腺病毒/甲病毒复制子嵌合载体猪瘟疫苗的构建及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(classical swine fever,CSF)是由猪瘟病毒(classical swine fever virus,CSFV)引起的一种烈性传染病,对养猪业危害极大。目前,免疫接种仍然是防制猪瘟的重要措施。国内外常用的猪瘟疫苗基本上是兔化弱毒疫苗,尽管弱毒疫苗对猪瘟的防控起到了关键性作用,但这类疫苗存在明显不足之处。首先,现行猪瘟弱毒疫苗的生产工艺存在较多问题,用于生产疫苗的犊牛睾丸细胞和犊牛血清经常污染牛病毒性腹泻病毒(BVDV)或其抗体,严重影响猪瘟疫苗的效价和质量;其次,弱毒疫苗受猪瘟母源抗体及其它疫苗的干扰,接种时如果免疫程序不当,容易造成免疫失败;此外,弱毒疫苗缺乏适当的标记,对免疫猪与野毒感染猪在血清学上难以区分,从而干扰猪瘟流行病学调查和净化。因此,各国学者不断探索研制和开发新型猪瘟疫苗的新策略。
     本研究首先利用人5型复制缺陷性腺病毒载体系统构建了表达猪瘟病毒E2基因的重组腺病毒rAdV-E2,并对该重组腺病毒进行了鉴定和免疫原性分析。结果表明,E2基因可在重组腺病毒中稳定遗传,并可在rAdV-E2感染的HEK293细胞中正常表达。家兔免疫攻毒试验结果显示,rAdV-E2以108TCID50剂量一次免疫家兔后2w可诱导猪瘟特异性抗体的产生,并且能够完全抵抗猪瘟病毒C株的攻击。猪只试验结果显示,rAdV-E2以2×108TCID50免疫2次,于加强免疫后2w诱导了较高水平的猪瘟特异性抗体。攻毒后仅个别猪出现短暂发热和轻微病理变化;而野生型腺病毒免疫猪在攻毒前一直没有检测到猪瘟特异性抗体,攻毒后所有猪均出现了典型的猪瘟临床症状和严重病理变化。
     随后将甲病毒复制子载体DNA疫苗pSFV1CS-E2和重组腺病毒疫苗rAdV-E2以异源prime-boost策略进行了联合免疫,即用甲病毒复制子载体DNA疫苗pSFV1CS-E2对猪只进行初免,3w后用重组腺病毒疫苗rAdV-E2进行加强免疫。结果显示,所有异源prime-boost免疫猪均产生了高水平的猪瘟特异性的抗体和相当水平的CD4、CD8T细胞增殖反应,用猪瘟强毒攻击后,pSFV1CS-E2/rAdV-E2异源prime-boost免疫组所有猪(n=5)均没有出现任何猪瘟临床症状和病理变化,攻毒后在血液中也没有检测到猪瘟病毒RNA,免疫效果与C株相当,而rAdV-E2/rAdV-E2免疫组(n=5)有1头猪出现短期发热和轻微的病毒血症和病理变化,而所有阴性对照猪均出现了典型的猪瘟临床症状和病理变化。
     受此启发,我们考虑能不能将甲病毒复制子载体和腺病毒载体嵌合到一起,充分发挥甲病毒复制子载体高效表达外源基因的优势和腺病毒载体高效递送的优势,因此本研究构建了一株表达猪瘟病毒E2蛋白的腺病毒/甲病毒复制子嵌合病毒。首先,将表达猪瘟病毒E2基因的甲病毒复制子载体克隆到腺病毒穿梭载体中,然后,通过细菌内同源重组构建重组腺粒,最后,将线性化的重组腺粒经脂质体转染HEK293细胞,从而包装成腺病毒/甲病毒复制子载体嵌合病毒,并对获得的重组嵌合病毒进行了系列的鉴定。PCR证实外源基因(甲病毒复制子基因NCR及猪瘟病毒E2基因)在重组嵌合病毒中稳定存在;间接免疫荧光试验和Western blot证实,猪瘟病毒E2蛋白能够在嵌合载体病毒rAdV-SFV-E2感染的HEK293细胞中正常地表达。随后,将此重组嵌合病毒rAdV-SFV-E2以107TCID50剂量接种猪只2次,间隔3w,同时与先前构建的表达猪瘟病毒E2基因的重组腺病毒rAdV-E2、表达猪瘟病毒E2基因的甲病毒复制子载体猪瘟疫苗pSFV1CS-E2和猪瘟兔化弱毒疫苗C株进行了免疫效力比较,同时以不表达外源基因的嵌合病毒rAdV-SFV-empty及甲病毒复制空载体pSFV1CS作为阴性对照。结果表明,rAdV-SFV-E2、C株和rAdV-E2免疫组(n=5)所有免疫猪在加强免疫后均产生了猪瘟特异性中和抗体,并于加强免疫后5w达到峰值,攻毒后rAdV-SFV-E2和C株免疫组所有猪均未出现任何其它临床症状,也没有出现病毒血症,剖检后没有发现任何猪瘟病变及组织病理学上的变化;而rAdV-E2和pSFV1CS-E2免疫组个别猪出现了短暂的发热、轻微的病毒血症及病理学变化。rAdV-SFV-empty及pSFV1CS免疫组(n=5)猪只在攻毒前一直没有检出特异性抗体,攻毒后全部出现典型的猪瘟临床症状和严重的病毒血症,剖检时可见典型猪瘟病理变化。猪只免疫试验结果初步证实,构建的腺病毒/甲病毒复制子嵌合载体病毒的免疫效果与猪瘟兔化弱毒疫苗C株相当,这种全新的疫苗策略结合了腺病毒载体与甲病毒复制子载体的优点,为新型疫苗研制开拓了新的思路和途径。
     为了进一步评价该嵌合载体病毒的免疫效果及作为候选猪瘟疫苗的可能性,我们从对靶动物和非靶动物的安全性、一次免疫、不同免疫剂量、抗腺病毒载体抗体干扰、猪瘟母源抗体干扰及与伪狂犬病疫苗联合免疫等方面,对该腺病毒/甲病毒复制子嵌合病毒rAdV-SFV-E2进行了综合评价。研究结果显示,该嵌合载体病毒对靶动物猪及非靶动物家兔和小鼠非常安全,免疫后没有任何副反应和组织病理学变化。rAdV-SFV-E2以6.25×105TCID50免疫后能够完全抵抗猪瘟病毒强毒的攻击;当猪体内存在猪瘟母源抗体,且抗体阻断率在60%以上时,嵌合载体猪瘟疫苗rAdV-SFV-E2正常免疫后,抗体水平逐渐上升,并于二免后4w达到峰值,随后趋于稳定,攻毒后所有免疫猪均获得了完全保护,而猪瘟母源抗体阻断率在60%左右的非免疫猪,3~4w抗体转阴(抗体阻断率30%以下),攻毒后所有猪均未得到保护,并于攻毒后10d左右全部死亡;rAdV-SFV-E2一次免疫后,于攻毒前一直没有检测到猪瘟特异性抗体,但是攻毒后所有猪均没有出现猪瘟临床症状,攻毒后6d抗体迅速上升到80%左右,对猪瘟病毒的攻击提供了完全的保护;rAdV-SFV-E2与伪狂犬病疫苗同时免疫后相互不影响各自的免疫应答,所有免疫猪均产生了高水平的猪瘟抗体和伪狂犬病抗体,并对猪瘟病毒的攻击提供了完全的保护;rAdV-SFV-E2免疫后不影响腺病毒载体疫苗的再次免疫。
     总之,从目前的结果来看,嵌合载体疫苗rAdV-SFV-E2能诱导猪只产生高水平的免疫反应,对猪瘟病毒强毒的攻击得到完全的保护,免疫效果与猪瘟兔化弱毒疫苗C株相当。这种策略给新型猪瘟基因工程疫苗带来了希望,也给其它疫苗的研究开创了新的途径。
Classical swine fever (CSF), which is caused by classical swine fever virus (CSFV), is one of themost devastating epizootic diseases of pigs worldwide. At present, vaccination is still an importantmeasure for prevention and control of CSF. Efficacious and safe attenuated vaccines have played a keyrole in CSF control, but this kind of vaccine has some disadvantages. First of all, the currently used CSFvaccine production process usually meet with some problems, for example, the production of vaccinesby the use of calf testicle cells and calf sera is often contaminated with bovine viral diarrhea virus(BVDV) or its antibody, which seriously influences the CSF vaccine potency and quality. Secondly,improper immune inoculation procedure may cause immune failure. In addition, antibodies against liveattenuated vaccines do not allow differentiation of infected from vaccinated animals (DIVA principle).Therefore, researchers make efforts to develop new-type CSF marker vaccine.
