桑叶化学成分的动态变化与PAL、F3H基因的表达水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑叶的药用始载于《神农本草经》桑白皮项下。中国是桑的资源大国,桑树的自然分布和人工栽培几乎遍及全国。《中华人民共和国药典》2010年版规定,桑叶来源于桑科植物桑Morus alba L.的干燥叶。味甘、苦,性寒,归肺、肝经。具有疏散风热,清肺润燥,清肝明目之功。多酚类成分如绿原酸:、黄酮类化合物等为桑叶中主要的活性成分。桑叶多酚类成分合成途径中关键酶基因有PAL、F3H基因等。不同种质的桑叶,其品质存在一定的差异,为从分子机制方面阐明影响桑叶药材品质的因素,本研究对桑叶的化学成分动态变化及其PAL、F3H基因的表达水平进行了研究,结果如下。
     1.桑叶的化学成分动态变化研究
     本研究选取了在四川省大面积栽种的桑Morus alba L.的两个栽培品种,即红果2号和保坎61号,并分别在每个居群定点选择8株树,应用高效液相色谱法,对桑叶的化学成分进行动态变化追踪,建立了桑叶的HPLC指纹图谱,探寻成分变化规律。由该方法得到两个栽培品种4~11月的128批次样品的指纹图谱,并标定出11个特征峰。得出桑叶化学成分的动态累积结果:
     (1)相同栽培品种、同一居群,在相同采摘时间下的样本,化学成分的组成及含量差异较小(相似度均在0.9左右,样本间的总峰面积无显著差异);而在不同的采摘时间下的样本,化学成分的组成相近(相似度均在0.9左右),但含量有较大差异,如保坎61号共有峰最低总峰面积(7月)为最高总峰面积(11月)的31%,红果2号最低总峰面积(7月)为最高总峰面积(4月)的28%。
     (2)保坎61号和红果2号的HPLC指纹图谱相似,其化学成分的组成相近(两个栽培品种间的相似度在0.9左右)。相同采摘时间的两个栽培品种,化学成分含量有较大差异,如10月时红果2号的绿原酸含量仅为保坎61号的50%;不同采摘时间的两个栽培品种共有峰总峰面积动态变化趋势基本一致,从4-7月整体呈下降趋势,7-11月整体呈上升趋势。
     (3)绿原酸、芦丁和紫云英苷为桑叶主要的多酚类成分。本实验测得的3种成分的含量数据显示,绿原酸、芦丁和紫云英苷的含量及三者的总含量均同11个共有峰总峰面积的变化趋势一致,即从4-7月整体呈下降趋势,7-11月整体呈上升趋势。且3种成分的总含量及共有峰总含量均在11月较高,此结果支持了传统冬桑叶入药的要求。
     2.PAL、F3H基因在桑叶中的表达水平研究
     多酚类成分的合成途径是一个庞大的系统,有多个关键酶基因参与其中,PAL基因是其合成途径中第一个关键酶,F3H也是其中的一个关键酶,在整个合成途径中两者都具有一定的代表性。本实验对桑PAL、F3H基因在桑叶中的表达水平的进行了研究。所选定了两株桑(Morus alba L.)MA-1、MA-2,于每月中旬采摘,同时对其桑叶及桑枝进行化学成分的动态变化研究。最后结合16批次样品的PAL、F3H基因在桑叶中的表达量和桑叶及桑枝的多酚类成分动态变化分析,得到以下结果:
     (1)通过克隆桑PAL、F3H基因,经测序后得到两个基因的片段,在Genbank进行同源性分析,验证了PAL基因在桑叶中的表达,同时首次发现了F3H基因在桑叶中的存在,证明了F3H基因在桑叶中有表达。
     (2)首次对PAL、F3H基因在桑叶中的表达水平进行了研究,发现了两个基因在植物不同生长发育时期的桑叶中存在表达差异。如MA-1的PAL基因的最低表达量(10月)为最高表达量(9月)的13%,MA-2的PAL基因的最低表达量(11月)为最高表达量(9月)12%;MA-1的F3H基因的最低表达量(8月)为最高表达量(9月)的21%,MA-2的F3H基因的最低表达量(10月)为最高表达量(4月)的20%。
     (3)MA-1和MA-2桑叶中的PAL、F3H基因表达的变化趋势基本一致。PAL基因4月~6月整体呈上升趋势,6月~8月整体呈下降趋势,8月~9月再上升,然后到11月整体呈下降趋势。F3H基因4月~8月整体呈下降趋势,9月~11月的趋势与PAL基因基本相同。
     (4)首次将PAL、F3H基因的在桑叶中的表达量与桑叶中的多酚类成分绿原酸、芦丁、紫云英苷以及这3种成分的总含量进行相关性分析,得到数据,如MA-1的的相关系数r在0.20~0.70之间,MA-2的相关系数在0.40~0.75之间,发现了两个基因均分别与桑叶中绿原酸、芦丁、紫云英苷含量以及3种成分总含量存在不同程度的正相关。其中,PAL基因与3种成分的相关性较大,而F3H基因与3种成分的相关系性较小;PAL基因的相关系数为F3H基因的1.4-2.2倍。以上结果说明PAL、F3H基因对多酚类成分有调控作用,其中PAL基因的调控作用相对较大。
     (5)首次将PAL、F3H基因的在桑叶中的表达量与桑枝中的多酚类成分绿原酸、芦丁、紫云英苷以及这3种成分的总含量进行相关性分析。发现仅MA-1的PAL、F3H基因与芦丁含量存在低度正相关,相关系数r为0.313、0.115; MA-2的PAL、F3H基因与芦丁含量存在低度正相关,相关系数r为0.426、0.090;其余均无相关性。说明PAL、F3H基因在桑叶中的表达量同桑枝中化学成分的动态变化的相关性不大。
     (6)比较分析了两个产地桑叶化学成分动态变化的相关性,由HPLC图谱可看出,两个产地桑叶在化学成分组分上是一致的,但含量有很大差异。
     本研究揭示了影响中药品质的重要因素,认为遗传、环境、栽培管理技术等对桑PAL、F3H基因的表达水平及多酚类成分积累有较大影响。阐明了桑叶品质形成的分子机制。认为药用植物的不同代谢途径与其种类、药用部位、不同生长发育时期的状况及环境条件有关。多酚类成分或其他化学成分的生物合成存在多个关键制约因素,只要我们通过类似的研究,掌握控制生物合成的关键因素,再优化条件,就能从内因和外因两方面来提升中药品质。
