and overweight females before and after a 12 week exercise program[J]. Exer Physical. 1986,2 (): 11.
    [13]徐建林,徐珞,陶尚敏,等.气功对慢性病病人血浆β-内啡肽水平的影响[J]. A青岛医学院学院. 1998, 34(2): 125-126.
    [14]李红武,陈佩杰,许锋鹏.长时间不同负荷运动对大鼠神经内分泌免疫功能的影响[J].上海体育学院学报. 2002, 26(1): 38-41.
    [15]涂人顺,陈仁波,黄林英,等.传统健身方法(六字诀)对绝经期后女性内分泌水平的影响[J].世界中西医结合杂志. 2010, 5(10): 866-867.
    [16]房波,李彦平,李树人.早期肿瘤患者体内P-物质、β-内啡肽水平的观察[J].河北医药. 2001, 23(10): 773-774.
    [17] Sikora J, Dworaeki G, Trybus M, et al. Correlation between DNA content, expression of tumor cells and immunophenoltype of lymphocytes from malignant pleural effusions[J]. Tumor Biol. 1998, 19(3):196-204.
    [18]杨新平. IL-2治疗肾癌临床研究[D].吉林大学. 2008: 11-14
    [19]张丹辉,商九香,马云宝,等.卵巢癌患者手术前后血清IL-2、TGF-α、TNF-α和TSGF测定的临床意义[J].放射免疫学杂志. 2006, 19(6): 459-461.
    [20]马中伟.卵巢癌患者化疗前后血清IL-2, SIL-2R, TNF-α检测的临床意义[J].放射免疫学杂志. 2005, 18(1): 34-36.
    [21]齐敦禹,李兴海,王耀光,等.太极拳运动对Ⅱ型糖尿病患者免疫机能影响的研究[J].北京体育大学学报. 2008, 31(7): 932-934.
    [22]蒋鹏.健身气功-易筋经改变亚健康人群免疫功能的影响和机理研究[D].南京中医药大学. 2009.
    [1] Goldek AM, Mircherv R, Golan D, et al. Ligation of complement receptor 1 increases erythrocyte membrane deformability[J]. Blood. 2010, 116(26):6063-6071.
    [2] Arosa FA, Pereira CF, Fonseca AM. Red blood cells as modulators of T cell growth and survival. Curr Pharm Des. 2004, 10(2):191-201.
    [3]郭峰.血液免疫反应路线图理论.肿瘤学杂志. 2005, 11(3): 157-158.
    [4]郭峰,张乐之,蔡志扬等.红细胞调控白细胞免疫功能新的自然实验研究体系[J].解放军医学杂志. 2006, 31(2):92-94.
    [5] Pierige F, Serafini S, Rossi L, et al. Cell-based drug delivery[J]. Advanced Drug Delivery Reviews. 2008, 60(2): 286-295.
    [6]牛东生.结肠癌患者免疫状态研究进展[J].国外医学内科学分册. 2005, 32(7):289-292.
    [7]王海滨,郭峰.晚期肝癌患者红细胞与淋巴细胞粘附肿瘤细胞能力的研究[J].中华微生物学和免疫学杂志[J].2000,20(5):
    [8]范国华,涂仲凡,黄杰等.肺癌患者红细胞免疫功能改变及其影响因素[J].2006, 27(4): 507-509.
    [9]张乃红,冯玫,朱镭,等.造血与淋巴组织肿瘤患者红细胞补体受体1分子数量及其基因密度多态性测定[J].白血病淋巴瘤. 2007, 2.
    [10]张岳山,李树铭.荷瘤小鼠红细胞免疫功能观察[J].中华微生物学和免疫学杂志. 1997,17(1):
    [11]姜振,柏建清.不同负荷跑台训练大鼠红细胞免疫功能及血浆β-内啡肽的变化.中国组织工程研究与临床康复.2007, 11(24): 4726-4729.
    [12]裴新贞,陈文鹤,郭峰,长时间大强度运动后SD大鼠红细胞免疫功能的变化.深圳中西医结合杂志. 2001, 11(5): 264-268.
    [13]田石榴,葛新发.女子赛艇运动员不同运动负荷后红细胞免疫功能的变化.武汉体育学院学报. 2006, 40(5): 66-92.
    [14]朱俊英.力竭性运动前后红细胞免疫变化研究[学位论文].苏州大学. 2005.
