诱导性表达Cre重组酶转基因猪的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪是研究人类疾病的理想动物模型,而Cre/loxP系统是基因打靶的主要工具,因此为了更好地研究人类各种基因功能和人类遗传疾病的发病机理、基因治疗以及药物筛选等,本研究拟构建诱导性表达Cre重组酶转基因猪动物模型,为建立条件性基因敲除猪疾病模型奠定基础。
     首先,通过PCR的方法获得构建表达载体所需各元件,通过三重融合PCR技术和T4 DNA重组酶连接技术体外连接构建载体所需要的所有相关调控元件,并与pET28a载体连接构建构了诱导性表达猪源Cre重组酶的表达载体pET28a-Mx1-Cre- BGHpo1yA-FRT2neor。然后,将其线性化转染入小型猪胎儿成纤维细胞,培养并传代,经过G418抗性筛选10天后,得到诱导性表达Cre重组酶转基因猪成纤维细胞阳性克隆。最后,将阳性细胞克隆作为核供体细胞,通过核移植技术制备诱导性表达Cre重组酶的转基因猪。
     本研究建立的诱导性表达Cre重组酶转基因猪为更好地利用Cre/loxP系统研究人类疾病奠定了基础。
In order to knock out genes of human diseases using the Cre/loxP system, we propose to generate Mx1-Cre transgenic swine, in which expression of Cre recombinase is driven by the Mx1 promoter, which is an IFN-inducible promoter expressed mainly in liver and spleen. In order to test the excision activity of the Cre recombinase, the Mx1-Cre transgenic swine line was crossed with a reporter swine line expressing green fluorescent protein (GFP). To generate Mx1-Cre transgenic swine, we constructed a transgenic vector pET28a-Mx1- Cre-BGHpo1yA-FRT2neor. The porcine 468bp Mx1 promoter was amplified from the plasmid pGL3-Mx1, which was a gift from Doctor Annabelle Decreux of Liège university. The porcine 1kb Cre cDNA was synthesized through PCR splicing in our laboratory. The 225bp BGHpolyA fragment was amplified from the vector pcDNA3.1+. The FRT2NeoR cassette was digested with 2 enzymes XholⅠand SalⅠfrom the vector pGC FRT2NeoR, which was a gift from rofessor Stefano Casola of IFOM-Fondazione Istituto FIRC di Oncologia Molecolare. We combined the above 4 fragments through SOE-PCR splicing and restriction enzyme ligation, and then linked the 4 fragments to the prokaryotic expression vector pET28a(+). The recombinant vector was designed with restriction enzymes NheI and NotI, and then the vector was transfected successfully into porcine fibroblast by lipofectamine TM2000. About 10 days after transfection, we selected successfully a monoclone and then checked Cre gene with PCR,integration sits were analyzed by hiTAIL PCR. At last we created transgenic pigs using somatic cell nuclear transfer (SCNT). Transfer of 210, 230, 250, 210, 250, 250 and 215 zygote to 7 surrogates produced 13 piglets. The Cre recombinase expression in transgenic pig is studied by RT-PCR and immunohistochemistry. Mx1-Cre swine harbouring cre gene in genomic DNA is demonstrated by PCR. In conclusion, Mx1-Cre transgenic piglets was successfully produced by SCNT. In conjunction with inducible systems for controlling Cre expression and function, these transgenic swine are likely to have a profound impact on the study of human diseases. Mx1-Cre swine should be of great value for analysis of gene function of human diseases, and to establish animal models of human disorders.
引文
[1] Swindle MM and Smith AC; Information Resources on Swine in Biomedical Research 1990-2000.
    [2] Schook, L; Beattie, C; Beever, J; Donovan, S; Jamison, R; Zuckermann, F; Niemi, S; Rothschild, M; Rutherford, M; Smith, D. Swine in biomedical research: creating the building blocks of animal models. Anim Biotechnol. 2005; 16:183–90. [PubMed]
    [3] Schook, LB; Tumbleson, ME. Advances in Swine in Biomedical Research. SpringerPublishing Corp. 2004.
    [4] Vodicka, P; Smetana, K Jr; Dvorankova, B; Emerick, T; Xu, YZ; Ourednik, J; Ourednik, V; Motlik, J. The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci. 2005; 1049:161–71. [PubMed]
    [5] Ibrahim, Z; Busch, J; Awwad, M; Wagner, R; Wells, K; Cooper, DK. Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation. 2006; 13:488–99. [PubMed]
    [6] Tuggle, CK; Wang, Y-F; Couture, O. Advances in Swine Transcriptomics. Int J BiolSci. 2007; 3:132–152.
