IGF-1R选择性诱导敲除对Nestin~+骨髓间充质干细胞迁移和分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:骨重建的过程包括骨吸收和骨形成两个过程。IGF-1与骨量的获得密切相关,血清IGF-1主要影响皮质骨的生长,而基质IGF-1则与小梁骨的获得密切相关。目前IGF-1在体内环境下对骨髓间充质干细胞的增殖、分化和凋亡的影响机制仍未阐明,因此本实验通过诱导选择性基因敲除小鼠建立间充质干细胞追踪系来研究IGF-1对骨髓间充质干细胞的影响。
     研究方法:本实验首先建立Nes-CreER::ROSA26-EYFPflox/+报告基因小鼠模型验证Nes-CreER重组酶的作用。我们同时建立Nestin-CreER::Igflrflox/flox诱导性基因敲除小鼠系,在3-7周龄期间注射他莫西芬(0.1mg/Kg.q3d)诱导敲除骨髓间充质干细胞的IGF-1R。在此期间定期测量小鼠体重、身长,并于第7周末对下肢股骨进行MicroCT分析。最后我们取小鼠下肢行H&E染色及免疫组化染色观察骨表面成骨祖细胞和成熟成骨细胞数量的变化。
     实验结果:Nes-CreER::ROSA26-EYFPflox/+报告基因小鼠股骨免疫荧光染色发现大量表达过Nestin的细胞(YFP+)分布于骨髓腔及骨表面。诱导选择性基因敲除小鼠体重、身长、股骨长度与对照组相比无明显差异,而MicroCT则发现雌性小鼠股骨远端次级骨松质的体积骨分数(BV/TV)和骨小梁厚度(Tb.Th)与对照组相比明显减少(P<0.05)。通过免疫组化进一步发现,单位骨表面Osterix+成骨祖细胞数量(14.80±2.36)和对照组(14.22±1.39)相比无明显差异(P=0.726),而Osteocalcin+成熟成骨细胞(8.774±0.36)与对照组(14.88±0.66)相比明显减少(P<0.001)。
     实验结论:在体内环境下Nestin+骨髓间充质干细胞主要向成骨细胞和成纤维细胞方向分化。诱导选择性敲除Nestin+骨髓间充质干细胞IGF-1R并不影响小鼠正常生长,但会导致小梁骨量减少。同时,在体内环境下IGF-1主要作用为促进成骨祖细胞向成骨细胞的分化,而不影响骨髓间充质干细胞的迁移。
Background:Bone remodeling is a process consisting of bone resorption and bone formation. Insulin-life growth factor1(IGF-1) is important for bone formation. While serum IGF-1tends to target cortical bone, matrix IGF-1is a critical coupling factor for maintenance of trabecular bone. The cell signaling mechanisms for proliferation, differentiation and apoptosis of the mesenchymal stem cells (MSCs) in vivo have yet to be elucidated. This experiment clarified the role of IGF-1signaling on bone marrow MSCs using an inducible gene knockout mouse model.
     Methods:We first established a reporter mouse, Nestin-CreER::ROSA26-EYFPflox/+to confirm previous findings that Nestin expression represents a subset of bone marrow MSCs. We then used the same Nestin-CreER mouse crossed with an Igflrflox/flox mouse, to delete the IGF-1type1receptor (Igflr) in the bone marrow mesenchymal stem cells (MSCs) from3-7weeks of age after the injection of Tamoxifen (0.1mg/kg-Body weight.q3d). We measured the weight, nasoanal length and the femoral length of the mice, and analyzed the secondary spongiosa of the femur using microcomputed tomography at the end of week7. Femur were processed for H&E staining and immunhistochemical staining for Osterix and Osteocalcin to localize and quantify osteoprogenitor cells as well as mature osteoblasts, respectively.
     Results:YFP staining of the femur in the reporter mice showed that the majority of Nestin-daughter cells were located either in the bone marrow or on the bone surface by immunoflorecent staining, confirming that Nestin-daughter cells differentiate into the osteoblast lineage. In the Nestin-CreER::Igflrflox/flox mice, the size of the knockout mouse was not affected as wild type littermates had similar body weights and nasoanal and femoral lengths. However, bone volume and trabecular bone thickness were decreased in the secondary spongiosa of female knockout mice relative to wild type littermates (P<0.05). Immunohistochemical analysis revealed that a similar number of Osterix+osteoprogenitors were on the bone perimeter (P=0.726), while Osteocalcin+mature osteoblasts on the bone perimeter were significantly decreased in the secondary spongiosa in knockout mice versus wild type littermates (P<0.001).
