恶性疟原虫GBP130基因5’近端侧翼序列调控功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早在1897年Ronald Ross就发现疟疾是蚊媒传播的疾病,100余年后的
    今天,疟疾仍然是人类健康的主要威胁之一。对各种疟原虫基因及其基因产
    物的功能研究是发现有效疫苗候选抗原和抗疟药物作用靶位的必要前提。基
    因敲除可为蛋白功能提供重要的信息,但其所反映的信息只是全有或全无的。
    对疟原虫有重要功能的蛋白基因不能通过基因敲除来研究,否则会导致疟原
    虫的死亡而无法研究,如MSP1和AMA-1。因此,需要建立一种可诱导性
    基因表达系统,以有效控制基因的表达。
     目前认为四环素诱导表达系统是最有前途的诱导性系统。GBP130是主
    要于滋养体期转录的期特异性基因,该基因启动子含有单一的转录起始点,
    有利于在其附近插入四环素识别调控元件。对GBP130的5’侧翼序列进行分
    析,发现具有高转录活性的最小调控序列,以及可能的期特异性和非期特异
    性调控元件,进而还可以建立期特异性和非期特异性诱导表达系统。已有研
    究认为GBP130的5’侧翼序列的转录起始点上游不存在期特异性调控元件,
    但转录起始点下游是否具有期特异性调控功能还不清楚。
     本研究建立了一种有效的疟原虫瞬时基因转染系统,将GBP130基因5’
    近端侧翼序列不同片段删除,构建调控序列的系列缺失体,以CAT为报告分
    子,利用疟原虫基因转染技术对该基因5’近端侧翼序列的调控功能从强度
    调控和期特异性调控两个方面进行初步研究,为疟原虫诱导性转基因表达系
    统的构建打下基础。
     由于疟原虫特殊的分子生物学特性,其基因转染技术并没有像高等真核
    细胞基因转染一样成为一项常规技术,在国外仅有个别实验室进行相关研究,
    而国内还没有实验室开展此类工作。本研究将含有不同长度GBP130启动子
    的质粒(pGBPCAT、pGBPCATΔ2和pGBPCATΔ3)采用电穿孔法转染入我国
    云南(YN)株恶性疟原虫(P.f)环状体,以液体闪烁计数法检测各质粒中报告基
    因CAT的表达。结果发现报告基因CAT在转染虫体中得到表达,各质粒中
    启动子的表达强度表现出预期的明显差异,说明瞬时转染P.f获得成功,为进
    一步研究P.f的基因表达调控和基因功能奠定了基础。
    
     第四军医大学硕士学位论文 摘 要
     为分析 GBP乃0基因了近端侧翼序列的调控功能,以质粒 pGBPCAT A 2
    为模板,应用 PCR扩增 GBP130 5’侧翼序列转录起始点上游 615hp序列(含转
    录起始点),克隆入报告基因CAT上游,即将该基因5’近端片段完全删除,构
    建该片段缺夫的质粒 p*BP a 2/615。将 pGBPCAT s 2和 pGBP a 2/615分别转
    染V环状体,比较两者中报告基因CAT的表达水平,从而初步分析近端序
    列对基因表达的影响。
     为进一步分析近端侧翼序列中可能的特异调控元件,应用PCR分别扩增
    了侧翼序列近端大小分别为400hp和800hp的2个片段,即F。0和F。…经内
    切酶消化后分别插入 pGBP A 2/6中相应的限制性位点,即可删除近端序列
    中部分片段,构建成 2个缺失体,扯泪P A 2/400和 P阳P A 2用00。
     用 pGBPCAT凸 2、pGBP凸 2/400和 pGBP凸 2/800分别转染疟原虫,在转
    染后48h收集虫体制备细胞抽提物,检测报告分子CAT活性,分析近端侧翼
    序列不同区域的强度调控功能。另将 pGBP A 2/400和 pGBP A 2沿00分别同时
    转染疟原虫,分别于转染后 sh(sh卜 15hp和 46hp收集虫体,制备细胞抽
    提物,检测CAT活性,分析近端侧翼序列不同区域的期特异性调控功能。
     结果表明,pGBP A 2店 转染的疟原虫表达报告基因 CAT的水平下降,
    与 pGBPCAT山2转染的疟原虫相比有显著性差异汐功刀5卜说明近端侧翼序
    列在GBPj30基因的表达调控中具有非常重要的作用,可能含有重要的调控
    元件,包括强度和期特异性调控元件。
     当从转录起始点厂游删除较小的片段一GBP A 2沿00卜 CAT表达水平与
    pGBPCAT A 2中 CAT水平没有差异(Pt).05),当删除近端较大片段…GBP A
    2叶00)时,*AT表达水平明显下降炉刃.OS)。但序列分析发现,被删除序列中
    与已知可能的疟原虫调控序列没有同源性,据此推测这种启动子活性强度的
    差异是因为5’UTR长度的不同,较长的UTR可促进基因的转录表达。同时
    pGBP凸 2/400的转录活性与对照组也有明显差异厂<0.05),可能 GBPj30基因
    近端侧翼序列中2个同聚的…pp:瞩结构在强度调控中也具有作用。
     pGBP A 2八00与 pGBP A 2/800相比,在 5 hP时前者转录活性高于后者,
    但在 15 hpt和 46 hp时,后者转录活性高于前者,提示 2种质粒在疟原虫不
    同生活阶段具有期特异调控特性。pGBP凸 2/400与 pGBP A 2用00中含有相同
    的二个同聚…叭吐A:dT)序列,但侧翼序列中SAI-----的长度不同。说明侧翼
    序列中5”U’mN的长度在GBP130基因的期特异性调控中也具有重要作用,即
    含有较短了UTIR的启动子主要在环状体期具有增强转录的活性,而较长的
    5”UTR主要在滋养体期和裂殖体期促进启动子的转录活性。gb火p甘T)结构
    是否具有期特异调控特性还不清楚。
Malaria still remains a major threat to mankind nowadays. The efforts for gene functions will facilitate the development of effective malarial vaccines and the discovery of drug targets. Gene targeting is one of the important methods which provide vital information about genes and proteins, but the information is none or all. Moreover, malaria parasites will die when some key genes such as merozoite surface protein 1 (MSP1) and apical membrane antigen1(AMA-1} are disrupted, which would prevent further investigations. To control the expression of the gene of interest effectively, an inducible transgenic expression system is in need.