    [15] Soong P, Hu QC, Huang RX. The change in immune function of red blood cells in rats after an 8-week heavy exercies training. J Exerc. Physiol on line. (Journal of Exercise Physiology online). 2003, 6(3):1-8. [16姜振.力竭性运动对大鼠红细胞Na+-K+-ATP酶活性与红细胞免疫功能的影响.辽宁体育科技. 2004, 26(5): 44-45.
    [17]宋亚军.力竭运动对小鼠红细胞免疫功能的影响.北京体育大学学报. 2000, 23(2): 187-188.
    [18] Thomsen BS, Rodgaard A, Tvede N, et al. Levels of complemetnt receptor type one (CR1, CD35)on erythrocytes, circulating immune complexes and complement C3 split products C3d and C3c are not changed by short-term physical exercise or training. Int J sport Med. 1992, 13(2): 172-175.
    [19]张利朝,张盈华,陈渝宁等.健康人运动前后红细胞免疫功能与细胞数的变化及关系.细胞与分子免疫学杂志. 2001, 17(2): 197.
    [20]何卫龙,黄玉山.红细胞免疫黏附对运动的应答.体育科学, 2004, 24(4): 34-37.
    [21]廖晓,田文彦.运动员红细胞免疫功能初探.成都体育学院学报. 1994, 20(2): 89-91.
    [22]黄南洁,刘绍曾.有氧锻炼对弱智学生红细胞免疫黏附功能的影响.中国运动医学杂志. 2000, 19(1): 97-98.
    [23]方明.运动对大鼠红细胞免疫功能和粒细胞吞噬功能的影响.体育与科学. 2003, 24(6): 51-69.
    [24]杨建昌,续敏.力竭性游泳对大鼠红细胞膜脂质流动性及膜脂质过氧化的影响.西安体育学院学报. 2002, 19(1): 49-51.
    [25]万发达,彭峰林,邓树勋.递增负荷运动训练对大鼠红细胞及血红蛋白的影响.军事体育进修学院学报. 2008, 27(4): 115-119.
    [26]施鹏,许冬明,黄美蓉.运动与红细胞免疫.中国临床康复. 2004,8(33): 7522-7523.
    [27]黄海,郝选明,胡晓燕.红细胞免疫功能对定量负荷运动应答特点的实验研究.中国移动医学杂志. 1999, 18(4): 375-377.
    [28] Genova ML, Pich MM, Bernacchia A, et al. The mitochondrial production of reactive oxygen species in relation to aging and pathology[J]. Ann NY Acad Sci. 2004, 1011:86-100.
    [29] Storz P. Reactive oxygen species in tumor progression[J]. Front Biosci. 2005, 10: 1881-1896.
    [30] Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases[J]. Clin Biochem.1999, 32(8): 595-603.
    [31] Poli G, Leonarduzzi G, Biasi F, et al. Oxidative stress and cell signalling[J]. Current Medicinal Chemistry. 2004, 11(9): 1163-1182.
    [32] Aslan M, Ozben T. Oxidants in receptor tyrosine kinase signal transduction pathways[J]. Antioxidants and Redox Signalling. 5(6):781-788.
    [33] Chiarugi P. PTPs versus PTKs: The redox side of the coin[J]. Free radicRes 2005, 39(4): 353-364.
    [34] Storz P. Reactive oxygen species in tumor progression[J]. Frot. Biosci. 2005, 10: 1881-1896.
    [35] Opara E. Oxidative stress[J]. Disease-a-Month. 2006, 52(5):183-198.
    [36] Valko, M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico- Biological Interactions. 2006, 160(1): 1-40.
    [37] Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure[J]. J Clin Invest.2005,115(3): 500-508.
    [38] Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells[J]. Gene. 2004, 337(4): 1-13.
    [39] Gourlay, CW, Ayscough KR. The actin cytoskeleton: Akey regulator of apoptosis and aging?[J]. Nature Reviews. Molecular Cell Biology. 6: 583-589.
    [40] Otani H. Reactive oxygen species as mediators of signal transduction in sichemic preconditioning[J]. Antioxidants and Redox Signalling. 2004. 6(2): 449-469.
    [41] Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications[J]. Cell Biochemistry and Biophysics. 2005, 43(2): 289-330.
    [42] Ceriello A. Oxidative stress and diabetes-associated complications[J]. Endocrine Practice. 2006. 12(1): S60-62.