     Conclusion:Nestin+bone marrow MSCs predominantly differentiate into osteoblast lineage in vivo postnatally. Deletion of Igflr in MSCs results in impaired bone formation during bone remodeling secondary to impaired osteoblast differentiation, while MSC recruitment is not affected.
引文
[1]Zaidi M. Skeletal remodeling in health and disease. Nat Med,2007, 13(7):791-801.
    [2]Bianchi M L. How to manage osteoporosis in children. Best Pract Res Clin Rheumatol,2005,19(6):991-1005.
    [3]Canalis E. The fate of circulating osteoblasts. N Engl J Med,2005, 352(19):2014-6.
    [4]Park D, Spencer J A, Koh B I, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell,2012,10(3):259-72.
    [5]Bilezikian J P, Raisz L G, Martin T J. Principles of bone biology. San Diego, Calif.:Academic Press/Elsevier,2008.
    [6]Laviola L, Natalicchio A, Giorgino F. The IGF-I signaling pathway. Curr Pharm Des,2007,13(7):663-9.
    [7]Mohan S, Baylink D J. Serum insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 levels in aging and age-associated diseases. Endocrine,1997,7(1):87-91.
    [8]Johansson A G, Lindh E, Blum W F, et al. Effects of growth hormone and insulin-like growth factor I in men with idiopathic osteoporosis. J Clin Endocrinol Metab,1996,81(1):44-8.
    [9]Friedlander A L, Butterfield G E, Moynihan S, et al. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab, 2001,86(4):1496-503.
    [10]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy,2006,8(4):315-7.
    [11]Phinney D G, Prockop D J. Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair--current views. Stem Cells,2007,25(11):2896-902.
    [12]Mendez-Ferrer S, Michurina T V, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature,2010, 466(7308):829-34.
    [13]Haruyama N, Cho A, Kulkarni A B. Overview:engineering transgenic constructs and mice. Curr Protoc Cell Biol,2009, Chapter 19:Unit 19 10.
    [14]Mignone J L, Kukekov V, Chiang A S, et al. Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol,2004,469(3):311-24.
    [15]Nagy A. Cre recombinase:the universal reagent for genome tailoring. Genesis, 2000,26(2):99-109.
    [16]Nagy A, Mar L, Watts G. Creation and use of a cre recombinase transgenic database. Methods Mol Biol,2009,530:365-78.
    [17]Gama Sosa M A, De Gasperi R, Elder G A. Animal transgenesis:an overview. Brain Struct Funct,2010,214(2-3):91-109.
    [18]Schwenk F, Kuhn R, Angrand P O, et al. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res,1998,26(6):1427-32.
    [19]Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis,2002,8(3):147-59.
    [20]Woods K A, Camacho-Hubner C, Savage M O, et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med,1996,335(18):1363-7.
    [21]Liu J P, Baker J, Perkins A S, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igflr). Cell,1993,75(1):59-72.
    [22]Takahashi E, Miyamoto N, Kajiwara N, et al. Expression analysis of Escherichia coli lacZ reporter gene in transgenic mice. Brain Res Brain Res Protoc,2000,5(2):159-66.
    [23]Hadjantonakis A K, Nagy A. The color of mice:in the light of GFP-variant reporters. Histochem Cell Biol,2001,115(1):49-58.
    [24]Srinivas S, Watanabe T, Lin C S, et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol, 2001,1:4.
    [25]Gat-Yablonski G, Lazar L, Pertzelan A, et al. A novel mutation in PIT-1: phenotypic variability in familial combined pituitary hormone deficiencies. J Pediatr Endocrinol Metab,2002,15(3):325-30.
    [26]Bottner A, Keller E, Kratzsch J, et al. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency:a longitudinal analysis. J Clin Endocrinol Metab,2004,89(10):5256-65.