    Now inducible transgenic expression system based on tetracycline is considered the best one. For it's convenient to insert the tetracycline regulation element into the vicinity of the single transcription start site of glycophorin binding protein 130(GBP130),a stage-specific gene transcribed in trophozoite parasites, GBP130 promoter is the best candidate to be used in the inducible transgenic expression system of malaria parasite. The findings of minimal regulation sequence with high transcription activity and of elements with and without stage-specificity, based on deletion analysis of 5' flanking sequence of GBP130, will lead to the establishment of an inducible system with stage-specificity. Recently, investigations suggested that no stage-specific element existed in the sequence upstream of GBP130 transcription start site, but the regulation role of the proximal fragment of GBP130 5' flanking sequence remains unknown.
    Here a malaria transient transfection system was established firstly, using a chloramphenicol acetyltransferase (CAT)-based reporter. The regulation functions of the proximal fragment of GBP130 5' flanking sequence were studied by the introductions of a few plasmids bearing deletions of different fragments in the proximal sequence into ring-stage malaria parasites and the detections of the
    
    
    
    expression level of reporter gene CAT.
    Malaria transfection, both transient and stable, marked a significant breakthrough in the investigation at molecular level, and opened a new chapter in the molecular analysis of malaria. However, this new tool is still limited in one or two foreign labs, and none of home lab does some work about it.
    Plasmids pGBPCAT, pGBPCAT A 2 and pGBPCAT A 3 containing different deletions of upstream of the GBP130 promoter were electroporated into ring-stage Plasmodiwn falciparum YN strain, respectively, and the expression level of CAT in each plasmid was detected by liquid scintillation counts(LSC). Consistent with previous results, the reporter gene CAT expressed in the parasites and the promoter activities were significantly different, showing that transient transfection of'falciparum malaria was successfully performed.
    To analysis the functions ofGBP130 5' proximal sequence, several deletions were constructed. In plasmid pGBPCAT A 2, the reporter gene CAT was flanked by the truncated 5' flanking sequence of GBP130 gene (Genebank:Z11832), the first 292 bp removed, and 3' flanking sequence of histidine rich protein (HRPII). A distal fragment, 615bp (2487bp~3101bp), of 5' noncoding sequence of gene GBP130 in pGBPCAT A 2 was PCR amplified from pGBPCAT A 2 and cloned into pGBPCAT A 2 excised with KpnllNsil to yield pGBP A 2/615.
    Based on pGBP A 2/615, pGBP A 2/400 and pGBP A 2/800 were constructed. To this end, F4oo(3788bp~4200bp) and F800 (3329 bp~4200bp) were amplified from 5' proximal flanking fragment ofGBPJSO taking the plasmid pGBPCAT A 2 as a template. The PCR products purified in 2% agrose gel were restricted by Nsil and inserted into the Nsil site of pGBP A 2/615. Individual clones containing the restricted PCR products were isolated. Positive clones bearing single insert with correct direction were identified by enzyme restrictions. For the identification of pGBP A 2/400, the plasmid was restricted with Nsil, KpnUNcol, respectively. And for pGBP A 2/800, restricted with Nsil, Kpnl/Spel, respectively.