    [43] Beckman KB, Ames BN. Oxidative decay of DNA[J]. J. Biol. Chem. 1997, 272(32): 19633- 19636.
    [44] Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical- induced damage to DNA: mechanism and measurement[J]. Free Rad. Biol. Med. 2002, 32(11): 1102-1115.
    [45] Cooke MS, Evans MD, Dizdaroglu, M, et al. Oxidative DNAdamage: mechanisms, mutation, and disease[J]. FASEB J. 2003, 17(10): 1195-1214.
    [46] Valko, M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico- Biological Interactions. 2006, 160(1): 1-40.
    [47] Kasai H, Iwamoto-Tanaka N, Miyamoto T, et al. Lifestyle and urinary 8- hydroxydeoxyguanosine, a marker of oxidative DNA damage: Effects exercise, working conditions, meat intake, body mass index, and smoking[J]. Jpn, J. Cancer Res. 2001, 92(1):9-15.
    [48] Inoue M, Sato EF, Nishikawa M, et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life[J]. Curr, Med. Chem. 2003, 10(23):2495-2505.
    [49] Ishikawa K, Takenaga K, Akimoto M, et al. ROS-generating mitochondrial DAN mutations can regulate tumor cell metastasis[J]. Science. 2008, 320(5876): 661-664.
    [50] Sah VP, Seasholtz TM, Sagi SA, et al. The role of Rho in G protein-coupled receptor signal transduction[J]. Ann. Rev. Pharmacol. Toxicol. 2000, 40: 459-489.
    [51] Drevs J, Medinger M, Schmidt-Gersbach C, et al. Receptor tyrosine kinases: the main targets for new anticancer therapy[J]. Curr. Drug Target. 2003, 4(2): 113-121.
    [52] Kim ES, Khuri FR, Herbst RS. Epidermal growth factor receptor biology(IMC-C225)[J]. Curr. Opinion Oncol. 2001, 13(6):506-513.
    [53] Leonar SS, Bower JJ, Shi X. Metal-induced toxicity, carcinogenesis, mechanismsand cellular responses[J]. Mol. Cell. Biochem. 2004, 255,(1-2): 3-10.
    [54] Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-κBsignaling in skeletal muscle[J]. J Appl. Physiol. 2007, 103(1): 388-395.
    [55] Fischer OM, Hart S, Gschwind A, et al. Oxidative and Osmotic Stress Signaling in Tumor Cells Is Mediated by ADAM Proteases and Heparin-Binding Epidermal Growth Factor[J]. Molecular and Cellular Biology. 2004, 24(12): 5172-5183.
    [56] Orange JS, Levy O, Geha RS. Human disease resulting from gene mutations that interfere with appropriate nuclear factor-kappa B activation[J]. Immunol. Rev. 2005, 203(): 21-37.
    [57] Hughes G, Murphy MP, Ledgerwood EC. Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappa B to modulate tumour necrosis factor- induced apoptosis: evedence from mitochondria-targeted antioxitants[J]. 2005, 389():83-89.
    [58] Renzing J, Hansen S, Lane DP. Oxidative stress is involved in the UV activation of p53[J]. J. Cell. Sci. 1996, 109(5): 1105 -1112.
    [59] Hollstein M, Sidransky D, Vogelstein B, et al. P53 mutations in human cancer[J]. Science 1991, 253(5015):49-63.
    [60] Kim MK, Park YG, Gong G, et al. Breast cancer, serum antioxidant vitamins, and p53 protein overexpression[J]. Nutr. Cancer-Int. J. 2002, 43(2): 159-166.
    [61] Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis[J]. Annu. Rev. Pharmacol. Toxicol. 2004, 44: 239-267.
    [62] Marnett LJ. Oxyradicals and DNA damage[J]. Carcinogenesis. 2000, 21(3): 361-370.
    [63] Wang M, Dhingra K, Hittelman WN, et al. Lipid peroxidation-induced putative malondialdehyde-DNA adduct in human breast tissues[J]. Cancer Epidemiol Biomarkers Prev.1996,5:705-710.
    [64] Wang M, Abbruzzese JL, Friess H, et al. DNA adducts in human pancreatic tissues and their potential role in carcinogenesis[J]. Cancer Research. 1998, 58:38-41.