     In this study, we first constructed a recombinant human adenovirus type5expressing the CSFV E2gene (rAdV-E2) and evaluated its efficacy in rabbits and pigs. The results showed E2protein wasexpressed in rAdV-E2-infected HEK293cells. The rabbits and the pigs immunized with the rAdV-E2developed high-level CSFV-specific neutralizing antibodies. The rAdV-E2-immunized rabbits werecompletely protected from fever induced by infection with C-strain, and the rAdV-E2-immunized pigswere protected from lethal challenge with highly virulent Shimen strain, however, a few pigs showedshort-term fever and occasional pathological changes following virulent challenge.
     We further evaluated the efficacy of the heterologous prime-boost immunization approach (primewith pSFV1CS-E2and boost with rAdV-E2, at three-week intervals) in pigs. The results showed thatthe pigs (n=5) receiving pSFV1CS-E2/rAdV-E2heterologous prime-boost immunization developedsignificantly higher titers of CSFV-specific neutralizing antibodies and comparable CD4and CD8Tcell proliferation. When challenged with virulent CSFV Shimen strain, the pigs of the heterologousprime-boost group did not show clinical symptoms or viremia, which were observed in one of the5pigsimmunized with rAdV-E2alone and in all the5control pigs immunized with wild-type adenovirus. Theresults demonstrate that the heterologous DNA prime and recombinant adenovirus boost strategy caninduce full protective immunity.
     Later, we used the safe, efficient adenoviral vector to deliver the alphavirus replicon vector andconstructed an adenovirus/alphavirus replicon chimeric virus expressing the E2protein of CSFV. First,the alphavirus replicon vector expressing the E2gene was cloned into the adenovirus shuttle vector. Arecombinant adenovirus plasmid was constructed through homologous recombination in bacteria, andthe linearzied plasmid was transfected into HEK293cells by liposome to package adenovirus/alphavirusreplicon vector chimeric virus rAdV-SFV-E2. The recombinant chimeric virus was identified by PCR,IFA and Western blot and evaluated in pigs. PCR results confirmed that the exogenous gene can existstably in the recombinant chimeric virus. IFA and Western blot confirmed that the exogenous gene wasexpressed in rAdV-SFV-E2infected cells. Pigs immunized with rAdV-SFV-E2(n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethalCSFV infection clinically and virologically. The level of immunity and protection induced byrAdV-SFV-E2was comparable to that provided by the currently used live attenuated vaccine, C-strain.By contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2and conventionaladenovirus-vectored vaccine rAdV-E2provided incomplete protection.
     In order to further verify whether rAdV-SFV-E2can be used as an ideal CSFV marker vaccine, wecomprehensively evaluated the safety and efficacy of the chimeric virus with respect to differentimmunization times and doses, pre-existing antibodies to the adenovirus vector, maternal antibodyinterference and combination immunization with PRV vaccine. The results showed that the minimalimmunization dose is6.25×105TCID50in pigs. A single immunization provided complete protectionagainst lethal CSFV challenge, though specific neutralizing antibodies were undetectable beforechallenge. The chimeric virus can overcome CSF maternal antibody interference and immunization withthe chimeric virus did not affect re-immunization of adenovirus-vectored vaccines. When chimeric viruswas co-administered with pseudorabies vaccine, all immunized pigs developed high-level specificantibodies against CSFV and PRV compared to either vaccine administered alone.