    All the plasmids, maxiprepared w
引文
[1] Tsoka S, Promponas V, Ouzounis CA Reproducibility in genome sequence annotation: the Plasmodium falciparum chromosome 2 case. FEBS Lett. 1999;451(3) :354-355
    [2] Jing J, Lai Z, Aston C, et al. Optical mapping of Plasmodium falciparum chromosome 2. Genome Res. 1999;9(2) : 175-181
    [3] Gardner MJ, Tettelin H, Carucci DJ, et al.Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science. 1998;282(5391) : 1126-1132
    [4] Bowman S, Lawson D, Basham D, et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature. 1999;400(6744) : 532-538
    [5] http://www.who.int/tdr/publications/tdrnews/news59/genome.htm
    [6] Craig AG, Waters AP,Ridley RG.Malaria genome project task force: a post-genomic agenda for functional analysis.Parasitol Today 1999; 15(6) : 211-214
    [7] Cook BM, Tilley I.Key processes in malaria pathogenesis: keeping on top down under. Parasitol Today. 1999; 15(5) : 176-178
    [8] Report of WHO/TDR scientific working group on the utilization of genomic information for tropical disease drug and vaccine discovery. UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases.Geneva, 18-20 February 1998
    [9] Horrocks P, Bowman S, Kyes S, et al.Entering the post-genomic era of malaria research. Bull World Health Organ.2000;78(12) :1424-1437
    [10] Sinden RE.Malaria transfection: a new tool to study molecular function. Parasitol Today. 1998;14(3) :88-90
    [11] Waters AP,de Koning-Ward TF,Janse CJ,et al.The development of genetic tools for dissecting the biology of malaria parasites.Ann Rev Microbiol. 2000;54: 157-185
    [12] Hinnen A,Hicks JB, Fink GR. Transformation of yeast. Proc Natl Acad Sci USA. 1978, 75(4) : 1929-1933.
    [13] Kelly JM. Genetic transformation of parasitic protozoa. Adv Parasitol. 1997; 39:227-270
    [14] Wesson DM,Krogstad DJ.Transfection and malaria.NatureMed.l995;1(8) : 745-747
    [15] Hyde JE.Transformation of malaria parasites:the barriers come down.Trends Microbiol. 1996;4(2) :43-45
    [16] Goonewardence R,Daily J, Kaslow D,et al. Transfection of the malaria parasite and expression of firefly luciferase.Proc Natl Acad Sci USA. 1993;90(11 ):5234-5236
    [17] van Dijk MR,Waters AP,Janse CJ.Stable transfection of malaria parasite blood stages.Science. 1 995;268(5215) : 1358-1362
    [18] Wu Y,Sifri CD,Lei HH,et al.Transfection of Plasmodiumfalciparum within human red blood cells. Proc Natl Acad Sci USA.1995;92(4) :973-977
    [19] Golightly LM,Mbacham W,Daily J,et al.3'UTR element enhance expression of Pgs28, an ookinete protein of Plasmodium gallinaceum. Mol Biochem Parasitol.2000; 105(1) :61-70
    [20] Crabb BS, Cowman AF.Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc Natl Acad Sci U S A.1996;93(14) :7289-7294
    [21] Horrocks P,Lanzer M.Mutational analysis identifies a five base pair cw-acting sequence essential for GBP130 promoter activity in Plasmodium falciparum. Mol Biochem Parasitol. 1 999;99( 1 ):77-87
    [22] 王宪峰,刘忠湘,薛采芳,等。恶性疟原虫GBPI30基因5’侧翼序列近端区域调控功能
    
    的初步研究.地方病通报(待发表)
    [23] Dechering KJ, Kaan AM, Mbacham W, et al. Isolation and functional characterization of two distinct sexual-stage-specific promoters of the human malaria parasite Plasmodium falciparum. Mol Cell Biol. 1999;19(2):967~978
    [24] Horrocks P,Kilbey BJ.Physical and functional mapping of the transcriptional start sites of Plasmodium falciparum proliferating cell nuclear antigen. Mol Biochem Pamsitol. 1996;82(2):207~215
    [25] Clayton CE.Genetic manipulation of kinetoplastida. Pamsitology Today. 1999; 15(9):372~378
    [26] Waters AP, Thomas AW, van Dijk MR, et al.Transfection of malaria parasites.Methods. 1997;13(2): 134~147
    [27] Wu Y, Kirkman LA,Wellems TE.Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc Natl Acad Sci U S A. 1996;93(3):1130~1134
    [28] Waters AP,van Dijk MR, Ramesar J, et al. Stable transfection of the blood stages of malarial parasites. Ann Trop Med Parasitol. 1997;91(1):S63~S67
    [29] van der Wel AM, Tomas AM, Kocken CH, et al. Transfection of the primate malaria parasite Plasmodium knowlesi using entirely heterologous constructs. J Exp Med 1997; 185(8):1499~1503