The medicinal uses of the mulberry leaf were first recorded in the article of White Mulberry Root-bark in Shengnong's herbal. Mulberry trees are indigenous to China, where they are widely cultivated almost all over the country. The Pharmacopoeia of the People's Republic of China (2010edition) has named the source of the mulberry leaf as from the dried leaf of Morus alba L., family Moraceae. It is bittersweet in flavor, cold in nature and applicative to the lungs and liver meridians. It's effective for expelling wind and heat, clearing away lung-heat and moisturizing dryness, and clearing away liver-fire to treat eye disease. Its main active components are polyphenols such as chlorogenic acid and flavonoids. To identify the factors which lead to the differing in molecular mechanisms of different mulberry leaves, studies were carried out to research the dynamic changes of chemical components and the gene presence of PAL and F3H in mulberry leaves. The results are as follows:
     1. Study on the dynamic changes of chemical components in mulberry leaves
     Sericulture is a predominant industry in Sichuan. The study selected "Hong-guo No.2" and "Bao-kan No.61",2strains of Morus alba L., widely cultivated in the silkworm farms of Langzhong, in Sichuan. The study included the dynamical tracking of the active component's change in mulberry leaves from8designated trees from each strain, the HPLC fingerprint of mulberry leaves was established to explore its varying characteristics.128batches of samples collected from April to November were tested to get their fingerprints as well as11characteristic peaks calibrated. The following are the outcome:
     (1) For the same strain and population, at the same picking time, the difference of the active ingredient's composition and content was small (similarity was around0.9with no significant difference in the total peak area between the samples); However, for those with different picking times, although the composition was also similar (similarity around0.9), the content appeared to be quite different. For instance, the aggregate peaks in "Bao-kan No.61" in July was lowest, which was only31%of the highest its counterpart achieved in November. And for "Hong-guo No.2", the proportion was only28%when its lowest peaks in July was compared to the highest its counterpart obtained in April.