    [7] Rothschild, MF; Hu, Z-L; Jiang, Z. Advances in QTL Mapping in Pigs. Int J Biol Sci. 2007; 3:192–197.
    [8] Shultz, LD; Ishikawa, F; Greiner, DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007; 7:118–130. [PubMed]
    [9] Turk, JR; Henderson, KK; Vanvickle, GD; Watkins, J; Laughlin, MH. Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease. IntJ Exp Pathol. 2005; 86:335–45. [PubMed]
    [10] Turk, JR; Laughlin, MH. Physical activity and atherosclerosis: which animal model?Can J Appl Physiol. 2004; 29:657–83. [PubMed]
    [11] Porcine Genomic Sequencing Initiative. Rohrer et al; www.genome.gov/Pages/Research/Sequencing/SeqProposals/PorcineSEQ021203.pdf.
    [12] Opie, SR; Dib, N. Surgical and catheter delivery of autologous myoblasts in patients with congestive heart failure. Nat Clin Pract Cardiovasc Med. 2006; 3(Suppl 1):S42–5. [PubMed]
    [13] Solan, A; Niklason, L. Age effects on vascular smooth muscle: an engineered tissue approach. Cell Transplant. 2005; 14:481–8. [PubMed]
    [14] Green, JA; Kim, JG; Whitworth, KM; Agca, C; Prather, RS. The use of microarrays to define functionally-related genes that are differentially expressed in the cyclingpig uterus. Reprod Suppl. 2006; 62:163–76. [PubMed]
    [15] Sun, QY; Nagai, T. Molecular mechanisms underlying pig oocyte maturation and fertilization. J Reprod Dev. 2003; 49:347–59. [PubMed]
    [16] Rohrer, GA; Wise, TH; Ford, JJ. Deciphering the pig genome to understand gamete production. Reprod Suppl. 2006; 62:293–301. [PubMed]
    [17] Tayade, C; Black, GP; Fang, Y; Croy, BA. Differential gene expression in endometrium, endometrial lymphocytes, and trophoblasts during successful and abortive embryo implantation. J Immunol. 2006; 176:148–56. [PubMed]
    [18] Gerrits, RJ; Lunney, JK; Johnson, LA; Pursel, VG; Kraeling, RR; Rohrer, GA; Dobrinsky, JR. A vision for artificial insemination and genomics to improve the globalswine population. Theriogenology. 2005; 63:283–299. [PubMed]
    [19] Prather, RS. Nuclear remodeling and nuclear reprogramming for making transgenicpigs by nuclear transfer. Adv Exp Med Biol. 2007; 591:1–13. [PubMed]
    [20] Strzezek, J; Wysocki, P; Kordan, W; Kuklinska, M. Proteomics of boar seminal plasma - current studies and possibility of their application in biotechnology of animal reproduction. Reprod Biol. 2005; 5:279–90. [PubMed]
    [21] Lavitrano, M; Busnelli, M; Cerrito, MG; Giovannoni, R; Manzini, S; Vargiolu, A. Sperm-mediated gene transfer. Reprod Fertil Dev. 2006; 18:19–23. [PubMed]
    [22] Foster, HA; Abeydeera, LR; Griffin, DK; Bridger, JM. Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci. 2005; 118(Pt 9):1811–20. [PubMed]
    [23] Wasilk, A; Callahan, JD; Christopher-Hennings, J; Gay, TA; Fang, Y; Dammen, M;Reos, ME; Torremorell, M; Polson, D; Mellencamp, M; Nelson, E; Nelson, WM. Detection of US, Lelystad, and European-like porcine reproductive and respiratory syndrome viruses and relative quantitation in boar semen and serum samples by real-time PCR. J Clin Microbiol. 2004; 42:4453–61. [PubMed]
    [24] Prieto, C; Castro, JM. Porcine reproductive and respiratory syndrome virus infection in the boar: a review. Theriogenology. 2005; 63:1–16. [PubMed]
    [25] Bedoya, J; Meyer, CA; Timmins, LH; Moreno, MR; Moore, JE. Effects of stent design parameters on normal artery wall mechanics. J Biomech Eng. 2006; 128:757–65. [PubMed]