    [30] Crabb BS,Triglia T, Waterkeyn JG, et al. Stable transgene expression in plasmodium falciparum. Mol Biochem Parasitol 1997;90(1): 131~144
    [31] van Dijk MR, Janse CJ, Waters AP Expression of a Plasmodium gene introduced into subtelomeric regions of Plasmodium berghei chromosomes. Science. 1996;271(5249):662~665
    [32] 叶苓,余新炳.基因敲除技术与疟原虫基因功能研究.国外医学寄生虫病分册.1999;26(4):153~156
    [33] 汪亚平,朱作言.基因靶位操作的原理与策略.遗传.1999;21(3):46~50
    [34] Waters AP, Wirth DF, Wellems TE ,et al. Transfection of malaria parasites. Parasitol Today.1996; 12(4): 129~132
    [35] Tomas AM, van der Wel AM, Thomas AW, et al. Transfection system for animal models of malaria. Parasitol Today. 1998; 14(6):245~249
    [36] Menard R, Janse C.et al. Gene targeting in malaria parasites. Methods.1997; 13(2):148~157
    [37] Waterkeyn JG,Crabb BS,Cowman AF.Transfection of the human malaria parasite Plasmodiumfalciparum.Int J Parasitol. 1999;29(6):945~955
    [38] van Dijk MR, Vinkenoog R, Ramesar J, et al. Rephlication, expression and segregation of plasmid-borne DNA in genetically transformed malaria parasites. Mol Biochem Parasitol.1997 ;86(2):155~162
    [39] Keith V Wood. Marker proteins for gene expression.Curt Opin Biotech.1995;6(1):50-58
    [40] Sultan AA, Thathy V, Nussenzweig V, et al. Green fluorescent protein as a marker in Plasmodium berghei transformation. Infect Immun 1999; 67(5): 2602~2606
    [41] de Koning-Ward TF, Thomas AW, Waters AP, et al. Stable expression of green fluorescent protein in blood and mosqmto stages of Plasmodium berghei. MolBiochem Parasitol 1998 ;97(1-2) 247~252
    [42] VanWye JD, Haldar K.Expression of green fluorescent protein in Plasmodium falciparum. Mol Biochem Parasitol 1997;87(2): 225~229
    [43] Chalfie M,Tu Y, Euskirchen G, et al. Green fluorescent protein as a maker for geme expression. Science. 1994;263(5148):802~805
    
    
    [44] 何琪杨,张鸿卿,薛绍白.活细胞的分子探针—绿色荧光蛋白.国外医学分子生物学分册.1997,19(6):279~283
    [45] 贺竹梅,李华平,李宝健.绿色荧光蛋白在生命科学研究中应用.遗传.1998;20(5):43~46
    [46] 田竟生,吴晓青,潘海燕.研究活细胞生命现象的新途径—绿色荧光蛋白基因的重组与表达.首都医科大学学报.1998;19(3):288~290
    [47] de Koning-Ward TF, Fidock DA, Thathy V, et al.The selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the Plasmodium berghei genome. Mol Biochem Parasitol.2000;106:119~212
    [48] Mamoun CB, Gluzm IY, Goyard S, et al.A set of independent selectable markers for transfecfion of the human malaria parasite Plasmodium falciparum. Proc Nail Acad Sci U S A. 1999;96(15):8716~8720
    [49] Sultan AA, Thathy V, Nussenzweig V, et al. Green fluorescent protein as a marker in Plasmodium berghei transformation. Infect lmmun. 1999;67(5): 2602~2606
    [50] Kadekoppala M,Kline K,Akompong T, et al. Stable expression of a new chimeric fluorescent reporter in the human malaria parasite Plasmodium falciparum. Infect Immun.2000;68(4):2328~2332
    [51] Cowman AF, Baldi DL,Healer J, et al. Functional analysis of proteins involved in Plasmodium falciparum merozoite invasion of red blood cells. FEBS Letters.2000; 476(1-2):84~88
    [52] Buckner FS,Wilson AJ,Van Voorhis WC.Trypanosoma cruzi:use of herpes simplex virus-thymidme kinase as a negative selectable marker. Exp Parasitol. 1997;86(3):171~180
    [53] Zimmermann U,Pilwat G, Riemann F. Dielectric breakdown of cell membranes.Biophys J. 1974; 14(11):881~899
    [54] Benz R,Becker F, Zimmermann U. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol. 1979;48(2): 181~204
    [55] Wong TK,Neumann E.Electric field mediated gene transfer. Biolchem Biophys Res Commun.1982; 107(2):584
    [56] Fidock DA,Wllems TE.Transformation within human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil.Proc Natl Acad Sci USA. 1997;94(20): 10931~10936
    [57] Trenhome K.Improved transformation efficiency in Plasmodium falciparum. SCOPE Malaria Research and Policy Forum(What't New Update, 19November),scope.educ. Washington. edu/research/malaria/updates/trenholme/1999-11-19/
    [58] VanWye JD,Haldar K. Expression of green fluorescent protein in plasmodium falciparum. Mol Biochem Parasitol. 1997; 87(2): 225~229
    [59] Smith DF. Trypanosomatid transfection: stable introduction of DNA into protozoa.Parasitol Today. 1990;6(8):245~247