    [65] Chang D, Wang, F, Zhao YS, et al. Evaluation of oxidative stress in colorectal cancer patients[J]. Biochem environ Sci. 2008,21:286-289.
    [66] Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by trainin[J]. Free Radic Biol Med. 2008, 44(2):126-131.
    [67] Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging[J]. Biogerontology. 2005, 6():71-75.
    [68] Wittwer M, Billeter R, Hoppeler H, et al. Regulatory gene expression in skeletal muscle of highly endurance trained humans[J]. Acta Physiol Scand. 2004, 180(2):217-227.
    [69] Sato Y, Nanri H, Ohta M, et al. Increase of human MTH1 and decrease of 8-hydroxydeoxyguanosine in leukocyte NDA by acute and chronic exercise in healthy male subjects[J].Biochem Biophys Res Commun. 2003, 305(2):333-338.
    [70] Radak Z, Apor P, Pucsok J, et al. Marathon running alters the DNA base excision repair in human skeletal muscle[J]. Life Sci. 2003, 72(14):1627-1633.
    [71] Singh MP, Singh G, Singh SM. Role of host’s antitumor immunity in exercise-dependent regression of murine T-cell lymphoma[J]. Comp Immunol Microbiol Infect Dis. 2005, 28(3): 231-248
    [72] Allgayer H, Owen RW, Nair J, et al. Short-term moderate exercise programsreduce oxidative DNA damage as determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry in patients with colorectal carcinoma following primary treatment[J]. Scand J Gastroenterol. 2008, 43(8): 971-978.
    [73] Parise G, Brose AN, Tarnopolsky MA. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults[J]. Exp Gerontol. 2005, 40(3): 173-180.
    [74] Radak Z, Naito H, Kaneko T, et al. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidatives stress of proteins in aged rat skeletal muscle[J]. Pflugers Arch-Eur J Physiol. 2002, 445(2):273-278.
    [75] Nakanotoa H, Kanekob T, Tahara S, et al. Regular exercise reduces 8-oxodG in the nuclear and modulates the DNA repair activity in the liver of old rats[J]. Exp Gerontol. 2007, 42(4): 287-295.
    [76] Goto S, Takahashi R, Kumiyama AA, et al. Implication of protein degradation in aging[J]. Ann N Y Acad Sci. 2001, 928():54-64.
    [77] Radak Z, Kaneko T, Tahara S, et al. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes[J].Free Radic Biol Med. 1999, 27(1-2): 69-74.
    [78] Ogonovszky H, Sasvari M, Dosek A, et al. The effects of moderate, strenuous, and overtraining on oxidative stress markers and DNA repair in rat liver[J]. Appl. Physiol. Nutr. Metab. 2005, 30(2): 186-195.
    [79] Ogonovszky H, Berkes I, Kumagai S, et al. The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNArepair, and memory, in rat brain[J]. Neurochem Int. 2005, 46(8):635-640.
    [80] Ennezat PV, Malendowicz SL, Testa M, et al. Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes[I].J Am. Coll Cardiol. 2001, 38(1): 194-198.
    [81] Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance trainin[J]. Am. J. Physiol. 1999, 277(3): R856-862.
    [82] Nakatani K, Komatsu M, Kato T, et al. Habitual exercise induced resistance to oxidative stress[J]. Free Radic Res. 2005,39(9):905-911.
    [83] Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history[J]. Dynamic Medicine. 2009, 8():Dynamic Medicine 2009, 8:1 doi:10.1186/1476-5918-8-1
    [84] Hollander J, Fiebiq R, Gore M, et al. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle[J]. Pflugers Arch. 2001, 442(3): 426-434.
    [85] Gomez-Cabrera MC, Martinez A, Santangelo G, et al. Oxidative stress in marathon runners: interest of antioxidant supplementation[J]. Br. J. Nutr. 2006, 96(Suppl.1): S31-S33.
    [86] Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis[J]. Ann N Y Acad Sci. 2006, 1067(1): 425-435.
    [87] Gomez-Cabrera MC, Borras C, Pallardo FV, et al. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats[J]. J. Physiol. 2005, 567(1):113-120.
    [88] Kefaloyianni E, Gaitanaki C, Beis I. ERK1/2 and p38-MAPKsignaling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts[J]. Cell Signal. 2006, 18(2):2238-2251.