    [26] Gyongyosi, M; Strehblow, C; Sperker, W; Hevesi, A; Garamvolgyi, R; Petrasi, Z; Pavo, N; Ferdinandy, P; Csonka, C; Csont, T; Sylven, C; Declerck, PJ; Pavo, I Jr; Wojta, J; Glogar, D; Huber, K. Platelet activation and high tissue factor level predict acute stent thrombosis in pig coronary arteries: prothrombogenic response of drug-eluting or bare stent implantation within the first 24 hours. Thromb Haemost. 2006;96:202–9. [PubMed]
    [27] Ambrose, JA. Myocardial ischemia and infarction. J Am Coll Cardiol. 2006; 47(11Suppl):D13–7. [PubMed]
    [28] Boluyt, MO; Cirrincione, GM; Loyd, AM; Korzick, DH; Parker, JL; Laughlin, MH.Effects of gradual coronary artery occlusion and exercise training on gene expression in swine heart. Mol Cell Biochem. 2007; 294:87–96. [PubMed]
    [29] Laske, TG; Skadsberg, ND; Iaizzo, PA. A novel ex vivo heart model for the assessment of cardiac pacing systems. J Biomech Eng. 2005; 127:894–8. [PubMed]
    [30] Casas, F; Alam, H; Reeves, A; Chen, Z; Smith, WA. A portable cardiopulmonary bypass/extracorporeal membrane oxygenation system for the induction and reversal of profound hypothermia: feasibility study in a Swine model of lethal injuries. Artif Organs. 2005; 29:557–63. [PubMed]
    [31] Geddes, LA; Roeder, RA; Rundell, AE; Otlewski, MP; Kemeny, AE; Lottes, AE. The natural biochemical changes during ventricular fibrillation with cardiopulmonaryresuscitation and the onset of postdefibrillation pulseless electrical activity. Am J Emerg Med. 2006; 24:577–81. [PubMed]
    [32] Larsen, MO; Rolin, B. Use of the Gottingen minipig as a model of diabetes, withspecial focus on type 1 diabetes research. ILAR J. 2004; 45:303–13. [PubMed]
    [33] Street, CN; Sipione, S; Helms, L; Binette, T; Rajotte, RV; Bleackley, RC; Korbutt,GS. Stem cell-based approaches to solving the problem of tissue supply for islet transplantation in type 1 diabetes. Int J Biochem Cell Biol. 2004; 36:667–83. [PubMed]
    [34] Cooper, DK; Gollackner, B; Sachs, DH. Will the pig solve the transplantation backlog? Annu Rev Med. 2002; 53:133–47. [PubMed]
    [35] Tseng, YL; Sachs, DH; Cooper, DK. Porcine hematopoietic progenitor cell transplantation in nonhuman primates: a review of progress. Transplantation. 2005; 79:1–9. [PubMed]
    [36] Simon, GA; Maibach, HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations--an overview. Skin Pharmacol Appl Skin Physiol. 2000; 13:229–34. [PubMed]
    [37] Dalton, CH; Hattersley, IJ; Rutter, SJ; Chilcott, RP. Absorption of the nerve agent VX (O-ethyl-S-[2(di-isopropylamino) ethyl] methyl phosphonothioate) through pig, human and guinea pig skin in vitro. Toxicol In Vitro. 2006; 20:1532–6. [PubMed]
    [38] Stuetz, A; Baumann, K; Grassberger, M; Wolff, K; Meingassner, JG. Discovery of topical calcineurin inhibitors and pharmacological profile of pimecrolimus. Int Arch Allergy Immunol. 2006; 141:199–212. [PubMed]
    [39] Huang, YC; Wang, TW; Sun, JS; Lin, FH. Epidermal morphogenesis in an in-vitromodel using a fibroblasts-embedded collagen scaffold. J Biomed Sci. 2006; 12:855–67. [PubMed]