    [60] 钱锋,肖成祖.脂质体法和电穿孔法转染哺乳动物细胞研究.生物化学与生物物理进展.1999;26(3):289
    [61] Deitsch KW, Driskill CL, Wellems TE.Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucl Acids Res. 2001 ;29(3): 850~853
    [62] Mbacham WF, Chow CS,Daily J,et al. Deletion analysis of the 5' flanking sequence of the Plasmodium gallinaceum sexual stage specific gene pgs28 suggests a bipartite arrangement of cis-control elements. Mol Biochem Parasitol.2001; 113(1):183~187
    [63] Menard R,Nussenzweig V. Structure-funcfion analysis of malaria protein by gene targeting.Parasitol Today.2000; 16(6):222~224
    
    
    [64] Menard R,Sultan AA, Cortes C et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes.Nature.1997;385(6614):336~340
    [65] Sultan AA, Thathy V, Frevert U et al. TRAP is necessary for glidmg motility and infectivity of Plasmodium sporozoites.Cell. 1997;90(3):511~522
    [66] Crabb BS, Cooke BM, Reeder JC et al. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress.Cell. 1997;89(2):287~296
    [67] Reed MB,Caruana SR,Batchetor AH, et al. Targeted disrupted of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc Natl Acad Sci U S A.2000;97(13):7509~7514
    [68] Trenholme KR, Gardiner DL,Holt DC,et al.clag9:a cytoadherencegene in Plasmodium falciparum essential for binding of parasitized erythrocytes to CD36.Proc Natl Acad Sci U S A.2000;97(8):4029~4033
    [69] Yuda M, Sakaida H, Chinzei Y. Targeted disrupted of the Plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito.J Exp Med. 1999;190(11):1711~1716
    [70] O'Donnell RA,Saul A,Cowman AF, et al. Functional conservation of the malaria vaccine antigen MSP-1_(19) across distantiy related Plasmodium species. Nature Med.2000;6(1):91~95
    [71] Baldi DL,Andrews KT, Waller RS,et al. RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO J.2000;19(11):2435-43
    [72] Mota MM, Thathy V,Nussenzweig RS,et al. Gene targeting in the rodent malaria Plasmodium yoelii. Mol Biochem Parasitol.2001; 113(2):271~278
    [73] Waterkeyn JG, Wickham ME, Davern KM, et al. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J.2000; 19(12): 2813-23
    [74] Templeton TJ, Kaslow DC, Fidock DA. Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol Microbiol.2000;36(1): 1~9
    [75] Kaneko O, Fidock DA, Schwartz OM, et al. Disruption of the C-terminal region of EBA-175 in the Dd2/Nm clone of Plasmodium falciparum does not affect erythrocyte invasion. Mol Biochem Parasitol.2000;110(1):135~46
    [76] van Dijk MR, Janse C J, Thompson J, et al.A central role for P48/45 in malaria parasite male gamete fertility. Cell.2001; 104(1): 153~64
    [77] van Spaendonk RM, Ramesar J, van Wigcheren A,et al. Functional equivalence of structurally distinct ribosomes in the malaria parasite, Plasmodium berghei. J Biol Chem.2001 Apr 5; [epub ahead of print]
    [78] Gardiner DL,Holt DC,Thomas EA,et al. Inhibition of Plasmodium falciparum clag9 gene function by antisense RNA. Mol Biochem Parasitol. 2000;110(1):33~41
    [79] 叶苓,余新炳,徐劲.恶性疟原虫热休克蛋白(HSP86)基因置换型和插入型打靶载体的构建.人兽共患病杂志.2000;16(6):21~23
    [80] Triglia T, Wang P, Sims PFG, et al,Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria .EMBO J. 1999; 17(14):3807~3815
    [81] Wang CC. Validating targets for antiparasite chemotherapy.Parasitology. 1997;114 (Suppl): S31~S44
    [82] Titus RG,Gueiros_Filho FJ,de Freitas LA, et al. Development of a safe live Leishmania vaccine line by gene replacement. Proc Nad Acad Sci U S A. 1995;92(22):
    
     10267-10271
    [83] Kocken CHM,van del Wel AM,Dubbeld MA,et al.Precise timing of expression of a Plasmodium falciparum-derived transgene in Plasmodium berghei is a critical determinant of subsequent subcellular localiztion.J Bio Chem. 1998;73(24) : 15119-15124
    [84] Charest H, Sedegah M, Yap GS,et al. Recombinant attenuated Toxoplasma gondii expressing the Plasmodium yoelii circumsporozoite protein provides highly effective priming for CD8+ T cell-dependent protective immunity against malaria. J Immunol.2000; 165(4) :2084-92
    [85] Padgett HS, Epel BL, Kahn TW, et al.Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of mfection.Plant J.1996; 10(6) : 1079-1088