     (2) Samples taken from the2strains, regardless of picking time, showed that the composition of the active ingredient was similar (similarity around0.9). But they differed greatly in content, even those with same picking time. For example in October, the content of chlorogenic acid in "Hong-guo No.2" was only50%of its counterpart in "Bao-kan No.61". But the dynamic trend of aggregate common peaks between the2strains was basically the same, which exhibited an overall downward trend from April to July but inclining upward from July to November.
     (3) Chlorogenic acid, rutin, and astragalin are the main polyphenols in mulberry leaves. Tests conducted on the3components showed their individual and total content varied with the aggregate of11common peaks, which was an overall decrease from April to July but increased from July to November. The highest content was reached in November. This result validates the traditional preference of using mulberry leaves for medicinal purpose in winter.
     2. The gene presence of PAL and F3H in mulberry leaves
     There are multiple key enzyme genes in the synthetic route of polyphenols. This study selected the PAL and F3H genes respectively, in the upstream and midstream of the route, to study their presence level. The samples were sourced from the leaves of MA-1MA-2, two mulberry trees(Morus alba L.) cultivated in the campus of Chengdu University of Traditional Chinese Medicine (TCM) and picked in the middle of each month. Concurrently, the dynamic changes of the active ingredient both in their leaves and branches were also studied. The following were major findings after16batches of test:
     (1) By the cloning of PAL and F3H, their fragments were obtained after gene sequencing. Supported by homology analysis using Genbank, the study validates PAL gene presence in mulberry leaves. Meanwhile, the presence of F3H gene fragment was also discovered in mulberry leaves in this study.
     (2) This is the first study on the presence level of PAL and F3H in mulberry leaves. A varying degree of presence of these two genes was found in the leaf s different growth period. For MA-1, the lowest presence amount of PAL was in October at only13%of the highest its counterpart exhibited in September while the proportion in MA-2was12%when comparing its lowest in November to the highest in September. For F3H, the lowest presence amount in MA-1was in August at21%of the highest its counterpart exhibited in September and the lowest in MA-2was in October at20%of its counterpart's highest in April.
     (3) The variation in gene presence of PAL and F3H in MA-1and MA-2were basically the same in their trends. The overall presence of PAL increased from April to June, then decreased from June to August; increased again from August to September, and then decreased until November. Decreasing from April to August, the presence of F3H continued its decrease from September to November which showed the same trend as PAL's.
     (4) For the first time, the correlation was analyzed between the presence amount of PAL, F3H and both of the individual and total content of polyphenols in mulberry leaves, including chlorogenic acid, rutin and astragalin. The results showed the correlation coefficients (r) ranged from0.20to0.70in MA-1and0.40to0.75in MA-2. These2genes have varying degrees of positive correlation with the individual and total content of the above3polyphenols. Moreover, the tests showed that PAL has more correlation than F3H.
     (5) Also for the first time, the correlation was analyzed between the presence amount of PAL, F3H in mulberry leaves and both of the individual and total content of polyphenols in mulberry branches, including chlorogenic acid, rutin and astragalin. It's found the PAL and F3H in MA-1had a low positive correlation with the content of rutin (r=0.313,0.115respectively). The PAL and F3H in MA-2had a low positive correlation with the content of rutin (r=0.4260.090respectively). The rest didn't show any correlation. The analysis also revealed that the presence amount of PAL and F3H in mulberry leaves didn't seem to have any correlation with the dynamic changes of the active ingredient in mulberry branches.
     (6) The difference in the dynamic changes of the active ingredient in mulberry leaves from2production areas was compared by HPLC. The result showed that their constituents were the same but the content was very different.
     This study establishes the important factors affecting the quality of mulberry leaves, which include heredity, environment and technique of cultivation and management. These factors all have a great impact on the gene presence of PAL and F3H and also on the accumulation of polyphenols. The mulberry leaf's quality is also linked to molecular mechanism, which provides basis for the formation mechanism of TCM's quality from molecular level. It is believed that the TCM's research should endeavor to discover by what means and how the internal and external causes affect the formation and accumulation of the active ingredient. The gene regulation and regulatory mechanisms of secondary metabolites in medicinal plant are key factors affecting TCM's quality. To identify the internal and external factors impacting the quality of TCM, the key enzyme genes should be identified first by examining the medicinal plant's secondary metabolites path. This should then be followed by a study into their regulatory mechanism while taking into account the external factors such as soil, climate and techniques of cultivation and management.