    [40] Geffrotin, C; Crechet, F; Le Roy, P; Le Chalony, C; Leplat, JJ; Iannuccelli, N; Barbosa, A; Renard, C; Gruand, J; Milan, D; Horak, V; Tricaud, Y; Bouet, S; Franck,M; Frelat, G; Vincent-Naulleau, S. Identification of five chromosomal regions involved in predisposition to melanoma by genome-wide scan in the MeLiM swine model. Int J Cancer. 2004; 110:39–50. [PubMed]
    [41] Zhi-Qiang, D; Silvia, VN; Gilbert, H; Vignoles, F; Créchet, F; Shimogiri, T; Yasue,H; Leplat, JJ; Bouet, S; Gruand, J; Horak, V; Milan, D; Le Roy, P; Geffrotin, C.Detection of novel quantitative trait loci for cutaneous melanoma by genome-wide scan in the MeLiM swine model. Int J Cancer. 2007; 120:303–20. [PubMed]
    [42] Imai, H; Konno, K; Nakamura, M; Shimizu, T; Kubota, C; Seki, K; Honda, F; Tomizawa, S; Tanaka, Y; Hata, H; Saito, N. A new model of focal cerebral ischemia in the miniature pig. J Neurosurg. 2006; 104(2 Suppl):123–32. [PubMed]
    [43] Tambuyzer, BR; Nouwen, EJ. Inhibition of microglia multinucleated giant cell formation and induction of differentiation by GM-CSF using a porcine in vitro model. Cytokine. 2005; 31:270–9. [PubMed]
    [44] Minuzzi, L; Nomikos, GG; Wade, MR; Jensen, SB; Olsen, AK; Cumming, P. Interaction between LSD and dopamine D2/3 binding sites in pig brain. Synapse. 2005; 56:198–204. [PubMed]
    [45] Eubanks, DL; Cooper, R; Boring, JG. Surgical technique for long-term cecal cannulation in the Yucatan minipig (Sus scrofa domestica). J Am Assoc Lab Anim Sci. 2006; 45:52–6. [PubMed]
    [46] Qiu, H; Xia, T; Chen, X; Zhao, X; Gan, L; Feng, S; Lei, T; Yang, Z. Cloning, comparative characterization of porcine SCAP gene, and identification of its two splice variants. Mol Genet Genomics. 2006; 276:187–96. [PubMed]
    [47] Brambilla, G; Cantafora, A. Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve thebasic knowledge of human obesity. Ann Ist Super Sanita. 2004; 40:241–4. [PubMed]
    [48] Reid, G; Sanders, ME; Gaskins, HR; Gibson, GR; Mercenier, A; Rastall, R; Roberfroid, M; Rowland, I; Cherbut, C; Klaenhammer, TR. New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol. 2003; 37:105–18. [PubMed]
    [49] Domeneghini, C; Di Giancamillo, A; Arrighi, S; Bosi, G. Gut-trophic feed additives and their effects upon the gut structure and intestinal metabolism. State of the artin the pig, and perspectives towards humans. Histol Histopathol. 2006; 21:273–83. [PubMed]
    [50] Bailey, M; Haverson, K; Inman, C; Harris, C; Jones, P; Corfield, G; Miller, B; Stokes, C. The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc Nutr Soc. 2005; 64:451–7. [PubMed]
    [51] McClain, S; Bannon, GA. Animal models of food allergy: opportunities and barriers. Curr Allergy Asthma Rep. 2006; 6:141–4. [PubMed]
    [52] Schmitt, KU; Snedeker, JG. Analysis of the biomechanical response of kidneys under blunt impact. Traffic Inj Prev. 2006; 7:171–81. [PubMed]
    [53] Ellner, SJ; Mendez, J; Vera, DR; Hoh, CK; Ashburn, WL; Wallace, AM. Sentinel lymph node mapping of the colon and stomach using lymphoseek in a pig model. Ann Surg Oncol. 2004; 11:674–81. [PubMed]
    [54] Goldberg, BB; Merton, DA; Liu, JB; Thakur, M; Murphy, GF; Needleman, L; Tornes, A; Forsberg, F. Sentinel lymph nodes in a swine model with melanoma: contrast-enhanced lymphatic ultrasonography [US]. Radiology. 2004; 230:727–34. [PubMed]
    [55] Teo, JC; Si-Hoe, KM; Keh, JE; Teoh, SH. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech (Bristol, Avon). 2006; 21:235–44.