    [86] Epel BL, Padgett HS, Heinlein M, et al.Plant virus movement protein dynamica probed with a GFP-protein fusion.Gene. 1996;173(1 Spec No):75-79
    [87] Wirtz E,Clayton,C.Inducible gene expression in Trypanosomes mediated by a prokaryotic responsor. Science. 1995;268(5214) : 1179-1183
    [88] Wirtz E,Leal S,Ochatt C,et al.A tightly regulated inducible expression system for conditional gene knock-out and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol.1999;99(l):89-101
    [89] Hamann L,Bub H,Tannich E.Tetracycline-controlled gene expression in Entamoeba histolytica.Mol Biochem Parasitol. 1997; 84(1) :83-91
    [90] Ramakrishnan G,Vines RR,Mann BJ,et al.Atetracycline-inducible gene expression system in Entamoeba histolytica. Mol Biochem Parasitol. 1997; 84( 1 ):93-100
    [91] Sun CH,Tai JH.Development of a tetracycline controlled gene expression system in the parasitic protozoan Giardia lamblia. Mol Biochem Parasitol. 2000; 105(1) :51-60
    [92] Yan S,Myler PJ,Stuart KTetracycline regulated gene expression in Leishmania donovani. Mol Biochem Parasitol.2001 ;112(1 ):61-69
    [93] Gunderson JH,McCutchan TF,Sogin ML.Sequence of the small subunit ribosomal RNA gene expressed in the bloodstream stages of Plasmodium berghei:Evolutionary implications.J Protozol. 1986;33(4) :525~529
    [94] Shippen-Lentz D,Ray R,Scaife JG,et al. Characterization and complete nucleotide sequence of a 5. 8S ribosomal RNA gene from Plasmodium falciparum. Mol Biochem Parasitol. 1987;22(2-3) :223-231
    [95] Weber JL. Molecular biology of malaria parasites.Exp Parasitol. 1988;66(2) : 143-170
    [96] Daniel JC,Malcolm JG,Herve Tettelin LM et al.The malaria genome sequencing project.Exp Rev Mol Med,txt001dcn,5 May 1998
    [97] Caroline Ash.Exploring parasite genomes. Trends in Microb. 1999;7( 1) : 10-12
    [98] Fletcher C.The Plasmodium falciparum genome project.Parasitol Today. 1998; 14(9) : 342-344
    [99] Gardner MJ.The genome of the malaria parasite.Curr Opin Genet Dev. 1999,9:704-708
    [100] van Lin LHM,Janse CJ,Waters AP.The conseved genome organization of nan-falciparum malaria species:the need to know more.Int J Parasitol.2000;30(4) : 357-370
    [101] Pollack Y,Katzen AL,Spira DT,et al.The genome of Plasmodium falciparum.I:DNA base composition. Nucleic Acids Res. 1982; 10(2) : 539-546
    [102] Su XZ, Wu Y, Sifri CD, et al. Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res. 1996; 24(8) : 1574-1575
    [103] Bowman S, Lawson D, Basham D,et al.The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature. 1999;400(6744) :532-538
    [104] Lanzer M,Wertheimer SP,Bruin DD et al.Plasmodium:control of gene expression in
    
     malaria parasites. Exp Parasirol.l993;77(1) :121-128
    [105] Horrocks P,Dechering K,Lanzer M.Control of gene expression in Plasmodium falciparum. Mol Biochem Parasitol.l998;95(2) :171-181
    [106] McCutchan TF,Li J,McConkey GA,et al.The cytoplasmic ribosomal RNA pf Plasmodium spp Parasitol Today. 1995,11 (4) : 134-138
    [107] Wade PA,Pruss D,Wolffe AP,et al.Histone acetylation:chromatin in action.Trends Biochem Sci.l997;22(4) :128-132
    [108] Darkin-Ratray SJ,Gumett AM-Myers RM,et al.Apicidin:a novel antiprotozal agent that inhibits parasite histone deacetylase.Proc Natl Acad Sci USA.1996;93(23) : 13143-13147
    [109] Ji DD,Arnot DE.A Plasmodium falciparum homologue of the ATPase subunit of a multi-protein complex involved in chromatin remodeling for transcription.Mol Biochem Parasitol. 1997;88( 1-2) : 151-162
    [110] 王宪锋,薛采芳,甄荣芬。恶性疟原虫红细胞膜蛋白1在疟原虫免疫逃避中的作用。地方病通报。 2000;15(2) :80-82
    [111] Baruch DI, Pasloske BL, Singh HB, et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell.1995;82(1) :77-87
    [112] Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell.l995;S2(1) -.101-110
    [113] Su XZ, Heatwole VM, Wertheimer SP, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes.Cell. 1995;82( 1 ):89-100
    [114] Borst P. Molecular genetics of antigenic variation. Immunol Today. 1991 ;12: A29-A33
    [115] Borst P, Bitter W,McCulloch R, et al. Antigenic variation in malaria.Cell. 1995; 82(1) : 1-4