引文
[1]万德光主编.中药品质研究-理论、方法与实践.上海:上海科学技术出版社,2008,
    [2]中华人民共和国国家药典委员会.中国药典[S].北京:化学工业出版社,2005.209,18
    [3]江苏新医学院.中药大辞典[M].下册.上海:上海科学技术出版社,2006.223
    [4]游元元,万德光,杨文宇等.HPLC法比较不同产地桑叶药材品种差异.中国药房,2010,21(350):3314
    [5]刘学铭,肖更生,陈卫东.桑叶的研究与开发进展.中药材,2001,24(2):144
    [6]黎小萍,陈华玲,杨普香等.桑叶的药用与保健价值及其开发利用现状.蚕桑茶叶通讯,2005,119(11):8
    [7]孙莲.桑叶的降血糖活性成分和药理作用EJ].中草药,2002,33(5):471
    [8]唐法娣.桑叶延年益寿的药理学研究[J:.中草药,2000,31(9):685
    [9]Mo Y, Nagel C, Taylor L P. Biochemical complementation of chalcone synthase mutant s defines a role for flavonols in functional pollen, Proc Natl Acad Sci USA,1992,89:7213
    [10]Kayo D, Takashi K, Mitsuko M, et al. Studies on the constituents of the leaves of Morus alba L. Chem Pharm Bull,2001,49(2):151 Loverine P T,Grotewold E. Flavonoids as developmental regulators Current Opinion in Plant Biology,2005,8:317
    [11]陈福君,林一星,许春泉等,桑的药理研究(Ⅱ)—桑叶、桑枝、桑白皮抗炎药理作用的初步比较研究.沈阳药科大学学报,1995,12(3):222
    [12]王芳,励建荣.桑叶的化学成分、生理功能及应用研究进展.食品科学,2005,26(增刊):111
    [13]邢东旭,廖森泰,邹宇晓等.桑叶多糖的抗氧化作用研究[J],广东蚕业,2008,42(1):36
    [14]赵骏,高岚,桑叶多糖的降糖降脂作用[J],天津中医药,2004,21(6): 505
    [15]刘利,殷志琦,张现涛等,桑叶几种化学物质的分类鉴定,蚕业科学,2005,31(3):25
    [16]Fukai T, Hano Y, Hirakura K, et al. Structure of two natural hypotensive Diels-Alder type adducts, mulberrofuran F and G, from cultivated mulberry tree. Chem Pharm Bull,1985,33:3195
    [17]Pistelli L, Spera K, Flamini G, et al. Isoflavonoids and chalcones from Anthyllis hermanniae [J]. Phytochemistry,1996,42:1455
    [18]张军,穆莉,檀华蓉等.桑叶中黄酮化合物的提取工艺及不同品种不同时期的含量变化.蚕业科学,2006,32(1):142
    [19]贾之慎,邬建敏,唐孟成.反相高效液相色谱法同时测定桑叶提取物中芸香苷和槲皮素的含量.色谱,1996,14(6):489
    [20]曾平.提高桑叶产量和质量的措施.蚕学通讯,2000,4(20):41
    [21]Ou Yang z, Chen J. Research progress on chemical constituents and pharmacological activities of mulberry leaves. Journal of Jiangsu University (Natural Science Edition),2003,24(6):40
    [22]Wang P Y, Li S P, Zhen T M. Therapeutic observation of lower limbs elephantias is using raw Morus alba tablets. J T radit Ch in Med,1992, 33 (10):612
    [23]Wang P Y, Li S P, Zhen T M. Therapeutic observation o f chyluria using Morus alba extract capsules. Ch in J Paras it Prevent Cure, 1995,8(1):49
    [24]陈福君,卢军,张永煜.桑的药理研究(1)—桑叶降血糖有效组分对糖尿病动物糖代谢的影响.沈阳药科大学学报,1996,13(10):24
    [25]ASANO N, TOMIOKA E, KIZU H, et al. Sugars with nitrogen in the ring isloated from the leaves of Morus bombycis [J]. Carbohydr Res,1994,253: 235 [26] KIMURAM, CHEN F. Antihyperglycemic effects of N-containing sugars derived from mulberry leaves is streptozocin-in-duced diabetic mice.Wakan Iyakugaku Zasshi,1995,12 (3):214
    [27]臧志和,曹丽萍,钟铃.芦丁药理作用及制剂的研究进展.医药导报,2007,26(7):758.