    [27]Elis S, Courtland H W, Wu Y, et al. Elevated serum levels of IGF-1 are sufficient to establish normal body size and skeletal properties even in the absence of tissue IGF-1. J Bone Miner Res,2010,25(6):1257-66.
    [28]Kovacs C S. Bone development in the fetus and neonate:role of the calciotropic hormones. Curr Osteoporos Rep,2011,9(4):274-83.
    [29]Mushtaq T, Bijman P, Ahmed S F, et al. Insulin-like growth factor-I augments chondrocyte hypertrophy and reverses glucocorticoid-mediated growth retardation in fetal mice metatarsal cultures. Endocrinology,2004, 145(5):2478-86.
    [30]Wang Y, Nishida S, Sakata T, et al. Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology,2006,147(10):4753-61.
    [31]Govoni K E, Lee S K, Chung Y S, et al. Disruption of insulin-like growth factor-I expression in type IIalphal collagen-expressing cells reduces bone length and width in mice. Physiol Genomics,2007,30(3):354-62.
    [32]Wang Y, Cheng Z, Elalieh H Z, et al. IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. J Bone Miner Res,2011,26(7):1437-46.
    [33]Govoni K E, Wergedal J E, Florin L, et al. Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology,2007, 148(12):5706-15.
    [34]Zhang M, Xuan S, Bouxsein M L, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem,2002, 277(46):44005-12.
    [35]Bikle D, Majumdar S, Laib A, et al. The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res,2001,16(12):2320-9.
    [36]Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature,2003,421(6919):182-7.
    [37]DeMambro V E, Kawai M, Clemens T L, et al. A novel spontaneous mutation of Irsl in mice results in hyperinsulinemia, reduced growth, low bone mass and impaired adipogenesis. J Endocrinol,2010,204(3):241-53.
    [38]Yakar S, Rosen C J, Bouxsein M L, et al. Serum complexes of insulin-like growth factor-1 modulate skeletal integrity and carbohydrate metabolism. FASEB J,2009,23(3):709-19.
    [39]Elis S, Courtland H W, Wu Y, et al. Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact. J Bone Miner Res,2010,25(9):2051-8.
    [40]Zhao G, Monier-Faugere M C, Langub M C, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice:increased trabecular bone volume without increased osteoblast proliferation. Endocrinology,2000,141(7):2674-82.
    [41]Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med,2012,18(7):1095-101.
    [42]Ozaki Y, Nishimura M, Sekiya K, et al. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev, 2007,16(1):119-29.
    [43]Tang Y, Wu X, Lei W, et al. TGF-betal-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med, 2009,15(7):757-65.
    [44]Nakasaki M, Yoshioka K, Miyamoto Y, et al. IGF-Ⅰ secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts. Bone,2008,43(5):869-79.
    [45]Negishi-Koga T, Shinohara M, Komatsu N, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med,2011, 17(11):1473-80.
    [46]Gombos A, Metzger-Filho O, Dal Lago L, et al. Clinical development of insulin-like growth factor receptor--1 (IGF-1R) inhibitors:at the crossroad? Invest New Drugs,2012,30(6):2433-42.
    [47]Krishnan V, Bryant H U, Macdougald O A. Regulation of bone mass by Wnt signaling. J Clin Invest,2006,116(5):1202-9.
    [48]Chen J, Wu A, Sun H, et al. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem,2005,280(33):29912-20.
    [49]Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev,2008,29(5):535-59.
    [50]Ghiron L J, Thompson J L, Holloway L, et al. Effects of recombinant insulin-like growth factor-I and growth hormone on bone turnover in elderly women. J Bone Miner Res,1995,10(12):1844-52.
    [51]Miller K K, Grinspoon S K, Ciampa J, et al. Medical findings in outpatients with anorexia nervosa. Arch Intern Med,2005,165(5):561-6.
    [52]Miller K K, Grinspoon S, Gleysteen S, et al. Preservation of neuroendocrine control of reproductive function despite severe undernutrition. J Clin Endocrinol Metab,2004,89(9):4434-8.
    [53]Munoz M T, Argente J. Anorexia nervosa in female adolescents:endocrine and bone mineral density disturbances. Eur J Endocrinol,2002,147(3):275-86.