    [116] Chen Q, Fernandez V, Sundstrom A, et al. Developmental selection of var gene expression in Plasmodium falciparum. Nature. 1998;394(6691) . 392-395
    [117] Scherf A , Hernandez Rivas R, Buffet P, et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J.1998; 17(18) : 5418-5426
    [118] Deitsch KW,Amy del Pinal,Wellems TE.Intra-cluster recombination and var transcription switches in the antigenic variation of Plasmodium falciparum. Mol Biochem Parasitol. 1999; 101 (1-2) : 107-116
    [119] Horrocks P,Lanzer M. Differences in nucleosome organization over episomally located plasmids coincides with aberrant promoter activity. Parasitol Int.l999;48:55-61
    [120] Pace T,Birago C,Janse CJ,et al.Developmental regulation of a Plasmodium gene involves the generation of stage-specific 5' untranslated sequences. Mol Biochem Parasitol. 1998;97( 1-2) :45-53
    [121] McAndrew MB,Read M,Sims PF.et al. Characterization of the gene encoding an unusually divergent TATA-binding protein(TBP) from the extremely A+T-rich human malaria parasite Plasmodiumfalciparum.Gene. 1993;124(2) : 165-171
    [122] Lanzer M,Derik de Bruin,Ravetch JV.Transcription mapping of a 100kb locus of Plasmodium falciparum identifies an intergenic region in which transcription terminates and reinitiates.EMBO J. 1992; 11 (5) : 1949-1955
    [123] Lanzer M,Derik de Bruin,Ravetch JV.A sequence element associated with the Plasmodium falciparum KAHRP gene is the site of developmentally regulated
    
     protein-DNA ineractions. Nucleic Acids Res.1992;20(12) : 3051-3056
    [124] Dechering KJ,Cuelenaere K,Konings RNH,et al. Distinct frequency-distributions of homopolymeric DNA tracts in different genomes. Nucleic Acids Res. 1998;26(17) : 4056-4062
    [125] Su XZ,Wellems TE.Sequence,transcript characterization and polymorphisms of a Plasmodium falciparum belonging to the heat shock protein(HSP)90 family.Gene. 1994; 151(1-2) :225-230
    [126] Levitt A RNA processing in malarial parasites.Prasitol Today. 1993;9(12) : 465-468
    [127] Knapp B,Nau U,Hundt E,et al.Demonstration of alternative splicing of a pre-mRNA expressed in the blood stage form of Plasmodium falciparum.J Bio Chem. 1991;266(11) : 7148-7154
    [128] Knapp B, Hundt E,Kupper HA. Plasmodium falciparum aldolase: gene structure and localization. Mol Biochem Parasitol.l990;40(1) :1-12
    [129] Nabeshima Y,et al. Alternative transcription and two modes of splicing results in two myosin light chains from one gene. Nature. 1984;308(5957) :333-338
    [130] Osbome HB,Richter JD.Translational control by polyadenylation during early development.Prog Mol Subcell Biol.1997;18:173-198
    [131] Thompson J,Sinden RE.In situ detection of Pbs21 mRNA during sexual development of the Plasmodium berghei.Mol Biol Parasitol.1994;68(2) : 189-196
    [132] Vervenne RAW,Dirks RW,Ramesar J,et al.Differential expression in blood stages of the gene encoding for the 21-kilodalton surface protein of oolinetea of Plasmodium berghei as detected by RNA in situ hybridization. Mol Biol Parasitol.1994;68(2) : 259-266
    [133] Sinden RE,Winger L,Cater EH,et al.Ookinete antigens of Plasmodium berghei:a light and electron-microscope immunogold study of expression of the 21 kDa determinant recongnized by a trasmission-blocking antibody.Proc R Soc Lond 8. 1987;230(1261) : 443-458
    [134] Winger LA,Tirawanchai N,Nicholas J,et al.Ookinete antigens of an Mr 21 kD determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunol. 1988; 10(2) : 193-207
    [135] Margos G,van Dijk MR,Ramesar J, et al.Transgenic expression of a mosquito-stage malarial protein,Pbs21,in blood stage of transformed Plasmodium berghei and induction of an Immune response upon infection.Infect Immun.l998;66(8) :3884-3891
    [136] Paton MG,Barker GC,Matsuoka H,et al.Structure and expression of a post-transcriptionally rehulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Mol Biochem Parasitol.1993; 59(2) :263-275
    [137] Waters AP,Rosalina ML,van Spaendonk,et al.Species-specific Regulation and Switching of Transcription between Stage-specific Ribosomal RNA Genes in Plasmodium berghei.J Bio Chem.1997;272(6) :3583-3589
