极细链格孢菌HOG1、PBS2基因克隆及功能初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
链格孢菌既是一类重要植物病原真菌,又是具有应用前景的生物资源。从分子水平研究该类菌的功能基因的调控机制,对进一步开发利用该菌具有重要意义。HOG途径参与诱导胁迫反应基因的表达、细胞形态恢复、信息素反应途径的阻遏及致病性等过程。Hog1p和Pbs2p蛋白激酶在细胞壁结构完整性、孢子分化、菌丝形成和浸入生长以及高渗透压甘油形成过程中起到重要作用。本研究通过运用基于λ噬菌体特异位点重组反应Gateway~(?)系统构建极细链格孢菌(Alternaria tenuissima)cDNA表达文库。通过遗传学手段,我们筛选获得了极细链格孢菌(A.tenuissima)AtHOG1及AtPBS2基因,并且研究了AtHOG1及AtPBS2基因的功能。建立了以抗性基因作为选择标记的技术体系,利用DNA同源重组技术,成功构建了用于敲除极细链格孢菌(A.tenuissima)AtHOG1及AtPBS2基因的质粒,为进一步研究AtHOG1及AtPBS2基因的功能奠定了坚实的基础,主要研究结果如下:
     1、链格孢属(Alternaria Nees)真菌是一类庞大的,难以进行形态鉴定的常见真菌。为了进一步确定本试验所用菌种的分类地位,本文成功克隆了rDNA基因。通过序列比对,构建了7个相似菌株的系统发育树,发现该菌株与极细链格孢菌(A.tenuissima)相应的rDNA高度同源,因此将链格孢菌JH505菌株定名为极细链格孢菌(A.tenuissima)。
     2、构建了含有attL1及attL2重组位点的重组表达质粒(pRS-DEST42),使用Gateway~(?) LR重组技术与入门文库发生特异重组交换而构建表达文库。经检测,表达文库的平均滴度为2.44x10~6(cfu/ml),文库总容量为2.44x10~7。阳性克性率为100%,平均插入片段大约为1381 bp左右。通过对阳性克隆测序结果的分析,cDNA序列完整。
     3、从7.62x10~5个极细链格孢菌(A.tenuissima)cDNA表达文库酵母转化子中筛选获得了12个能使酵母hog1基因缺失突变株在YEPD+1MNaCl中生长且含有极细链格孢菌(A.tenuissima)cDNA表达文库质粒的转化子。这些基因编码的蛋白质序列均与酵母HOG1(ScHOG1)基因编码的355个氨基酸同源,命名为AtHOG1,其编码的蛋白质命名为AtHog1p,该基因编码的蛋白与稻瘟菌MG01822.4蛋白、黑粉菌UM02357.1蛋白、禾谷镰刀菌FG09612.1蛋白及酿酒酵母ScHog1p蛋白的相似性分别为96%、92%、90%和88%。序列比对结果显示,酵母ScHog1p蛋白的催化结构域与其同源蛋白具高度保守,而且三个催化位点及赖氨酸残基均位于ATP结合域内,说明Hog1p蛋白在丝状真菌中是高度保守的。
     4、从1.56×10~5个转化子中最终分离而获得了1个能使酵母pbs2缺失突变株在高盐环境下生长的表达文库质粒。该基因全长2,492 bp,编码683个氨基酸。与酵母ScPbs2p蛋白具有42.6%的同源性,命名为AtPBS2,其编码的氨基酸为AtPbs2p。AtPbs2p与烟曲霉XP_752961、稻瘟菌XP_366048及禾谷镰刀菌XP_388867同源序列分别具有55.3%、50.2%和48.6%的相似性。ScPbs2p的催化结构域在丝状真菌也是高度保守的。
     5、通过对极细链格孢菌(A.tenuissima)cDNA表达文库的筛选,获得能使酿酒酵母HOG1及PBS2基因缺失突变株具有对抗盐胁迫反应的质粒,通过对AtHOG1及AtPBS2基因在酵母突变菌株中的再次功能验证,发现AtHOG1及AtPBS2基因分别发挥了HOG通路途径的HOG1及PBS2基因的功能,即在盐胁迫条件下体现出与ScHog1p及ScPbs2p蛋白相同的功能,使酵母缺失突变株在高盐环境中生长。
     6、基于极细链格孢菌(A.tenuissima)在含有G418(100μg/ml)和潮霉素(Hygromycin B)(100μg/ml)的PDA培养基上不能生长的药物敏感性实验结果,建立了用G418抗性基因及潮霉素(Hygromycin B)抗性基因作为选择标记的技术体系,从而为研究极细链格孢菌(A.tenuissima)功能基因的敲除、缺失突变株鉴定提供了可靠的筛选标记,并为后续研究打下必要的基础。
     7、利用同源重组技术,分别选择以AtHOG1及AtPBS2基因上下游同源序列约500 bp作为同源臂,上游同源序列3’端连接G418抗性基因,以保证缺失突变株的检测及鉴定。成功构建了用于敲除极细链格孢菌(A.tenuissima)AtHOG1及AtPBS2基因的质粒,为在极细链格孢菌(A.tenuissima)中敲除AtHOG1及AtPBS2基因奠定了坚实的基础,为进一步研究链格孢菌(A.tenuissima)AtHOG1及AtPBS2基因的功能及作用机理提供了重要的试验材料和工具。
The high osmolarity and glycerol (HOG) pathway in eukaryotes involves in many processes, suchas expression and regulation of genes induced by drought stress、cell morphology、repression of sexpheromone response and pathogenicity. In this study, we constructed a Alternaria tenuissima cDNAexpression library based on the integrase-excisionase system of bacteriophageλ, screened the library,and identified and characterized the A.tenuissima AtHOG1 and AtPBS2 genes. In addition, weestablished that resistant genes for G418 and hygromycin B could be used as selection markers fordisruption of genes in A. tenuissima. Furthermore, we constructed plasmids for knocking out AtHOG1and AtPBS2 genes using DNA recombination technique, which would provide a basis for further studyon functions of AtHOG1 and AtPBS2 genes. The main results obtained in this study are as fellows:
     1, The genus Alternaria contains ubiquitous, saprophyte molds, which are difficult for speciesidentification base on morphology. The morphology of the Alternaria sp. strain JH505 isolated in ourlab is similar to that of A. radicina、A. brassicae、A. solani and A. brassicicola. In order to furtherconfirm taxonomic status of Alternaria strain JH505, the rDNA ITS sequence was PCR-amplified fromthe strain. GenBank Database Blast Search and phylogeny tree analysis results indicated that it is astrain ofA. tenuissima.
     2, A destination vector pRS-DEST42 containing attL1 and attL2 recombination sites wasconstructed. The entry cDNA library of A. tenuissima was transferred into the yeast destination vectorpRS-DEST42 through the LR recombination reaction with the Gateway~(?) LR Clonase enzyme mixture.As a result, the cDNA expression library has a titer of 2.44×10~6 (cfu/ml) and a total clones of 2.44×10~7.The rate of positive recombinants clones was 100% and the size of average insert cDNA was 1.38 kb.
     3, Twelve transformants of the yeast hog1 mutant could grow on YPD plates containing 1M NaCland contained cDNA clones. DNA sequencing indicated that the 12 cDNA inserts contained the sameopen reading frame encoding the A. tenuissima homologue of ScHOG1 (AtHOG1) with 355 amino acidsin length. AtHoglp shows 96%, 92%, 90% and 88% identities in the amino acid sequence with thehypothetical proteins MG01822.4 (Magnaporthe grisea), UM02357.1 (Ustilago maydis), FG09612.1(Fusarium graminearum), and ScHoglp of S. cerevisiae, respectively. The catalytic domain in ScHoglpis highly conserved in its homologous proteins, and the three catalytic sites as well as the lysine residueinvolved in the ATP-binding in ScHoglp are also present in its homologues. These observations suggestthat Hoglp is highly conserved in these filamentous fungi.
     4, From 1.6×10~5 library cDNA transformants we isolated one cDNA clone that could complementthe salt sensitivity of the yeast pbs2 mutant. The cDNA insert was sequenced to have a size of 2,492 bpin length, which encodes a protein of 683 amino acids with 42.6% sequence identity to that of ScPbs2p,which indicates this cDNA sequence encodes the A. tenuissima AtPbs2p. AtPbs2p also shows 55.3%,50.2% and 48.6% sequence identities with its sequence homologues of Aspergillus fumigatus (XP_752961), Magnaporth grisea (XP_366048) and F. graminearum (XP_388867), respectively. Thekinase catalytic domain of ScPbs2p was conserved in its homologues of those filamentous fungi.