     The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confersterile immunity and complete protection against CSFV. The novel vaccination strategy may also bevaluable in vaccine development against other pathogens.
引文
1.仇华吉,童光志,沈荣显.猪瘟兔化弱毒疫苗半个世纪的回顾.中国农业科学,2005,38(8):1675~1685.
    2.杜念兴.猪瘟的回顾与展望.中国畜禽传染病,1998,5:317~319.
    3.侯强,彭伍平,孙元,等.猪瘟病毒E2蛋白主要抗原区编码基因的原核表达及其单克隆抗体的制备.中国兽医科学,2008,38(1):6~10.
    4.韩文,王楠,张兴娟,等.应用定量RT-PCR对猪瘟兔化弱毒疫苗的质量评价研究.中国预防兽医学报,2012,34(6):464~467.
    5.李宏宇.共表达猪繁殖与呼吸综合征病毒GP5蛋白和猪瘟病毒E2蛋白的重组腺病毒的免疫原性分.[硕士学位论文].北京:中国农业科学院2010年.
    6.李淼.表达猪瘟病毒E2蛋白的BacMam病毒的构建及其免疫原性分析.[硕士学位论文].北京:中国农业科学院2009年.
    7.李娜,孙元,仇华吉.猪瘟DNA疫苗研究进展.生物工程学报,2010,26(3):281~289.
    8.李娜.基于甲病毒复制子载体的猪瘟DNA疫苗的构建及免疫效力评价.[博士学位论文].哈尔滨:东北农业大学,2007年.
    9.彭伍平,夏照和,侯强,等.猪瘟病毒石门强毒株和兔化弱毒疫苗株E2蛋白糖基化位点差异分析.病毒学报,2007,23(5):389~393.
    10.孙建富,赵和平,李娜,等.共表达PRRSV GP5蛋白和CSFV E2蛋白的“自杀性”DNA疫苗在小鼠体内诱导的免疫应答.生物工程学报,2008,24(10):1714~1722
    11.赵和平,孙元,袁远,等.基于CFSE染色的猪淋巴细胞增殖试验方法的建立.中国免疫学杂志,2009,25:159~163.
    12.赵和平.表达猪瘟病毒E2蛋白的甲病毒复制子载体疫苗的细胞免疫效果评价.[硕士学位论文].北京:中国农业科学院2008年.
    13. Abel K, Strelow L, Yue Y, et al. A heterologous DNA prime/protein boost immunization strategyfor rhesus cytomegalovirus. Vaccine2008,6:6013~25.
    14. Adam E, Nasz I. Significance of recombinant adenovirus in experimental gene therapy. Orv Hetil1995,136:755~61.
    15. Ahrens U, Kaden V, Drexler C, et al. Efficacy of the classical swine fever (CSF) marker vaccinePorcilis Pesti in pregnant sows. Vet Microbiol2000,77:83~97.
    16. Ambriovic A, Adam M, Monteil M, et al. Efficacy of replication-defective adenovirus-vectoredvaccines: protection following intramuscular injection is linked to promoter efficiency in musclerepresentative cells. Virology1997,8:327~35.
    17. Andersson C, Liljestr m P, Stahl S, et al. Protection against respiratory syncytial virus (RSV)elicited in mice by plasmid DNA immunisation encoding a secreted RSV G protein-derived antigen.FEMS Immunol Med Microbiol2000,29:247~53.
    18. AndréS, Seed B, Eberle J, et al. Increased immune response elicited by DNA vaccination with asynthetic gp120sequence with optimized codon usage. J Virol1998,72:1497~503.
    19. Andrew M, Morris K, Coupar B, et al. Porcine interleukin-3enhances DNA vaccination againstclassical swine fever. Vaccine2006,24:3241~47.
    20. Andrew ME, Morrissy CJ, Lenghaus C, et al. Protection of pigs against classical swine fever withDNA-delivered gp55. Vaccine2000,18:1932~38.
    21. Armengol E, Wiesmuller KH, Wienhold D, et al. Identification of T-cell epitopes in the structuraland non-structural proteins of classical swine fever virus. J Gen Virol2002,83:551~60.
    22. Aynaud JM, Lejolly JC, Bibard C, et al. Studies of the properties of cold induced classical swinefever virus mutants. Application to vaccination. Bull Off Int Epizoot1971,75:654~59.
    23. Baker JA. Serial passage of hog cholera virus in rabbits. Proc Soc Exp Biol Med1946,63:183-87.
    24. Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine2006,24:849~62.
    25. Bauhofer O, Summerfield A, McCullough KC, et al. Role of double-stranded RNA and Npro ofclassical swine fever virus in the activation of monocyte-derived dendritic cells. Virology2005,343:93~105.
    26. Baxby D, Paoletti E. Potential use of non-replicating vectors as recombinant vaccines. Vaccine1992,10:8~9.
    27. Becher P, Avalos Ramirez R, Orlich M, et al. Genetic and antigenic characterization of novelpestivirus genotypes: implications for classification. Virology2003,311:96~104.
    28. Becher P, Orlich M, Thiel HJ. RNA recombination between persisting pestivirus and a vaccinestrain: generation of cytopathogenic virus and induction of lethal disease. J Virol2001,75:6256~64.
    29. Beer M, Reimann I, Hoffmann B, et al. Novel marker vaccines against classical swine fever.Vaccine2007,25:5665~70.
    30. Berglund P, Quesada-Rolander M, Putkonen P, et al. Outcome of immunization of cynomolgusmonkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type1envelope protein and challenge with a high dose of SHIV-4virus. AIDS Res Hum Retroviruses1997,13:1487~95.
    31. Berglund P, Semerdou C, Fleeton MN, et al. Enhancing immune responses using suicidal DNAvaccines. Nat Biotechnol1998,16:562~65.