    [56] Chang, CH; Kuo, TF; Lin, CC; Chou, CH; Chen, KH; Lin, FH; Liu, HC. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials. 2006; 27:1876–88. [PubMed]
    [57] Drespe, IH; Polzhofer, GK; Turner, AS; Grauer, JN. Animal models for spinal fusion. Spine J. 2005; 5(6 Suppl):209S–216S. [PubMed]
    [58] Kawashita, Y; Fujioka, H; Ohtsuru, A; Kaneda, Y; Kamohara, Y; Kawazoe, Y; Yamashita, S; Kanematsu, T. The efficacy and safety of gene transfer into the porcineliver in vivo by HVJ (Sendai virus) liposome. Transplantation. 2005; 80:1623–9. [PubMed]
    [59] Lassota, N; Kiilgaard, JF; Prause, JU; la Cour, M. Correlation between clinical and histological features in a pig model of choroidal neovascularization. Graefes ArchClin Exp Ophthalmol. 2006; 244:394–8. [PubMed]
    [60] van Kooten, TG; Koopmans, S; Terwee, T; Norrby, S; Hooymans, JM; Busscher, HJ. Development of an accommodating intra-ocular lens--in vitro prevention of re-growth of pig and rabbit lens capsule epithelial cells. Biomaterials. 2006; 27:5554–60.[PubMed]
    [61] Moroni, L; Poort, G; Van Keulen, F; de Wijn, JR; van Blitterswijk, CA. Dynamicmechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: an experimental and numerical analysis. J Biomed Mater Res A. 2006; 78:605–14. [PubMed]
    [62] Brown, AL; Srokowski, EM; Shu, XZ; Prestwich, GD; Woodhouse, KA. Development of a model bladder extracellular matrix combining disulfide cross-linked hyaluronan with decellularized bladder tissue. Macromol Biosci. 2006; 6:648–57. [PubMed]
    [63] Hu, JC; Yamakoshi, Y; Yamakoshi, F; Krebsbach, PH; Simmer, JP. Proteomics andgenetics of dental enamel. Cells Tissues Organs. 2005; 181:219–31. [PubMed]
    [64] Miller, TL; Touch, SM; Shaffer, TH. Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression profiles in tracheal aspirates do not adequately reflect tracheal or lung tissue profiles in neonatal respiratory distress: observationsfrom an animal model. Pediatr Crit Care Med. 2006; 7:63–9. [PubMed]
    [65] Perlman, CE; Cook, KE; Seipelt, JR; Mavroudis, JC; Backer, JC; Mockros, LF. Invivo hemodynamic responses to thoracic artificial lung attachment. ASAIO J. 2005;51:412–25. [PubMed]
    [66] Turner, DJ; Noble, PB; Lucas, MP; Mitchell, HW. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs. J Appl Physiol. 2002; 93:1296–300. [PubMed]
    [67] Watremez, C; Roeseler, J; De Kock, M; Clerbaux, T; Detry, B; Veriter, C; Reynaert, M; Gianello, P; Jolliet, P; Liistro, G. An improved porcine model of stable methacholine-induced bronchospasm. Intensive Care Med. 2003; 29:119–25. [PubMed]
    [68] Cheetham, S; Souza, M; Meulia, T; Grimes, S; Han, MG; Saif, LJ. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol. 2006; 80:10372–81. [PubMed]
    [69] Gonzalez, AM; Nguyen, TV; Azevedo, MS; Jeong, K; Agarib, F; Iosef, C; Chang,K; Lovgren-Bengtsson, K; Morein, B; Saif, LJ. Antibody responses to human rotavirus (HRV) in gnotobiotic pigs following a new prime/boost vaccine strategy using oral attenuated HRV priming and intranasal VP2/6 rotavirus-like particle (VLP) boosting with ISCOM. Clin Exp Immunol. 2004; 135:361–72. [PubMed]
    [70] Hasslung, F; Wallgren, P; Ladekjaer-Hansen, AS. et al. Experimental reproductionof postweaning multisystemic wasting syndrome (PMWS) in pigs in Sweden and Denmark with a Swedish isolate of porcine circovirus type 2. Vet Microbiol. 2005; 106:49–60. [PubMed]
    [71] Butler, JE; Sinkora, M; Wertz, N; Holtmeier, W; Lemke, CD. Development of theneonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology. Vet Res. 2006; 37:417–41. [PubMed]
    [72] Elahi, S; Brownlie, R; Korzeniowski, J. et al. Infection of newborn piglets with Bordetella pertussis: a new model for pertussis. Infect Immun. 2005; 73:3636–45. [PubMed]
    [73] Pomeranz, LE; Reynolds, AE; Hengartner, CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev. 2005; 69:462–500. [PubMed]