    [54]Mauras N, Doi S Q, Shapiro J R. Recombinant human insulin-like growth factor I, recombinant human growth hormone, and sex steroids:effects on markers of bone turnover in humans. J Clin Endocrinol Metab,1996, 81(6):2222-6.
    [55]Grinspoon S, Thomas L, Miller K, et al. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab,2002,87(6):2883-91.
    [56]Liu H, Bravata D M, Olkin I, et al. Systematic review:the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med,2007, 146(2):104-15.
    [57]Bilezikian J P, Raisz L G, Rodan G A. Principles of bone biology. San Diego: Academic Press,2002.
    [58]Boonen S, Rosen C, Bouillon R, et al. Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture:a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab,2002,87(4):1593-9.
    [59]Ollberding N J, Cheng I, Wilkens L R, et al. Genetic variants, prediagnostic circulating levels of insulin-like growth factors, insulin, and glucose and the risk of colorectal cancer:the Multiethnic Cohort study. Cancer Epidemiol Biomarkers Prev,2012,21(5):810-20.
    [60]Powell-Braxton L, Hollingshead P, Giltinan D, et al. Inactivation of the IGF-I gene in mice results in perinatal lethality. Ann N Y Acad Sci,1993,692:300-1.
    [61]He J, Rosen C J, Adams D J, et al. Postnatal growth and bone mass in mice with IGF-I haploinsufficiency. Bone,2006,38(6):826-35.
    [62]Mohan S, Baylink D J. Impaired skeletal growth in mice with haploinsufficiency of IGF-I:genetic evidence that differences in IGF-I expression could contribute to peak bone mineral density differences. J Endocrinol,2005,185(3):415-20.
    [63]Mathews L S, Hammer R E, Behringer R R, et al. Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology, 1988,123(6):2827-33.
    [64]Araki E, Lipes M A, Patti M E, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature,1994, 372(6502):186-90.
    [65]Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest,2000, 105(7):935-43.
    [66]Peng X D, Xu P Z, Chen M L, et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Aktl and Akt2. Genes Dev,2003, 17(11):1352-65.
    [67]Ben Lagha N, Seurin D, Le Bouc Y, et al. Insulin-like growth factor binding protein (IGFBP-1) involvement in intrauterine growth retardation:study on IGFBP-1 overexpressing transgenic mice. Endocrinology,2006, 147(10):4730-7.
    [68]DeMambro V E, Clemmons D R, Horton L G, et al. Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology, 2008,149(5):2051-61.
    [69]Eckstein F, Pavicic T, Nedbal S, et al. Insulin-like growth factor-binding protein-2 (IGFBP-2) overexpression negatively regulates bone size and mass, but not density, in the absence and presence of growth hormone/IGF-I excess in transgenic mice. Anat Embryol (Berl),2002,206(1-2):139-48.
    [70]Ning Y, Schuller A G, Bradshaw S, et al. Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3,-4, and -5. Mol Endocrinol,2006, 20(9):2173-86.
    [71]Silha J V, Mishra S, Rosen C J, et al. Perturbations in bone formation and resorption in insulin-like growth factor binding protein-3 transgenic mice. J Bone Miner Res,2003,18(10):1834-41.
    [72]Parker A, Gockerman A, Busby W H, et al. Properties of an insulin-like growth factor-binding protein-4 protease that is secreted by smooth muscle cells. Endocrinology,1995,136(6):2470-6.
    [73]Zhang M, Faugere M C, Malluche H, et al. Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation. J Bone Miner Res,2003,18(5):836-43.
    [74]Salih D A, Mohan S, Kasukawa Y, et al. Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Endocrinology,2005,146(2):931-40.
    [75]Devlin R D, Du Z, Buccilli V, et al. Transgenic mice overexpressing insulin-like growth factor binding protein-5 display transiently decreased osteoblastic function and osteopenia. Endocrinology,2002,143(10):3955-62.
    [76]Yakar S, Rosen C J, Beamer W G, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest,2002,110(6):771-81.
    [77]Silha J V, Gui Y, Modric T, et al. Overexpression of the acid-labile subunit of the IGF ternary complex in transgenic mice. Endocrinology,2001, 142(10):4305-13.
    [78]Liao L, Dearth R K, Zhou S, et al. Liver-specific overexpression of the insulin-like growth factor-I enhances somatic growth and partially prevents the effects of growth hormone deficiency. Endocrinology,2006, 147(8):3877-88.