    [28]苏芳华.桑叶的化学成分及临床应用研究进展.中国医药导报,2010,7(14):9
    [29]王芳,励建荣.桑叶的化学成分、生理功能及应用研究进展.食品科学,2005,26(1):111
    [30]王福文,朱燕,胡志力等.桑叶片的药效学研究.时珍国医国药,2004,15(2):65
    [31]黄勇,张林,赵卫国,等.桑树资源综合利用研究进展.江苏蚕业,2007,29(1):1
    [32]杨燕,王洪庆,陈若芸.桑叶中的黄酮类化合物.药学学报,2010,45(1)77
    [33]Harborne J B. Nature, distribution and function of plant flavonoids. Prog Clin Bio Res,1986,213
    [34]Heller W,Hahlbrock K. Higly purified "flavanone synthase" from parsley catalyzes the formation of naringenin chalcone. Arch Biochem Biophysiol,1980,200:617
    [35]Stafford H A. Flavonoid Metabolism. Boca Raton:CRC Press,1990:298 Meer M I.Control of Plant Gene Expression. Landon:CRC Press,1993:1 Katz A, Weiss D.Photocontrol of chs gene expression in Petunia flowers. Physiol Plant,1998,102:210
    [36]杨致荣,毛雪,李润值,植物此生代谢基因工程研究进展,植物生理与分子生物学学报,2005,31(1):11
    [37]CHEN X Y. UU P. Medcular biology and genetic engineering of plant socondary metabolism[J]. Life Science,1996,2(8):8
    [38]He S L, Zheng J G, Wang X F. Plant secondary metabolism. Function, reconcile, control and genetic enginering. Application and Environmental Biology,2002,8(5):558
    [39]杜丽娜,张存莉,朱玮等.植物次生代谢合成途径及生物学意义.西北林学院学报,2005,2093):150
    [40]罗永明,刘爱华,李琴等.植物萜类化合物的生物合成途径及其关键酶的研究进展.江西中医学院学报,2003,15(1):45
    [41]陈晓亚,植物生理与分子生物学[C],北京:科学出版社,1998:390-399.邓良,袁华,喻宗沅.绿原酸的研究进展.化学与生物工程,2005,(7):4
    [42]Stockigt J, Zenk M H. Enzymatic synthesis of chlorogenic acid from caffeoyl coenzyme and quinic acid. Febs Letter,1974,42(2):131
    [43]张鞍灵,马琼,高锦明.绿原酸及其类似物与生理作用.中草药,2001,32(2):173.
    [44]诸姮,胡宏友,卢昌义等,植物体内的黄酮类化合物代谢及其调控研究进展,厦门大学学报,2007,8(46):136
    [45]Doxin R A, Paiva N L. Stress induced phenylpropanoid metabolism, Plant Cell,1995,7:1085
    [46]Futoshi Taura, Shinji Tanaka, Chiho Taguchi, et al.Characterization of olivertol synthase, a polyketide synthase putativelyninvolved in cannabinoid biosynthetic pathway. FEBS Letters,2009,583:2061
    [47]李春雷,崔国新,许志茹,李玉花.植物二氢黄酮醇4-还原酶基因的研究进展.生物技术通讯,2009,20(3):442
    [48]Marten s S, TeeriT, Forkm ann G. H eterologous expression of dihydrof lavonol 4-reductases from various plants. FEBS Lett,2002,531 (3):453
    [49]Stich K, Eidenberger T, Wurst F, et al. Enzymatic conversion of dihydroflavovonols to flavan-3,4-diols usingflower extracts of dianthus caryophyllus L (Carnation). Planta,1992,187:103
    [50]李义龙,肇涛澜,陈立超等.花色素苷生物合成及花色的调控.生命科学,2008,20(1):147
    [51]李娟娟.花青素研究进展.中山大学研究学刊(自然科学、医学版),2007,28(2):23
    [52]Annamary ju D, Sarm a. Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phy to chemistry,1997,671:4
    [53]BettiV. Study of the mechanism whereby anthocyanosides potentiate the effect o f catecholam ines on coronary vessels. Fitoterapia,1985, 54 (2):67
    [54]N eill SO. Antioxidant activities of red versus green leaves in elatostem a rugosum. Plant Science,2002,25 (4):539
    [55]Jankow sk iA, Jankow ska B. The effect of anthocyan in dye from grapes on experimental diabetes. Fo liamed cracov,2000,41 (3):5
    [56]Jacob F, Monod J. Genetic regulatory mechanisms the synthesis proteins. J Mol Biol 1961,3:318
    [57]Nirenberg M W, Mattaei J H. The dependence of cell-tree protein systhesis in E.coli upon naturely occurring or sysyhetic polyribonucleotides.Proc Natl Acad Sci USA.1961,47:1588
    [58]Sambrook J, Fritsch E F, Maniatis T.分子克隆实验指南.第2版.北京:科学出版社,1993.