    32. Berglund P, Tubulekas I, Liljestrom P. Alphaviruses as vectors for gene delivery. Trends Biotechnol1996,14:130~34.
    33. Berkner KL. Development of adenovirus vectors for the expression of heterologous genes.Biotechniques1988,6:616~29.
    34. Bjorklund H, Lowings P, Stadejek T, et al. Phylogenetic comparison and molecular epidemiologyof classical swine fever virus. Virus Genes1999,19:189~95.
    35. Bognar K, Meszaros J. Experiences with a lapinized hog cholera virus strain of decreased virulence.Acta Vet Acad Sci Hung1963,13:429~38.
    36. Bouma A, De Smit AJ, De Jong MC, et al. Determination of the onset of the herd-immunityinduced by the E2sub-unit vaccine against classical swine fever virus. Vaccine2000,18:1374~81.
    37. Bouma A, de Smit AJ, de Kluijver EP, et al. Efficacy and stability of a subunit vaccine based onglycoprotein E2of classical swine fever virus. Vet Microbiol1999,66:101~14.
    38. Brockmeier SL, Lager KM, Tartaglia J, et al. Vaccination of pigs against pseudorabies with highlyattenuated vaccinia (NYVAC) recombinant viruses. Vet Microbiol1993,38:41~58.
    39. Bruna-Romero O, Gonzalez-Aseguinolaza G, Hafalla JC, et al. Complete, long-lasting protectionagainst malaria of mice primed and boosted with two distinct viral vectors expressing the sameplasmodial antigen. Proc Natl Acad Sci USA2001,98:11491~96.
    40. Bruschke CJ, Hulst MM, Moormann RJ, et al. Glycoprotein Erns of pestiviruses induces apoptosisin lymphocytes of several species. J Virol1997,71:6692~6.
    41. Cai H, Yu DH, Tian X, et al. Coadministration of interleukin2plasmid DNA with combined DNAvaccines significantly enhances the protective efficacy against Mycobacterium tuberculosis. DNACell Biol2005,24:605~13.
    42. Casimiro DR, Bett AJ, Fu TM, et al. Heterologous human immunodeficiency virus type1priming-boosting immunization strategies involving replication-defective adenovirus and poxvirusvaccine vectors. J Virol2004,78:11434~8.
    43. Catanzaro AT, Koup RA, Roederer M, et al. Phase1safety and immunogenicity evaluation of amulticlade HIV-1candidate vaccine delivered by a replication-defective recombinant adenovirusvector. J Infect Dis2006,194:1638~49.
    44. Cella M, Salio M, Sakakibara Y, et al. Maturation, activation, and protection of dendritic cellsinduced by double-stranded RNA. J Exp Med1999,189:821~29.
    45. Ceppi M, de Bruin MG, Seuberlich T, et al. Identification of classical swine fever virus protein E2as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells. J Gen Virol2005,86:2525~34.
    46. Chen M, Hu KF, Rozell B, et al. Vaccination with recombinant alphavirus or immune-stimulatingcomplex antigen against respiratory syncytial virus. J Immunol2002,169:3208~16.
    47. Cheng WF, Hung CF, Chai CY, et al. Enhancement of Sindbis virus self-replicating RNA vaccinepotency by linkage of Mycobacterium tuberculosis heat shock protein70gene to an antigen gene. JImmunol2001,166:6218~26.
    48. Collins RA, Oldham G. Recombinant human interleukin2induces proliferation andimmunoglobulin secretion by bovine B-cells: tissue differences and preferential enhancement ofimmunoglobulin A. Vet Immunol Immunopathol1993,36:31~34.
    49. Colmenero P, Chen M, Castanos-Velez E, et al. Immunotherapy with recombinant SFV-repliconsexpressing the P815A tumor antigen or IL-12induces tumor regression. Int J Cancer2002,98:554~60.
    50. Colombage G, Hall R, Pavy M, et al. DNA-based and alphavirus-vectored immunisation with prMand E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valleyencephalitis virus. Virology1998,250:151~63.
    51. Cook RF, Cook SJ, Bolin PS, et al. Genetic immunization with codon-optimized equine infectiousanemia virus (EIAV) surface unit (SU) envelope protein gene sequences stimulates immuneresponses in ponies. Vet Microbiol2005,108:23~37.
    52. Corapi WV, Donis RO, Dubovi EJ. Monoclonal antibody analyses of cytopathic and noncytopathicviruses from fatal bovine viral diarrhea virus infections. J Virol1988,62:2823~27.
    53. Dahle J, Liess B. A review on classical swine fever infections in pigs: epizootiology, clinicaldisease and pathology. Comp Immunol Microbiol Infect Dis1992,15:203~11.
    54. de Smit AJ, Bouma A, de Kluijver EP, et al. Duration of the protection of an E2subunit markervaccine against classical swine fever after a single vaccination. Vet Microbiol2001a,78:307~17.
    55. de Smit AJ, Bouma A, de Kluijver EP, et al. Prevention of transplacental transmission ofmoderate-virulent classical swine fever virus after single or double vaccination with an E2subunitvaccine. Vet Q2000a,22:150~53.
    56. de Smit AJ, Bouma A, van Gennip HG, et al. Chimeric (marker) C-strain viruses induce clinicalprotection against virulent classical swine fever virus (CSFV) and reduce transmission of CSFVbetween vaccinated pigs. Vaccine2001b,19:1467~76.
    57. de Smit AJ, van Gennip HG, Miedema GK, et al. Recombinant classical swine fever (CSF) virusesderived from the Chinese vaccine strain (C-strain) of CSF virus retain their avirulent andimmunogenic characteristics. Vaccine2000b,18:2351~58.
    58. Dekker A, Wensvoort G, Terpstra C. Six antigenic groups within the genus pestivirus as identifiedby cross neutralization assays. Vet Microbiol1995,47:317~29.
    59. Depner KR, Schirrmeier H. Inoculation of pigs with BDV or BVDV-2and subsequent challengewith CSFV. In: Abstracts of the fifth ESVV pestivirus symposium.2002. p.63.