    [1]Feng X, McDonald J M. Disorders of bone remodeling. Annu Rev Pathol, 2011,6:121-45.
    [2]Le Roith D, Bondy C, Yakar S, et al. The somatomedin hypothesis:2001. Endocr Rev,2001,22(1):53-74.
    [3]Chen J, Wu A, Sun H, et al. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem,2005,280(33):29912-20.
    [4]Wang Y, Nishida S, Sakata T, et al. Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology,2006,147(10):4753-61.
    [5]He J, Rosen C J, Adams D J, et al. Postnatal growth and bone mass in mice with IGF-I haploinsufficiency. Bone,2006,38(6):826-35.
    [6]Bikle D, Majumdar S, Laib A, et al. The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res,2001,16(12):2320-9.
    [7]Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature,2003,421 (6919):182-7.
    [8]DeMambro V E, Kawai M, Clemens T L, et al. A novel spontaneous mutation of Irsl in mice results in hyperinsulinemia, reduced growth, low bone mass and impaired adipogenesis. J Endocrinol,2010,204(3):241-53.
    [9]Silha J V, Gui Y, Modric T, et al. Overexpression of the acid-labile subunit of the IGF ternary complex in transgenic mice. Endocrinology,2001, 142(10):4305-13.
    [10]Ben Lagha N, Seurin D, Le Bouc Y, et al. Insulin-like growth factor binding protein (IGFBP-1) involvement in intrauterine growth retardation:study on IGFBP-1 overexpressing transgenic mice. Endocrinology,2006, 147(10):4730-7.
    [11]Silha J V, Mishra S, Rosen C J, et al. Perturbations in bone formation and resorption in insulin-like growth factor binding protein-3 transgenic mice. J Bone Miner Res,2003,18(10):1834-41.
    [12]Salih D A, Mohan S, Kasukawa Y, et al. Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Endocrinology,2005,146(2):931-40.
    [13]Bouxsein M L, Rosen C J, Turner C H, et al. Generation of a new congenic mouse strain to test the relationships among serum insulin-like growth factor Ⅰ, bone mineral density, and skeletal morphology in vivo. J Bone Miner Res, 2002,17(4):570-9.
    [14]Yakar S, Rosen C J, Bouxsein M L, et al. Serum complexes of insulin-like growth factor-1 modulate skeletal integrity and carbohydrate metabolism. FASEB J,2009,23(3):709-19.
    [15]Yakar S, Canalis E, Sun H, et al. Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J Bone Miner Res, 2009,24(8):1481-92.
    [16]Elis S, Courtland H W, Wu Y, et al. Elevated serum levels of IGF-1 are sufficient to establish normal body size and skeletal properties even in the absence of tissue IGF-1. J Bone Miner Res,2010,25(6):1257-66.
    [17]Elis S, Courtland H W, Wu Y, et al. Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact. J Bone Miner Res,2010,25(9):2051-8.
    [18]Kronenberg H M. Developmental regulation of the growth plate. Nature,2003, 423(6937):332-6.
    [19]Pucci B, Adams C S, Fertala J, et al. Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase-3 activation. J Cell Physiol,2007,210(3):609-15.
    [20]Mushtaq T, Bijman P, Ahmed S F, et al. Insulin-like growth factor-I augments chondrocyte hypertrophy and reverses glucocorticoid-mediated growth retardation in fetal mice metatarsal cultures. Endocrinology,2004, 145(5):2478-86.
    [21]Govoni K E, Lee S K, Chung Y S, et al. Disruption of insulin-like growth factor-I expression in type IIalphal collagen-expressing cells reduces bone length and width in mice. Physiol Genomics,2007,30(3):354-62.
    [22]Wang Y, Cheng Z, Elalieh H Z, et al. IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. J Bone Miner Res,2011,26(7):1437-46.
    [23]Zhao G, Monier-Faugere M C, Langub M C, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice:increased trabecular bone volume without increased osteoblast proliferation. Endocrinology,2000,141(7):2674-82.
    [24]Govoni K E, Wergedal J E, Florin L, et al. Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology,2007, 148(12):5706-15.