    [59]王艳,蒋磊,李韶山.拟南芥CHS基因表达的实时荧光定量PCR检测.植物学通报,2005,22(5):594
    [60]朱华,吴耀生.实时荧光定量PCR检测三七SS基因表达的初步实践.广西植物,2008,28(5):
    [61]Wall SJ, Edward DR Quantitative reverse transcription-polymerase chain reaction (RT-PCR):acomparison of prime-dropping, competitive, and real-time RT-PCRs. Analytical Biochemistry,2002,300:269
    [62]庞红霞,祝长青,覃建兵.植物花青素生物合成相关基因研究进展.种子,2010,29(3):60
    [63]Bustin S A. Absolute quantification of mRNA using real—time reverse tran scription polymerase chain reaction assays. J Mol Endocrinol,2000, 25(2):169
    [64]宫淑敏,钱会南.荧光定量PCR在中医药研究中的应用.中华中医药学刊,2008,2(4):758
    [65]蔡霞.定量PCR技术及其应用现状.现代诊断与治疗,2005,16(2):112
    [66]Klein D Quantification using real-time PCR technology:applications and limitations. Trends in Molecular Medicine,2002,8(6):257
    [67]谢培.色谱指纹图谱分析是中草药质量控制的可行策略.中药新药与临床药理,2001,12(3):141
    [68]吴好好,蒋惠娣,高处寒等.桑叶中绿原酸和主要黄酮苷含量的RP—HPLC测定.药物分析杂志,2007,27(3):374
    [69]刘龙,孙莲,杨文菊等.桑叶药材高效液相色谱指纹图谱分析.新疆医科大学学报,2008,31(5):585
    [70]吴好好,李凡,钱文春等.浙江湖州桑叶HPLC指纹图谱的研究.药物分析杂志,2008,28(3):390
    [71]贾冬冬,李淑芬,杨鸿玲.RP-HPLC法测定桑叶中的芦丁和异槲皮苷含量[J].食品科学,2008,29(8):499.