    60. Derbyshire JB, Clarke MC, Collins AP. Serological and pathogenicity studies with someunclassified porcine adenoviruses. J Comp Pathol1975,85:437~43.
    61. Dewulf J, Laevens H, Koenen F, et al. An E2sub-unit marker vaccine does not prevent horizontalor vertical transmission of classical swine fever virus. Vaccine2001,20:86~91.
    62. Dong XN, Chen YH. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine2007,25:205~30.
    63. Dortmans JC, Loeffen WL, Weerdmeester K, et al. Efficacy of intradermally administrated E2subunit vaccines in reducing horizontal transmission of classical swine fever virus. Vaccine2008,26:1235~42.
    64. Edwards S, Moennig V, Wensvoort G. The development of an international reference panel ofmonoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses. VetMicrobiol1991,29:101~8.
    65. Eloit M, Gilardi-Hebenstreit P, Toma B, et al. Construction of a defective adenovirus vectorexpressing the pseudorabies virus glycoprotein gp50and its use as a live vaccine. J Gen Virol1990,71:2425~31.
    66. Eloit M. Defective adenoviruses as virus vectors for veterinary vaccines. Vet Res1995,26:207-8.
    67. Fitzgerald JC, Gao GP, Reyes-Sandoval A, et al. A simian replication-defective adenoviralrecombinant vaccine to HIV-1gag. J Immunol2003,170:1416~22.
    68. Ganges L, Barrera M, Nunez JI, et al. DNA vaccine expressing the E2protein of classical swinefever virus elicits T cell responses that can prime for rapid antibody production and confer totalprotection upon viral challenge. Vaccine2005,23:3741~52.
    69. Gao W, Soloff AC, Lu X, et al. Protection of mice and poultry from lethal H5N1avian influenzavirus through adenovirus-based immunization. J Virol2006,80:1959~64.
    70. Gilbert SC, Moorthy VS, Andrews L, et al. Synergistic DNA-MVA prime-boost vaccinationregimes for malaria and tuberculosis. Vaccine2006,24:4554~61.
    71. Gonin P, Oualikene W, Fournier A, et al. Comparison of the efficacy of replication-defectiveadenovirus and Nyvac poxvirus as vaccine vectors in mice. Vaccine1996,14:1083~7.
    72. Graham FL, Prevec L. Adenovirus-based expression vectors and recombinant vaccines. In: EllisRW, editor. Vaccines: new approaches to immunological problems. Woburn, MA:Butterworth-Heinemann;1992. p.363~90.
    73. Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNAfrom human adenovirus5. J Gen Virol1977,36:59~74.
    74. Greiser-Wilke I, Moennig V, Coulibaly CO, et al. Identification of conserved epitopes on a hogcholera virus protein. Arch Virol1990,111:213~25.
    75. Grunhaus A, Horwitz MS. Adenoviruses as cloning vectors. Semin Virol1992,3:237~52.
    76. Hahn J, Park SH, Song JY, et al. Construction of recombinant swinepox viruses and expression ofthe classical swine fever virus E2protein. J Virol Methods2001,93:49~56.
    77. Hammond JM, Jansen ES, Morrissy CJ, et al. A prime-boost vaccination strategy using naked DNAfollowed by recombinant porcine adenovirus protects pigs from classical swine fever. VetMicrobiol,2001b,80:101~19.
    78. Hammond JM, Jansen ES, Morrissy CJ, et al. Oral and sub-cutaneous vaccination of commercialpigs with a recombinant porcine adenovirus expressing the classical swine fever virus gp55gene.Arch Virol2001a,146:178~93.
    79. Hammond JM, Jansen ES, Morrissy CJ, et al. Protection of pigs against ‘in contact’challenge withclassical swine fever following oral or subcutaneous vaccination with a recombinant porcineadenovirus. Virus Res2003,97:151~57.
    80. Hammond JM, Johnson MA. Porcine adenovirus as a delivery system for swine vaccines andimmunotherapeutics. Vet J2005,169:17~27.
    81. Hammond JM, McCoy RJ, Jansen ES, et al. Vaccination with a single dose of a recombinantporcine adenovirus expressing the classical swine fever virus gp55(E2) gene protects pigs againstclassical swine fever. Vaccine2000,18:1040~50.
    82. Hariharan MJ, Driver DA, Townsend K, et al. DNA immunization against herpes simplex virus:enhanced efficacy using a Sindbis virus-based vector. J Virol1998,72:950~58.
    83. Hennecken M, Stegeman JA, Elbers AR, et al. Transmission of classical swine fever virus byartificial insemination during the1997-1998epidemic in The Netherlands: a descriptiveepidemiological study. Vet Q2000,22:228~33.
    84. Hirahara T, Yasuhara H, Matsui O, et al. Isolation of porcine adenovirus from the respiratory tractof pigs in Japan. Nippon Juigaku Zasshi1990,52:407~9.
    85. Hitt MM, Graham FL. Adenovirus vectors for human gene therapy. Adv Virus Res2000,55:479~505.
    86. Hong W, Xiao S, Zhou R, et al. Protection induced by intramuscular immunization with DNAvaccines of pseudorabies in mice, rabbits and piglets. Vaccine2002,20:1205~14.
    87. Hooft van Iddekinge BJ, de Wind N, Wensvoort G, et al. Comparison of the protective efficacy ofrecombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs; influenceof different promoters on gene expression and on protection. Vaccine1996,14:6~12.
    88. Hruby DE. Vaccinia virus vectors: new strategies for producing recombinant vaccines. ClinMicrobiol Rev1990,3:153~70.
    89. Hulst MM, Moormann RJ. Inhibition of pestivirus infection in cell culture by envelope proteinsE(rns) and E2of classical swine fever virus: E(rns) and E2interact with different receptors. J GenVirol1997,78:2779~87.
    90. Hulst MM, Panoto FE, Hoekman A, et al. Inactivation of the RNase activity of glycoprotein E(rns)of classical swine fever virus results in a cytopathogenic virus. J Virol1998,72:151~7.