    [25]Canalis E, Rydziel S, Delany A M, et al. Insulin-like growth factors inhibit interstitial collagenase synthesis in bone cell cultures. Endocrinology,1995, 136(4):1348-54.
    [26]Krishnan V, Bryant H U, Macdougald O A. Regulation of bone mass by Wnt signaling. J Clin Invest,2006,116(5):1202-9.
    [27]Li Y, Yu X, Lin S, et al. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun,2007, 356(3):780-4.
    [28]Nakasaki M, Yoshioka K, Miyamoto Y, et al. IGF-I secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts. Bone,2008,43(5):869-79.
    [29]Negishi-Koga T, Shinohara M, Komatsu N, et al. Suppression of boone formation by osteoclastic expression of semaphorin 4D. Nat Med,2011, 17(11):1473-80.
    [30]Park D, Spencer J A, Koh B I, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell,2012,10(3):259-72.
    [31]Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med,2012,18(7):1095-101.
    [32]Brixen K, Kassem M, Nielsen H K, et al. Short-term treatment with growth hormone stimulates osteoblastic and osteoclastic activity in osteopenic postmenopausal women:a dose response study. J Bone Miner Res,1995, 10(12):1865-74.
    [33]Takeshita S, Kaji K, Kudo A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res,2000,15(8):1477-88.
    [34]Kim K, Kim J H, Lee J, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem,2005,280(42):35209-16.
    [35]Hou P, Sato T, Hofstetter W, et al. Identification and characterization of the insulin-like growth factor I receptor in mature rabbit osteoclasts. J Bone Miner Res,1997,12(4):534-40.
    [36]Niu T, Rosen C J. The insulin-like growth factor-I gene and osteoporosis:a critical appraisal. Gene,2005,361:38-56.
    [37]Gorny G, Shaw A, Oursler M J. IL-6, LIF, and TNF-alpha regulation of GM-CSF inhibition of osteoclastogenesis in vitro. Exp Cell Res,2004, 294(1):149-58.
    [38]Wang Y, Nishida S, Elalieh H Z, et al. Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res,2006,21(9):1350-8.
    [39]Uronen-Hansson H, Allen M L, Lichtarowicz-Krynska E, et al. Growth hormone enhances proinflammatory cytokine production by monocytes in whole blood. Growth Horm IGF Res,2003,13(5):282-6.
    [40]Bernard-Poenaru O, Roux C, Blanque R, et al. Bone-resorbing cytokines from peripheral blood mononuclear cells after hormone replacement therapy:a longitudinal study. Osteoporos Int,2001,12(9):769-76.
    [41]Ueland T. GH/IGF-I and bone resorption in vivo and in vitro. Eur J Endocrinol,2005,152(3):327-32.
    [42]Yamaguchi M, Ogata N, Shinoda Y, et al. Insulin receptor substrate-1 is required for bone anabolic function of parathyroid hormone in mice. Endocrinology,2005,146(6):2620-8.
    [43]Hwa V, Oh Y, Rosenfeld R G. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev,1999,20(6):761-87.
    [44]Birnbaum R S, Wiren K M. Changes in insulin-like growth factor-binding protein expression and secretion during the proliferation, differentiation, and mineralization of primary cultures of rat osteoblasts. Endocrinology,1994, 135(1):223-30.
    [45]Canalis E, Gabbitas B. Skeletal growth factors regulate the synthesis of insulin-like growth factor binding protein-5 in bone cell cultures. J Biol Chem, 1995,270(18):10771-6.
    [46]Eckstein F, Pavicic T, Nedbal S, et al. Insulin-like growth factor-binding protein-2 (IGFBP-2) overexpression negatively regulates bone size and mass, but not density, in the absence and presence of growth hormone/IGF-I excess in transgenic mice. Anat Embryol (Berl),2002,206(1-2):139-48.
    [47]Devlin R D, Du Z, Buccilli V, et al. Transgenic mice overexpressing insulin-like growth factor binding protein-5 display transiently decreased osteoblastic function and osteopenia. Endocrinology,2002,143(10):3955-62.
    [48]Zhang M, Faugere M C, Malluche H, et al. Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation. J Bone Miner Res,2003,18(5):836-43.
    [49]Ning Y, Schuller A G, Bradshaw S, et al. Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3,-4, and-5. Mol Endocrinol,2006, 20(9):2173-86.