     5, Our study indicates that A. tenuissima could grow on YPD plates containing 1M NaCl. PlasmidcDNA from positive transformants were then individually reintroduced back to the hog1 and pbs2mutant to confirm their sodium-tolerance phenotypes, respectively. As a result, we confirmed that alltransformants contained cDNA clones conferring the sodium-tolerance phenotypes in the yeast hog1and pbs2 mutant. AtHOG1 and AtPBS2 genes complement the functions of ScHOG1 and ScPbs2p insodium tolerance, respectively.
     6, Drug sensitivity tests indicates that A. tenuissima could not grow on YPD plates containingG418(100μg/ml) and Hygromycin B(100μg/ml) in this study, so we established that resistant genes forG418 and Hygromycin B could be used as selection markers for transformation ofA. tenuissima.
     7, We constructed recombinant vectors for knocking out AtHOG1 and AtPBS2 genes through DNArecombination, which contains about 500 bp upstream and downstream DNA fragments of AtHOG1 andAtPBS2 genes with the G418 resisitence gene inserted between them. This provides a basis for furtherstudy on functions of these genes in A. tenuissima.
引文
1.常缨,王义权,强胜.链格孢菌菌株致病性及其遗传差异性[J].应用与环境微生物物学报,2005,11(4):486—489.
    2.陈伟群,张天宇.十字花科植物上的链格孢属真菌同土酶凝胶电泳分析.真菌学报,1994.13(4):295—302.
    3.陈伟群.链格孢及其相似属代表种的分子系统学研究.西北农业大学博士论文,1997.
    4.董汉松.植物诱导抗病性原理和研究.北京:科学出版社.1995.
    5.董金皋,樊慕贞,杨如英.芸苔链格孢菌种内和种间的酯酶同工酶比较[J].植物病理学报,1997,27(2):167-173.
    6.董金皋,李树正.植物病原菌毒素研究进展[C].北京:中国科学技术出版社.1997,10—11;32—49;158—163;210—213;222—226.
    7.范永山,刘颖超,谷守芹,桂秀梅,董金皋.植物病原真菌的MAPK基因及其功能.微生物学报,2004,44(4):547—551.
    8.格利克B R,汤普森J E主编,植物分子生物学及生物技术的实用方法,1999,重庆:重庆出版社.
    9.龚小卫,姜勇.丝裂原活化白激酶(MAPK)生物学功能的结构基础.中国生物化与分子生物学报,2003,19(1):5—11.
    10.黄世文,余柳青,Alan K,Watson.影响链格抱菌生长及产抱的因子.中国生物防治,2001,17(1):16—19.
    11.姜勇,龚小卫.MAPK信号转导通路对炎症反应的调控[J].生理学报,2000,52(4):267—271.
    12.李多川,张大宇,吴竞爽.链格抱(AltrrnaHa)真菌微机鉴定系统的组建与应用.西北农业学报,1992,1(2):33—38.
    13.李多川等.链格抱属(丝孢纲)数值分类研究初探.真菌学报,1993,12(3):239—246.
    14.李凤琴.链格孢毒素及其食品卫生问题综述.中国食品卫生杂志,2001,13(6):45—49.
    15.李晖.稻瘟菌诱导性水稻蛋白激酶基因的cDNA克隆及其功能研究[D].中国农业大学博士论文,2002.
    16.李树正,岳东霞,刘准等.茄链格抱培养滤液抗菌活性物质的研究。植物病理学报,1997,27(2):161—165.
    17.马雅琴,翁跃进,赵勇,郭宝生,许兴.植物耐盐相关基因克隆的研究进展.植物遗传资源学报,2004,5(1):81—86.
    18.缪德年,陈溥言,樊生超等.哺乳动物MAPK信号级联及其功能[J].上海畜牧兽医通讯,2002,1:6—7.
    19.南志标.沙打旺种带真菌—环境、致病力及防治.草业学报,1998,7(1):12—18.
    20.邱德文.微生物蛋白农药研究进展.生物防治,2004,20(2):91—94.
    21.阮海华,李西川,兰蓓,蒋伶活.高渗透压甘油信号转导途径.细胞生物学杂志,2006,8: 651—655.
    22.商明清,梁元存,刘爱新,胡雪光,董汉松.烟草赤星病菌糖蛋白激发子诱导烟草抗病防卫反应,南京农业大学学报,2003,26(1):20—23.