    [74] Dawson, HD; Beshah, E; Nishi, S; Solano-Aguilar, G; Morimoto, M; Zhao, A; Madden, KB; Ledbetter, TK; Dubey, JP; Shea-Donohue, T; Lunney, JK; Urban, JF Jr. Localized multi-gene expression patterns support an evolving Th1/Th2-like paradigmin response to infections with Toxoplasma gondii and Ascaris suum in pigs. Infection and Immunity. 2005; 73:1116–1128. [PubMed]
    [75] Dvorak, CM; Hirsch, GN; Hyland, KA; Hendrickson, JA; Thompson, BS; Rutherford, MS; Murtaugh, MP. Genomic dissection of mucosal immunobiology in the porcine small intestine. Physiol Genomics. 2006; 28:5–14. [PubMed]
    [76] Houdebine, LM. Use of transgenic animals to improve human health and animal production. Reprod Domest Anim. 2005; 40:269–81. [PubMed]
    [77] Hammamieh, R; Bi, S; Das, R; Neill, R; Jett, M. Modeling of SEB-induced host gene expression to correlate in vitro to in vivo responses. Biosens Bioelectron. 2004; 20:719–27. [PubMed]
    [78] Perez, J; Garcia, PM; Bautista, MJ; Millan, Y; Ordas, J; Martin de las Mulas, J. Immunohistochemical characterization of tumor cells and inflammatory infiltrate associated with cutaneous melanocytic tumors of Duroc and Iberian swine. Vet Pathol. 2002; 39:445–51. [PubMed]
    [79] Apiou, F; Vincent-Naulleau, S; Spatz, A; Vielh, P; Geffrotin, C; Frelat, G; Dutrillaux, B; Le Chalony, C. Comparative genomic hybridization analysis of hereditary swine cutaneous melanoma revealed loss of the swine 13q36-49 chromosomal region in the nodular melanoma subtype. Int J Cancer. 2004; 110:232–8. [PubMed]
    [80] Tissot, RG; Beattie, CW; Amoss, MS Jr. The swine leucocyte antigen (SLA) complex and Sinclair swine cutaneous malignant melanoma. Anim Genet. 1989; 20:51–7.[PubMed]
    [81] Blangero, J; Tissot, RG; Beattie, CW; Amoss, MS Jr. Genetic determinants of cutaneous malignant melanoma in Sinclair swine. Br J Cancer. 1996; 73:667–71. [PubMed]
    [82] Zhao, S-H; Kuhar, D; Lunney, JK; Dawson, HD; Guidry, C; Uthe, J; Bearson, S; Recknor, J; Nettleton, D; Tuggle, CK. Gene expression profiling in Salmonella Choleraesuis infected porcine lung using a long oligonucleotide microarray. Mammalian Genome. 2006; 17:777–789. [PubMed]
    [83] Andersson, L; Georges, M. Domestic-animal genomics: deciphering the genetics ofcomplex traits. Nat Rev Genet. 2004; 5:202–12. [PubMed]
    [84] Neumann, EJ; Kliebenstein, JB; Johnson, CD; Mabry, JW; Bush, EJ; Seitzinger, AH; Green, AL; Zimmerman, JJ. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the US. J Am Vet Med Assoc. 2005; 227:385–92. [PubMed]
    [85] Miller, LC; Fox, JM. Apoptosis and porcine reproductive and respiratory syndromevirus. Vet Immunol Immunopathol. 2004; 102:131–42. [PubMed]
    [86] Wang, C; Hawken, RJ; Larson, E; Zhang, X; Alexander, L; Rutherford, MS. Generation and mapping of expressed sequence tags from virus-infected swine macrophages. Anim Biotechnol. 2001; 12:51–67. [PubMed]
    [87] Vincent, AL; Thacker, BJ; Halbur, PG; Rothschild, MF; Thacker, EL. An investigation of susceptibility to porcine reproductive and respiratory syndrome virus betweentwo genetically diverse commercial lines of pigs. J. Anim. Sci. 2006; 84:49–57. [PubMed]
    [88] Royaee, AR; Husmann, R; Dawson, HD; Calzada-Nova, G; Schnitzlein, WM; Zuckermann, F; Lunney, JK. Deciphering the involvement of innate immune factors in the development of the host responses to PRRSV vaccination. Vet. Immunol. Immunopathol. 2004; 102:199–216. [PubMed]
    [89] Petry, DB; Holl, JW; Weber, JS; Doster, AR; Osorio, FA; Johnson, RK. Biologicalresponses to porcine respiratory and reproductive syndrome virus in pigs of two genetic populations. J Anim Sci. 2005; 83:1494–1502. [PubMed]
    [90] Clark KJ, Carlson DF, Fahrenkrug SC.Pigs taking wing with transposons and recombinases.Genome Biol. 2007; 8 Suppl 1:S13.