    91. Hulst MM, Westra DF, Wensvoort G, et al. Glycoprotein E1of hog cholera virus expressed ininsect cells protects swine from hog cholera. J Virol1993,67:5435~42.
    92. Kaplan C. Vaccinia virus: a suitable vehicle for recombinant vaccines? Arch Virol1989,106:127~39.
    93. Kent SJ, Zhao A, Best SJ, et al. Enhanced T-cell immunogenicity and protective efficacy of ahuman immunodeficiency virus type1vaccine regimen consisting of consecutive priming withDNA and boosting with recombinant fowlpox virus. J Virol1998,72:10180~8.
    94. Kheyar A, Jabrane A, Zhu C, et al. Alternative codon usage of PRRS virus ORF5gene increaseseucaryotic expression of GP(5) glycoprotein and improves immune response in challenged pigs.Vaccine2005,23:4016~22.
    95. K nig M, Lengsfeld T, Pauly T, et al. Classical swine fever virus: independent induction ofprotective immunity by two structural glycoproteins. J Virol1995,69:6479~86.
    96. Konishi E, Pincus S, Paoletti E, et al. A highly attenuated host range-restricted vaccinia virus strain,NYVAC, encoding the prM, E, and NS1genes of Japanese encephalitis virus prevents JEV viremiain swine. Virology1992,190:454~58.
    97. Kwang J, Littledike ET, Donis RO, et al. Recombinant polypeptide from the gp48region of thebovine viral diarrhea virus (BVDV) detects serum antibodies in vaccinated and infected cattle. VetMicrobiol1992,32:281~92.
    98. La Rocca SA, Herbert RJ, Crooke H, et al. Loss of interferon regulatory factor3in cells infectedwith classical swine fever virus involves the N-terminal protease, Npro. J Virol2005,79:7239~47.
    99. Langedijk JP, van Veelen PA, Schaaper WM, et al. A structural model of pestivirus E(rns) based ondisulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide. JVirol2002,76:10383~92.
    100. Le Gall-Reculé G, Cherbonnel M, Pelotte N, et al. Importance of a prime-boost DNA/proteinvaccination to protect chickens against low-pathogenic H7avian influenza infection. Avian Dis2007,51:490~4.
    101. Le Potier M, M′erant C, Voigt H, et al. Comparative assessment of baculovirus, DNA andparapoxvirus vector-mediated vaccination with E2subunit against classical swine fever. In:Abstracts of the Sixth ESVV Pestivirus Symposium2005,50:5~10.
    102. Li N, Qiu HJ, Zhao JJ, et al. A Semliki Forest virus replicon vectored DNA vaccine expressing theE2glycoprotein of classical swine fever virus protects pigs from lethal challenge. Vaccine2007a,25:2907~12.
    103. Li N, Zhao JJ, Zhao HP, et al. Protection of pigs from lethal challenge by a DNA vaccine based onan alphavirus replicon expressing the E2glycoprotein of classical swine fever virus. J VirolMethods2007b,144:73~8.
    104. Liljestr m P, Garoff H. A new generation of animal cell expression vectors based on the SemlikiForest virus replicon. Biotechnology (N Y)1991,9:1356~61.
    105. Lin M, Lin F, Mallory M, et al. Deletions of structural glycoprotein E2of classical swine fevervirus strain Alfort/187resolve a linear epitope of monoclonal antibody WH303and the minimalN-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmuneserum. J Virol2000,74:11619~25.
    106. Ludewig B, Maloy KJ, López-Macías C, et al. Induction of optimal anti-viral neutralizing B cellresponses by dendritic cells requires transport and release of virus particles in secondary lymphoidorgans. Eur J Immunol2000,30:185~96.
    107. Markowska-Daniel I, Collins RA, Pejsak Z. Evaluation of genetic vaccine against classical swinefever. Vaccine2001,19:2480~84.
    108. Mayer D, Hofmann MA, Tratschin JD. Attenuation of classical swine fever virus by deletion of theviral Npro gene. Vaccine2004,22:317~28.
    109. McShane H. Prime-boost immunization strategies for infectious diseases. Curr Opin Mol Ther2002,4:23~7.
    110. Meyers G, Saalmuller A, Buttner M. Mutations abrogating the RNase activity in glycoprotein Ernsof the pestivirus classical swine fever virus lead to virus attenuation. J Virol1999,73:10224~35.
    111. Miner JN, Hruby DE. Vaccinia virus: a versatile tool for molecular biologists. Trends Biotechnol1990,8:20~5.
    112. Moennig V. Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol2000,73:93~102.
    113. Moormann RJ, Bouma A, Kramps JA, et al. Development of a classical swine fever subunit markervaccine and companion diagnostic test. Vet Microbiol2000,73:209~19.
    114. Moormann RJ, de Rover T, Briaire J, et al. Inactivation of the thymidine kinase gene of a gIdeletion mutant of pseudorabies virus generates a safe but still highly immunogenic vaccine strain.J Gen Virol1990,71:1591~95.
    115. Moormann RJ, van Gennip HG, Miedema GK, et al. Infectious RNA transcribed from anengineered full-length cDNA template of the genome of a pestivirus. J Virol1996,70:763~70.
    116. Mulder WA, Priem J, Glazenburg KL, et al. Virulence and pathogenesis of non-virulent andvirulent strains of pseudorabies virus expressing envelope glycoprotein E1of hog cholera virus. JGen Virol1994,75:117~24.
    117. Pacheco JM, Brum MC, Moraes MP, et al. Rapid protection of cattle from direct challenge withfoot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDVsubunit vaccine. Virology2005,337:205~9.
    118. Paton DJ, Ibata G, Edwards S, et al. An ELISA detecting antibody to conserved pestivirus epitopes.J Virol Methods1991,31:315~24.
    119. Peeters B, Bienkowska-Szewczyk K, Hulst M, et al. Biologically safe, non-transmissiblepseudorabies virus vector vaccine protects pigs against both Aujeszky’s disease and classical swinefever. J Gen Virol1997,78:3311~15.