    [138] Levitt A,Dimayuga FO,Ruvolo VR,et al.Analysis of malarial transcripts using cDNA-directed polymerase chain reaction.J Parasitol.1993;79(5) : 653-662
    [139] Ruiz i Altaba A,Ozaki LS,Gwadz RW,et al. Organization and expression of the Plasmodium knowlesi circumsporozoite antigen gene. Mol Biochem Parasitol.1987; 23(3) :233-245
    [140] Ruvolo V,Altszuler R,Levitt A. The trancript encoding the circumsporozoite antigen of Plasmodium knowlesi heterogeneous polyadenylation sites. Mol Biochem Parasitol. 1993 ;57(1) : 137-150
    [141] Gowda DC,Gupta P,Davidson EA. Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocyteic stage of Pfalciparum.J Biol Chem.1997; 272(10) :6428-6439
    
    
    
    [142] Berhe S,Schofield L,Schwarz RT,et al.Conservation of structure among glycosylphosphatidylinositol toxins from different geographic isolates of Plasmodium falciparum. Mol Biochem Parasitol. 1999; 103(2) :273-278
    [143] Gowda DC,Davidson EAprotein dlycosylation in me malria parasite.Prasitol Today.l999;15(4) :147-152
    [144] Smythe JA,et al.Identification of two integral membrane proteins of Plasmodium falciparum froc Natl Acad Sci USA. 1988;85( 14) :5195-5199
    [145] Medof ME,Nagarajan S,Tykocinski ML.Cell-surface engineering with GPI-anchored proteins.FASEB J.1996;10(5) :574-586
    [146] Chatterjee S,Singh S,Sohoni R,et al. Antibodies against ribosomal phosphoprotein PO of Plasmodium falciparum protect mice against challenge with Plasmodium yoelii. Infect Immun.2000;68(7) :4321-4328
    [147] Coppel RL,Lustigman S,Murray L,et al. MESA is a Plasmodium falciparum phosphoprotein associated with the erythrocyte membrane skeleton. Mol Biochem Parasitol. 1988;31 (3) :223-231
    [148] Wiser MF,Plitt B.Plasmodium berghei, P. chabaudi, and P. falciparum: similarities in phosphoproteins and protein kinase activities and their stage specific expression.Exp Parasitol. 1987;64(3) :328-335
    [149] Wiser MF. Proteolysis of a 34 kDa phosphoprotein coincident with a decrease in protein kinase activity during the erythrocytic schizont stage of the malaria parasite.Eukaryot Microbiol. 1995;42(6) :659-664
    [150] Williamson KC,Fujioka HrAikawa M, et al. Stage-specific processing of Pfs230, a Plasmodium falciparum transmission-blocking vaccine candidate. Mol Biochem Parasitol.l996;78(l-2) :161-169
    [151] Brooks SR, Williamson KC.Proteolysis of Plasmodium falciparum surface antigen, Pfs230, during gametogenesis. Mol Biochem Parasitol 2000; 106(1) :77-82
    [152] Holder AA et al. Processing of the precursor to the major merozoite surface antigens of Plasmodium falciparum.Parasitology. 1987;94(Pt2) : 199-208
    [153] Horrocks P,Lanzer M.Tansfection of Plasmodium:A new chapter in the molecular analysis of malaria.Parasitol Inter.l998;47:101-106
    [154] 高美丽,王宪锋,杨建雄。硫酸软骨素A介导的恶性疟原虫感染的红细胞粘附。陕西师范大学学报, 2000;28(1) :96-100
    [155] Poter ME.The DNA polymerase 8 promoter from Plasmodium falciparum contains an unusually long 5' untranslated region and intrinsic DNA curvature.Mol Biochem Parasitol.2001 ;114(2) :249-255
    [156] Cox R,Mirkin SM.Characteristic enrichment of DNA repeats in different genomes.Proc Natl Acad Sci USA.1997;94(10) :5237-5242
    [157] Iyer V,Struhl K.Poly(dA:dT),a ubiquitous prmoter element that stimulates transcription via its intrinsic DNA structure.EMBO J. 1995;14(11) :2570-2579
    [158] Zhu Z,Thiele DJ.A specialized nucleosome modulates transcription factor access to a C.glabrata metal responsive promoter.Cell. 1996;87(3) :459-470
    [159] Winter E,Varshavaky AA DNA binding protein that recognizes oligo(dA).oligo(dT) tracts.EMBO J. 1989;8(6) : 1867-1877
    [160] Delves CJ, Alano P, Ridley RG,et al. Expression of alpha and beta tubulin genes during the asexual and sexual blood stages of Plasmodium falciparum.Mol Biochem Parasitol. 1990;43(2) :271-278
    [161] Ridley RG, White JH, McAleese SM, et al. DNA polymerase delta: gene sequences from Plasmodium falciparum indicate that this enzyme is more highly conserved than DNA polymerase alpha.Nucleic Acids Res. 1991; 19(24) :6731-6736

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700