    [91] Chung HK, Lee JH, Kim SH, Chae C. Expression of interferon-alpha and Mx1 protein in pigs acutely infected with porcine reproductive and respiratory syndrome virus (PRRSV). J Comp Pathol. 2004 May; 130(4):299-305.
    [92] Morozumi T, Sumantri C, Nakajima E, Kobayashi E, Asano A, Oishi T, Mitsuhashi T, Watanabe T, Hamasima N.Three types of polymorphisms in exon 14 in porcine Mx1 gene.Biochem Genet. 2001 Aug; 39(7-8):251-60.
    [93] Thomas AV, Palm M, Broers AD, Zezafoun H, Desmecht DJ.Genomic structure, promoter analysis, and expression of the porcine (Sus scrofa) Mx1 gene.Immunogenetics. 2006 Jun; 58(5-6):383-9.
    [94] Kühn R, Schwenk F, Aguet M, Rajewsky K.Inducible gene targeting in mice.Science. 1995 Sep 8; 269(5229):1427-9.
    [95] Ellinwood NM,Mc Cue JM,Gordy P V,et al.Cloning and characterization of cDNAsfor bovine Mx protein.J Interferon Cytokine Res,1998,18(9)∶745
    [96] Chesters PM,Steele M,Purewal A,et al.Nucleotide sequence of equine MxA cDNA.seq 1997, 7(3-4)∶239
    [97] Bazzigher L,Schwarz A,staehll P,et al.No enhanced influenza virus resistance of murine and avian cells expressing cloned dnck Mx protein.Virology,1993,195(1)∶100
    [98] Kochs G,Haller O.Interferon-indueed human MxA GTPase blocks nuclear import ofThogoto virus nucleocapsids.Proc Natl A cad Sci USA,1999,96(5)∶2082
    [99] Weber,F Haller O,Kochs G.MxA GTPase Blocks reporter gene expression of reconstituted Thogoto virus ribonueleoprotein complexes.J virol,2000,74(1)∶560
    [100] Kocks G,Haller O.GTP-blound Human MxA Interacts with the nucleocapside of Thogoto virus (cortho my xo viridae).J Biol chem,1999,274(7)∶4370
    [101] Schwennle M,Richter M F,Herrmann C,et al.Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein.J Biol chem,1995,270(22)∶13518
    [102] Hefti HP,Frese M,Landis H,et al.Human MxA protein protects lacking a functionalα/βIFN system against La erosse virus and other lethal viral infections.J virol,1999,73(8)∶6984
    [103] Schwemmle M,weining KC,Richter MF,et al.Vesicular stomatitis virus transcription inhibited by purified MxA protein.Virology,1995,206(1)∶545
    [104] Xiao ZG, Lu CY, Cao D.[Study of toxicity of iodophor,glutaradehyde and chlorhexidine to L929 Cells.]Shanghai Kou Qiang Yi Xue. 1995 Jun;4(2):90-1.
    [105] Chung HK, Lee JH, Kim SH, Chae C. Expression of interferon-alpha and Mx1 protein in pigs acutely infected with porcine reproductive and respiratory syndrome virus (PRRSV). J Comp Pathol. 2004 May; 130(4):299-305.
    [106] Tomita S, Sinal CJ, Yim SH, Gonzalez FJ.Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1alpha.Mol Endocrinol. 2000 Oct; 14(10):1674-81.
    [107] Raffai RL, Weisgraber KH.Hypomorphic apolipoprotein E mice: a new model ofconditional gene repair to examine apolipoprotein E-mediated metabolism.J Biol Chem. 2002 Mar 29; 277(13):11064-8.
    [108] Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, Hamilton RL, Fisher EA, Young SG.Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion.Circulation. 2003 Mar 11; 107(9):1315-21.
    [109] Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS, Wang E, Kogan SC, Le Beau MM, Parada L, Shannon KM.Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder.Blood. 2004 Jun 1; 103(11):4243-50.
    [110] Wells CM, Walmsley M, Ooi S, Tybulewicz V, Ridley AJ.Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration.J Cell Sci. 2004 Mar 1;117(Pt 7):1259-68.
    [111] Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ, Lee JD.Targeted deletion of fII in adult mice perturbs vascular integrity and leads to endothelial failure.J Clin Invest. 2004 Apr; 113(8):1138-48.
    [112] Hayashi M, Fearns C, Eliceiri B, Yang Y, Lee JD.Big mitogen-activated protein kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis.Cancer Res. 2005 Sep 1;65(17):7699-706.