    120. Peng WP, Hou Q, Xia ZH, et al. Identification of a conserved linear B-cell epitope at theN-terminus of the E2glycoprotein of Classical swine fever virus by phage-displayed randompeptide library. Virus Res2008,135:267~72.
    121. Perkins SD, O'Brien LM, Phillpotts RJ. Boosting with an adenovirus-based vaccine improvesprotective efficacy against Venezuelan equine encephalitis virus following DNA vaccination.Vaccine2006,24:3440~5.
    122. Prevec L, Schneider M, Rosenthal KL, et al. Use of human adenovirus-based vectors for antigenexpression in animals. J Gen Virol1989,70:429~34.
    123. Randrianarison-Jewtoukoff V, Perricaudet M. Recombinant adenoviruses as vaccines. Biologicals,1995,23:145~57.
    124. Rasmussen T, Uttenthal A, Nielsen J, et al. Virulence, immunogenicity and vaccine properties of anovel chimeric pestivirus. In: Abstracts of the Sixth ESVV Pestivirus Symposium2005,83:5~6.
    125. Reddy JR, Kwang J, Varthakavi V, et al. Semliki forest virus vector carrying the bovine viraldiarrhea virus NS3(p80) cDNA induced immune responses in mice and expressed BVDV proteinin mammalian cells. Comp Immunol Microbiol Infect Dis1999,22:231~46.
    126. Reimann I, Depner K, Trapp S, et al. An avirulent chimeric Pestivirus with altered cell tropismprotects pigs against lethal infection with classical swine fever virus. Virology2004,322:143~57.
    127. Risatti G, Holinka L, Lu Z, et al. Chimeric classical swine fever virus containing the E2gene froma vaccine strain in the genetic background of strain Brescia induces solid early protection in swine.In: Abstracts of the Sixth Pestivirus Symposium2005,87:5~10.
    128. Risatti GR, Borca MV, Kutish GF, et al. The E2glycoprotein of classical swine fever virus is avirulence determinant in swine. J Virol2005a,79:3787~96.
    129. Risatti GR, Holinka LG, Lu Z, et al. Mutation of E1glycoprotein of classical swine fever virusaffects viral virulence in swine. Virology2005b,343:116~27.
    130. Ruggli N, Tratschin JD, Schweizer M, et al. Classical swine fever virus interferes with cellularantiviral defense: evidence for a novel function of N(pro). J Virol2003,77:7645~54.
    131. Rumenapf T, Stark R, Meyers G, et al. Structural proteins of hog cholera virus expressed byvaccinia virus: further characterization and induction of protective immunity. J Virol1991,65:589~97.
    132. Rziha H, Henkel M, Cottone R, et al. Generation of recombinant parapoxviruses: non-essentialgenes suitable for insertion and expression of foreign genes. J Biotechnol2000,83:137~45.
    133. Sasahara J, Kumagai T, Shimizu Y et al. Field experiments of hog cholera live vaccine prepared inguinea-pig kidney cell culture. Natl Inst Anim Health Q (Tokyo).1969,9:83~91.
    134. Santosuosso M, McCormick S, Xing Z. Adenoviral vectors for mucosal vaccination againstinfectious diseases. Viral Immunol2005,18:283~91.
    135. Schlesinger S. Alphavirus vectors: development and potential therapeutic applications. Expert OpinBiol Ther2001,1:177~91.
    136. Schneider J, Gilbert SC, Blanchard TJ, et al. Enhanced immunogenicity for CD8+T cell inductionand complete protective efficacy of malaria DNA vaccination by boosting with modified vacciniavirus Ankara. Nat Med1998,4:397~402.
    137. Schneider R, Unger G, Stark R, et al. Identification of a structural glycoprotein of an RNA virus asa ribonuclease. Science1993,261:1169~71.
    138. Stadejek T. Genetic heterogeneity of classical swine fever virus in central Europe. Virus Genes1997,52:195~204.
    139. Steensels M, Bublot M, Van Borm S, et al. Prime-boost vaccination with a fowlpox vector and aninactivated avian influenza vaccine is highly immunogenic in Pekin ducks challenged with AsianH5N1HPAI. Vaccine2009,27:646~54.
    140. Sullivan NJ, Geisbert TW, Geisbert JB, et al. Accelerated vaccination for Ebola virus haemorrhagicfever in non-human primates. Nature2003,424:681~4.
    141. Sullivan NJ, Geisbert TW, Geisbert JB, et al. Immune protection of nonhuman primates againstEbola virus with single low-dose adenovirus vectors encoding modified GPs. PLoS Med2006,3:e177.
    142. Sun Y, Liu DF, Wang YF, et al. Generation and efficacy evaluation of a recombinant adenovirusexpressing the E2protein of classical swine fever virus. Res Vet Sci2010,88:77~82.
    143. Suradhat S, Intrakamhaeng M, Damrongwatanapokin S. The correlation of virus-specificinterferon-gamma production and protection against classical swine fever virus infection. VetImmunol Immunopathol2001,83:177~89.
    144. Tartaglia J, Perkus ME, Taylor J, et al. NYVAC: a highly attenuated strain of vaccinia virus.Virology1992,188:217~32.
    145. Taylor J, Weinberg R, Languet B, et al. Recombinant fowlpox virus inducing protective immunityin non-avian species. Vaccine1988,6:497~503.
    146. Terpstra C. Hog cholera: an update of present knowledge. Br Vet J1991,147:397~406.
    147. Thomsen DR, Marotti KR, Palermo DP, et al. Pseudorabies virus as a live virus vector forexpression of foreign genes. Gene1987,57:261~65.
    148. Tratschin JD, Moser C, Ruggli N, et al. Classical swine fever virus leader proteinase Npro is notrequired for viral replication in cell culture. J Virol1998,72:7681~84.
    149. Tuboly T, Nagy E, Derbyshire JB. Potential viral vectors for the stimulation of mucosal antibodyresponses against enteric viral antigens in pigs. Res Vet Sci1993,54:345~50.