    [72]韦建华,李耀华,梁臣艳等.HPLC法测定桑配方颗粒中原儿茶酸、绿原酸和咖啡酸.中国实验方剂学杂志,2011,17(30):93
    [73]黄生权,魏刚,姚松军等.赤芝、紫芝三萜类成分指纹图谱的优化与比较.华南理工大学学报(自然科学版),2010,38(8):121
    [74]刘江,陈兴福,杨文钰等.川麦冬野生种质资源色谱特征图谱的建立及其系统聚类分析.中国中药杂志,2010,35(20):2726
    [75]于林芳,董平,薛长湖等.防刺参中皂苷类成分的高效液相色谱指纹图谱.色谱,2010,28(9):885
    [76]李晓红,熊志立,虞明阳等.基于主成分分析的骨碎补药材乙醇和环己烷提取物的高效液相色谱指纹图谱及指标成分的定量分析.色谱,2009,27(4):453
    [77]卢红梅,彭丽华,郭方遒等.鱼腥草中黄酮类成分的高效液相色谱指纹图谱分析.色谱,2010,28(10):965
    [78]游元元,万德光,裴瑾等.不同品种桑叶高效液相指纹图谱的聚类分析.时珍国医国药,2008,19(11):2661
    [79]任玉珍,王龙虎,梁焕等.不同采收期桑叶药材的质量比较.中国现代中药,2006,8(5):8
    [80]关丽萍,郑光浩,金晴昊等.RP-HPLC测定不同地区、不同采集期桑叶中1-脱氧野尻霉素.中草药,2005,36(12):1881
    [81]刘焱,高智席,黄成.HPLC-CL法测定桑叶中芦丁和桑色素.安徽农业科学,2008,36(21):9128
    [82]邹盛勤,陈武.桑叶的化学成分、药理活性及应用研究进展.林产化工通讯,2003,37(1):22
    [83]李钟,胡海容.桑叶药材HPLC指纹图谱的研究.世界中西医结合杂志,2007,2(5): 280
    [84]邵莉,李毅,潘爱华等.查尔酮合酶基因的克隆、全序列分析及在大肠杆菌中的高效表达.生物工程学报,1995,11(2):145
    [85]牛天敏,马会勤,陈尚武.大豆查尔酮合成酶(CHS)基因的克隆、表达及其
    [86]在雪莲提取液中的代谢产物分析.中国生物工程杂志,2007,27(2):58
    [87]杨丽,刘雅丽,王跃进等.百合查尔酮合成酶(CHS)基因的克隆与分析.西北植物学报,2006,26(5):933
    [88]谢修志,陈兆平,王小菁.非洲菊查尔酮合酶基因的克隆、序列分析及在大肠杆菌中的表达.热带亚热带植物学报,2004,12(50):431
    [89]WANG Wei, CHEN Jia-kuan, ZHOU Tong-shui. CHS and UBGAT Expression and Baicalin Accumulation in the Roots of Scutellaria baicalensis Gergi duing Cultivation. Seasons. Journal of Fudan University(Natural Science),2006,45(50):674
    [89]李贝宁,周晓丽,黄璐琦等.不同产地丹参功能基因表达水平对丹参酮类成分积累的影响.中国中药杂志,2011,36(24):3406
    [90]SOMM ER HKSA EDL ER H. Structure of the chalcone synthase gene of A ntirrh inum m a jus. Mol. Gen. Genet,1986,202:429
    [91]隋春,战晴晴,魏建和等.北柴胡皂苷生物合成途径关键酶IPPI的全长cDNA克隆及其序列分析.中草药.2010,41(7):1178
    [92]秦双双,陈新.丹参次生代谢产物丹参酮的调控研究.武汉工业学院学报.2009,28(4):34
    [93]韩颖颖,明凤,王敬文等.蝴蝶兰查尔酮合酶基因cDNA的克隆、鉴定及其原 核表达.复旦学报(自然科学版),2004,43(2):235
    [94]Goring D R, Thomson L, Rothstein S J. Transformation of a partial nopaline synthase gene into tobaccosuppresses the expression of a resident wild-type gene. Proc Natl A ad Sci USA,1991,88:1770
    [95]董乐萌,刘玉军,魏建和.柴胡皂苷合成途径中三个关键酶基因片段的克隆与序列分析.世界科学技术一中医药现代化,2008,1O(5):56
    [96]中国农业科学院蚕业研究所.中国桑树品种志.北京:农业出版社,1993:5姚芳,倪吾钟,杨肖娥.桑树的种质资源、生态适应性及其应用前景,科技通报,2004,20(4):289.
    [97]周小毛.蚕桑资源综合利用,促进蚕桑产业可持续发展.四川蚕业,2011,(4):12
    [98]肖丽蓉,张友洪,肖金树等.四川蚕业现在、问题和发展对策.现代农业科学,2009,16(5):273
    [99]杨文宇,万德光.四川桑类中药的资源现状及开发前景.四川中医,2008,26(8):55
    [100]刘刚,佟万红,黄盖群等.四川桑树种质资源研究现状与展望.安徽农业科学,2008,36(33):14625
    [101]朱明贞.果桑兼用种引进和栽培.蚕桑茶叶通讯,2004, (1):18红果2号桑.山西果树,2004, (2):53
    [102]陈仁芳,陈祥平,范小敏等.四川桑树种质资源.四川蚕业,2011,(4):50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700