    [89] Kim JS, Saengsirisuwan V, Sloniger JA, et al. Oxidant stress and skeletal muscle glucose transport: roles of insulin signaling and p38 MAPK[J]. Free Radic Biol Med. 2006, 41(5): 818-824.
    [90] Goodyear LJ, Ghang PY, Sherwood DJ, et al. Effect of exercise and insulin on mitogen-activated protein kinase signaling pathways in raat skeletal muscle[J]. Am J Physiol Endocrinol Metab. 1996, 271(2): E403-E408.
    [91] Siems WG, Sommerburg O, Grune T. Erythrocyte free radical and energy metabolism[J]. Clin Nephrol. 2000, 53: S9-17.
    [92] Jaruga P, Zastawny TH, Skokowski J, et al. Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer[J]. FEBS Lett. 1994, 341(1):59-64.
    [93] Hristozov D, Gadjeva V, Vlaykova, et al. Evaluation of oxidative stress in patients with cancer[J]. Arch Physiol Biochem. 2001, 109(4).
    [94] Mantovani G, Mulas Maccio A, Madeddu C, et al. Quantitative evaluation of oxidative stress, chronic inflammatory indice and leptin in cancer patients: Correlation with stage and performance status[J]. Int J Cancer. 2001, 98(1): 84-91.
    [95] Patel JB, Shah FD, Shukla SN, et al. Role of nitric oxide and antioxidant enzymes in the pathogenesis of oral cancer[J]. J Cancer. 2009, 5(4): 247-253.
    [96] Aorica -Sarafinovska Z, Eken A, Matevska, N, et al. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer[J]. Clin. Biochem . 2009, 42(12): 1228-1235.
    [97] Aydin A, Arsova-Sarafinovska Z, Sayal A, et al. Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia[J]. Clin. Biochem.2006, 39(2) : 176-179.
    [98] Kolanjiappan K, Manoharan S, Kayalyizhi M. Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical patients[J]. Clinica Chinica Acta. 2002, 326(1-2): 143-149.
    [99] Yeh CC, Hou MF, Tsai SM. Superoxide anion radical, lipid peroxides and antioxidant status in the blood of patients with breast cancer[J]. Clinica Chimica Acta. 2005, 361(1-2): 104-111.
    [100] Reshma K, Rao AV, Dinesh M, et al. Effect of withaferin, a radiosensitizer, on the erythrocyte antioxidants in carcinoma of uterine cervix[J]. Biomed Research. 2007, 18(3):175-178.
    [101] Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health?[J]. Am J Clin Nutr. 2000(suppl): 637s-646s.
    [102] Lilius, EM, Marnila P. Photon emission of phagocytes in relation to stress and disease [J]. Experientia. 1922, 48(11-12):1082-1091.
    [103] Knez WL, Jenkins DG, Coombes JS. Oxidative stress in half and full ironman triathletes[J]. Med Sci Sports Exerc. 2007,39(2): 283-288.
    [104] Toskulkao C, Glinsukon T. Endurance exercise and muscle damage : relationship to lipid peroxidation and scavenging enzymes in short and long distance runners[J]. Jpn J Phys Fitness Sports Med. 1996, 45:63-70.
    [105] Zawadzak-Bartczak E. Activities of red blood cell anti-oxidative enzymes(SOD, GPx) and total anti-oxidative capacity of serum(TAS) in men with coronaty atherosclerosis and in healthy pilots[J]. Med Sci MONIT. 2005, 11(9): CR440-444.
    [106] Ohno H, Yahata T, Yamamura K, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men[J]. Eur JAppl Physiol. 1988, 57(2): 173-176.
    [107] Evelo CTA, Palmen NGM, Artur Y, et al. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests[J]. Eur J Appl Physiol. 1992, 64 (4): 354-358.
    [108] Robertson JD, Maughan RJ, Duthie GG, et al. Increased blood antioxidant systems of runners in response to training load[J]. Clin Sci. 1991, 80(1): 611-618.
    [109] Knez WL, Jenkins DG, Coombes JS. Oxidative stress in half and full ironman triathletes[J]. Med Sci Sports Exerc.2007, 39(2): 283-288.
    [110] Garcia-Lopez D, Hakkinen K, Cuevas MJ, et al. Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men[J]. Scand J Med Sci Sports. 2007, 17(5):595-604.
    [111] Momila de C, Davel APC, Rossoni LV, et al. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats[J]. BMC Physiol. 2008, 8(1):12-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700