    150. van Gennip HG, Bouma A, van Rijn PA, et al. Experimental non-transmissible marker vaccines forclassical swine fever (CSF) by trans-complementation of E(rns) or E2of CSFV. Vaccine2002,20:1544~56.
    151. van Oirschot JT. Vaccinology of classical swine fever: from lab to field. Vet Microbiol2003,96:367~84.
    152. van Rijn PA, Bossers A, Wensvoort G, et al. Classical swine fever virus (CSFV) envelopeglycoprotein E2containing one structural antigenic unit protects pigs from lethal CSFV challenge.J Gen Virol1996,77:2737~45.
    153. van Rijn PA, Miedema GK, Wensvoort G, et al. Antigenic structure of envelope glycoprotein E1ofhog cholera virus. J Virol1994,68:3934~42.
    154. van Rijn PA, van Gennip HG, de Meijer EJ, et al. Epitope mapping of envelope glycoprotein E1ofHog cholera virus strain Brescia. J Gen Virol1993,74:2053~60.
    155. van Zijl M, Wensvoort G, de Kluyver E, et al. Live attenuated pseudorabies virus expressingenvelope glycoprotein E1of hog cholera virus protects swine against both pseudorabies and hogcholera. J Virol1991,65:2761~5.
    156. Vandeputte J, Chappuis G. Classical swine fever: the European experience and a guide for infectedareas. Rev Sci Tech1999,18:638~47.
    157. Voigt H, Merant C, Wienhold D, et al. Efficient priming against classical swine fever with a safeglycoprotein E2expressing Orf virus recombinant (ORFV VrV-E2). Vaccine2007,25:5915~26.
    158. Wehrle F, Bossy S, Hofmann M. Chimeric pestiviruses: candidates for live attenuated CSF markervaccines. Chimeric pestivirus recombinants were constructed based on the widely used CSFVvaccine strain Riems. In: Abstracts of the Sixth Pestivirus Symposium.2005,85:5~8.
    159. Weiland E, Ahl R, Stark R, et al. A second envelope glycoprotein mediates neutralization of apestivirus, hog cholera virus. J Virol1992,66:3677~82.
    160. Wensvoort G, Bloemraad M, Terpstra C. An enzyme immunoassay employing monoclonalantibodies and detecting specifically antibodies to classical swine fever virus. Vet Microbiol1988,17:129~40.
    161. Wensvoort G, Terpstra C, de Kluijver EP, et al. Antigenic differentiation of pestivirus strains withmonoclonal antibodies against hog cholera virus. Vet Microbiol1989,21:9~20.
    162. Wesley RD, Lager KM. Overcoming maternal antibody interference by vaccination with humanadenovirus5recombinant viruses expressing the hemagglutinin and the nucleoprotein of swineinfluenza virus. Vet Microbiol2006,118:67~75.
    163. Wesley RD, Tang M, Lager KM. Protection of weaned pigs by vaccination with human adenovirus5recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2swineinfluenza virus. Vaccine2004,22:3427~34.
    164. Widjojoatmodjo MN, van Gennip HG, Bouma A, et al. Classical swine fever virus E(rns) deletionmutants: trans-complementation and potential use as nontransmissible, modified, live-attenuatedmarker vaccines. J Virol2000,74:2973~80.
    165. Wienhold D, Armengol E, Marquardt A, et al. Immunomodulatory effect of plasmids co-expressingcytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. Vet Res2005,36:571~87.
    166. Woodland DL. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol2004,25:98~104.
    167. Wu L, Kong WP, Nabel GJ. Enhanced breadth of CD4T-cell immunity by DNA prime andadenovirus boost immunization to human immunodeficiency virus Env and Gag immunogens. JVirol2005,79:8024~31.
    168. Wu S, Kaufman RJ. A model for the double-strand RNA (dsRNA)-dependent dimerization andactivation of the dsRNA-activated protein kinase PKR. J Biol Chem1997,272:1291~96.
    169. Xiang ZQ, Pasquini S, Ertl HC. Induction of genital immunity by DNA priming and intranasalbooster immunization with a replication-defective adenoviral recombinant. J Immunol1999,162:6716~23.
    170. Yoon HA, Aleyas AG, George JA, et al. Differential segregation of protective immunity by encodedantigen in DNA vaccine against pseudorabies virus. Immunol Cell Biol2006,84:502~11.
    171. Yu X, Tu C, Li H, et al. DNA-mediated protection against classical swine fever virus. Vaccine2001,19:1520~25.
    172. Yuan L, Azevedo MS, Gonzalez AM, et al. Mucosal and systemic antibody responses andprotection induced by a prime/boost rotavirus-DNA vaccine in a gnotobiotic pig model. Vaccine2005,23:3925~36.
    173. Zakhartchouk A, Zhou Y, Tikoo SK. A recombinant E1-deleted porcine adenovirus-3as anexpression vector. Virology2003,313:377~86.
    174. Zhang S, Guo YJ, Sun SH, et al. DNA vaccination using bacillus-Calmette-Guerin-DNA as anadjuvant to enhance immune response to three kinds of swine diseases. Scand J Immunol2005,62:371~77.
    175. Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with a monogenic plasmid DNAtuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expression of GM-CSFtransgene. Vaccine2007,25:1342~52.
    176. Zhao HP, Sun JF, Li N, et al. Assessment of the cell-mediated immunity induced by alphavirusreplicon-vectored DNA vaccines against classical swine fever in a mouse model. Vet ImmunolImmunopathol2009,129:57~65.
    177. Zhao JJ, Cheng D, Li N, et al. Evaluation of a multiplex real-time RT-PCR for quantitative anddifferential detection of wild-type viruses and C-strain vaccine of classical swine fever. VetMicrobiol2008,126:1~10.
    178. Zhou X, Berglund P, Rhodes G, et al. Self-replicating Semliki Forest virus RNA as recombinantvaccine. Vaccine1994,12:1510~4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700