    [50]D'Amour P. Acute and chronic regulation of circulating PTH:significance in health and in disease. Clin Biochem,2012,45(12):964-9.
    [51]Goltzman D. Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone. Arch Biochem Biophys, 2008,473(2):218-24.
    [52]Halloran B P, Bikle D D, Harris J, et al. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading. J Bone Miner Res,1997,12(7):1068-74.
    [53]Wang Y, Nishida S, Boudignon B M, et al. IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res,2007, 22(9):1329-37.
    [54]Jilka R L, Weinstein R S, Bellido T, et al. Increased bone formatipn by prevention of osteoblast apoptosis with parathyroid hormone. J Clih Invest, 1999,104(4):439-46.
    [55]Bikle D D, Sakata T, Leary C, et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res,2002,17(9):1570-8.
    [56]Miyakoshi N, Kasukawa Y, Linkhart T A, et al. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology,2001, 142(10):4349-56.
    [57]Kobayashi T, Chung U I, Schipani E, et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development,2002,129(12):2977-86.
    [58]Javaid M K, Godfrey K M, Taylor P, et al. Umbilical venous IGF-1 concentration, neonatal bone mass, and body composition. J Bone Miner Res, 2004,19(1):56-63.
    [59]Langlois J A, Rosen C J, Visser M, et al. Association between insulin-like growth factor I and bone mineral density in older women and men:the Framingham Heart Study. J Clin Endocrinol Metab,1998,83(12):4257-62.
    [60]Garnero P, Sornay-Rendu E, Delmas P D. Low serum IGF-1 and occurrence of osteoporotic fractures in postmenopausal women. Lancet,2000, 355(9207):898-9.
    [61]Miller K K, Grinspoon S K, Ciampa J, et al. Medical findings in outpatients with anorexia nervosa. Arch Intern Med,2005,165(5):561-6.
    [62]Laron Z. Laron syndrome (primary growth hormone resistance or insensitivity):the personal experience 1958-2003. J Clin Endocrinol Metab, 2004,89(3):1031-44.
    [63]Woods K A, Camacho-Hubner C, Savage M O, et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med,1996,335(18):1363-7.
    [64]Woods K A, Camacho-Hubner C, Bergman R N, et al. Effects of insulin-like growth factor I (IGF-I) therapy on body composition and insulin resistance in IGF-I gene deletion. J Clin Endocrinol Metab,2000,85(4):1407-11.
    [65]Walenkamp M J, de Muinck Keizer-Schrama S M, de Mos M, et al. Successful long-term growth hormone therapy in a girl with haploinsufficiency of the insulin-like growth factor-I receptor due to a terminal 15q26.2->qter deletion detected by multiplex ligation probe amplification. J Clin Endocrinol Metab,2008,93(6):2421-5.
    [66]Fang P, Schwartz I D, Johnson B D, et al. Familial short stature caused by haploinsufficiency of the insulin-like growth factor i receptor due to nonsense-mediated messenger ribonucleic acid decay. J Clin Endocrinol Metab,2009,94(5):1740-7.
    [67]Ester W A, van Duyvenvoorde H A, de Wit C C, et al. Two short children born small for gestational age with insulin-like growth factor 1 receptor haploinsufficiency illustrate the heterogeneity of its phenotype. J Clin Endocrinol Metab,2009,94(12):4717-27.
    [68]Liu H, Bravata D M, Olkin I, et al. Systematic review:the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med,2007, 146(2):104-15.
    [69]Grinspoon S, Thomas L, Miller K, et al. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab,2002,87(6):2883-91.
    [70]Boonen S, Rosen C, Bouillon R, et al. Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture:a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab,2002,87(4):1593-9.
    [71]Friedlander A L, Butterfield G E, Moynihan S, et al. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab, 2001,86(4):1496-503.
    [72]Ollberding N J, Cheng I, Wilkens L R, et al. Genetic variants, prediagnostic circulating levels of insulin-like growth factors, insulin, and glucose and the risk of colorectal cancer:the Multiethnic Cohort study. Cancer Epidemiol Biomarkers Prev,2012,21(5):810-20.
    [73]Tang Y, Wu X, Lei W, et al. TGF-betal-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med, 2009,15(7):757-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700