    [113] Mullins ES, Kombrinck KW, Talmage KE, Shaw MA, Witte DP, Ullman JM, Degen SJ, Sun W, Flick MJ, Degen JL.Genetic elimination of prothrombin in adult mice is not compatible with survival and results in spontaneous hemorrhagic eventsin both heart and brain.Blood. 2008 Oct 16. [Epub ahead of print]PMID: 18927430 [PubMed - as supplied by publisher]
    [114] Skogsberg J, Lundstr?m J, Kovacs A, Nilsson R, Noori P, Maleki S, K?hler M,Hamsten A, Tegnér J, Bj?rkegren J.Transcriptional profiling uncovers a network ofcholesterol-responsive atherosclerosis target genes.PLoS Genet. 2008 Mar 14;4(3):e1000036.PMID: 18369455 [PubMed - indexed for MEDLINE]
    [115] Torchia EC, Boyd K, Rehg JE, Qu C, Baker SJ.EWS/FLI-1 induces rapid onsetof myeloid/erythroid leukemia in mice.Mol Cell Biol. 2007 Nov;27(22):7918-34. Epub 2007 Sep 17.PMID: 17875932 [PubMed - indexed for MEDLINE]
    [116] TORRES RM, KUHN R. Laboratory protocols for conditional gene targeting [M]. Oxford: Oxford University Press, 1997.
    [117] GINGRICH J R ,RODER J . Inducible gene expression in the nervous system of transgenic mice [J]. Annu Rev Neurosci, 1998, 21: 3772405.
    [118]王力华,付士红,唐青等.三重融合PCR法构建感染性辛德毕斯嵌合体病毒cDNA克隆.病毒学报,2006,22(2):108-113
    [119] Hyun S,Lee G,Kim D,et al. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod,2003,69(3):1060-1068.
    [120] Yao-Guang Liu, Y. C. (2007). "High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences." Biotechniques. 43: 649-656.
    [121] Lai L,Tao-T,Machaty Z,et al.Feasibility of producing porcine nuclear transfer embryos by usingG2/M-stage fetal fibroblasts as donors. Biol Reprod,2001,65(5):1558-64.
    [122] Polejaeva I.A,Chen S.H,Vaught T.D,et al.Cloned pigs produced by nuclear transfer from adult somatic cells.Nature,2000,407:505-509.
    [123] Gabbine Wee D-BK, Bong-seok Song, JI-SU KIM, et al. Inheritable Histone H4 Acetylation of Somatic Chromatins in Cloned Embryos[J]. The journal of biological chemistry, 2006, 281: 6048–6057.
    [124] Thu kl VE, Kennett JY, Heryet C,et al.. Methylated DNA immunoprecipitation [J]. J Vis Exp, 2009.
    [125] Reik W DW. DNA methylation and mammalian epigenetics.[J]. Electrophoresis, 2001, 22 (14): 2838-2843
    [126] Santenard A T-PM. Epigenetic reprogramming in mammalian reproduction: Contribution from histone variants.[J]. Epigenetics, 2009, 4 (2).
    [127] Kang YK KD, Park JS, Choi YH, et al. Aberrant methylation of donor genomein cloned bovine embryos[J]. Nat Genet 2001, 28 (2): 173-177.
    [128] Dean W SF, Stojkovic M, Zakhartchenko V, et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.[J]. Proc Natl Acad Sci U S A, 2001 98 (24): 13734-13738.
    [129] Bourc'his D LBD, Patin D, Niveleau A, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J]. Curr Biol,2001, 11 (19): 1542-1546.
    [130] Beaujean N TJ, Gardner J, Wilmut I, et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer.[J]. BiolReprod, 2004, 71 (1): 185-193.
    [131] Chen T ZY, Jiang Y, Liu SZ, et al. The DNA methylation events in normal andcloned rabbit embryos.[J]. FEBS Lett, 2004 578 (1-2): 69-72.
    [132] Ghanem ME NT, Nishibori M. Deficiency of uridine monophosphate synthase (DUMPS) and X-chromosome deletion in fetal mummification in cattle.[J]. Anim Reprod Sci, 2006, 91 (1-2): 45-54.
    [133]廖德惠,谢镜怀,张敏.干扰素诱导剂——聚肌胞(polyi:c)在兔体和猪体内抑制猪瘟病毒增殖的试验.《中国预防兽医学报》1981年03期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700