    23.孙武长,刘桂华,杨红,孔翔云,黄鑫等.粮食中真菌及真菌毒素污染调查.中国公共卫生,2005,21(12):1532.
    24.孙霞.链格抱属真菌现代分类方法研究.山东农业大学博士学位论文.2006.
    25.田国忠,李怀方,裘维蕃.植物激素与植物病害的相互作用[J].植物生理学通讯,1999,35(3):177—184.
    26.万佐玺,强胜,李扬汉.链格孢菌寄主选择性毒素的研究现状.湖北民族学院学报(自然科学版),2001,19(4):19—22.
    27.万佐玺,强胜,吴永尧.链格孢菌毒素的分离及活性测定[J].北华大学学报,2001,2(5):428—430.
    28.王洪凯.链格孢小孢子种的分子系统学研究.山东农业大学博士学位论文.2000.
    29.王良君,余应年.陈星若用~32P后标记法研究交链孢酚及菜油油烟凝聚物对FL细胞DNA加成作用.中国病理生理杂志,1994,10(6):571—573.
    30.吴雪昌,胡森杰,钱凯先.酵母HOG-MAPK途径.细胞生物学杂志,2005,27:247—252.
    31.严红,李明远,蒋有绎等.利用真菌毒素筛选抗早疫病番茄材料的研究.植物病原菌毒素研究进展研究论文,222—226.
    32.杨洪强,贾文锁,黄丛林等.蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累[J].科学通报,2001,46(1):50—53.
    33.杨洪强,接玉玲.植物MAPK及其在病原信号传递中的作用.植物病理学报,2003,33(1):8—13.
    34.张天宇(主编).中国真菌志(第16卷)链格孢属,北京:科学出版社,2003,1—28.
    35.赵国柱,张天宇,曹爱新,王洪凯.基于rDNA ITS序列分析Altemaria与相似属的关系及A.1eucanthemi的分类地位.菌物学报,2006,25(2):184—191.
    36. Abbas H K and Barrentine W L. Alternaria helianthi and imazaquin for control of imazaquin susceptible and resistant cocklebur (Xanthium strumarium) biotypes [J]. Weed Science, 1995, 43(3): 425- 28.
    37. Abbas H K, Tanaka T, Duke S V, et al. Susceptibility of various crop and weed species to AAL-toxin, a natual herbicide [J]. Weed Technology, 1995, 9(1): 125-130.
    38. Abbas H K, Vesonder R F, Boyette C D, et al. Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura Stramonium) [J]. Can. J. Bot, 1993, 71:155-160.
    39. Adachi Y H et al. Nuclear ribiosomal DNA as a probe for genetic variabality in the japanese pear pathotype Alternaria alternate [J]. App .Environ. Microbiol, 1993, 59:3197-3205.
    40. Alepuz P, de Nadal E, Zapater M, Ammerer G and Posas E Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Po1 Ⅱ [J].J EMBO, 2003, 22 (10): 2433-2442.
    41. Alex L A, Borkovich K A and Simon M I. Hyphal development in Neurospora crassa: Involvement of a two-component histidine kinase [J]. PNAS, USA, 1996, 93: 3416-3421.
    42. Alex L A, Korch C, Selitrennikoff C P, et al. COS1, a two-component histidine kinase kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans [J]. PNAS, USA, 1998, 95: 7069-7073.
    43. An Y H, Zhao T Z, Miao J. Isolation, identification and mutagenicity of alternariol monomethyl ether[J]. J. Agric Food Chem, 1989, 37: 1341-1343.
    44. Andersen B and Thrane U. Differentiation of Alternaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics [J]. Can J Microbiol, 1996, 42: 685-689.
    45. Andersen B, Smedsgaard J, Jorring I, Skouboe P and Pedersen L. Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxigenic metabolites from Alternaria species from apples. Int J Food Microbiol, 2006. [Epub ahead of print].
    46. Andrews D L, Egan J D, Mayorga M E, et al. The Ustilago maydays ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth [J]. Mol Plant-Microbe Interactions, 2000, 13: 781-786.
    47. Arpaia G, Catalanotto C, Cerri F and Macino G Protein kinase C, a novel component of blue light transduction pathway in Neurospora crassa, 19th Fungal Genetics Conference, Asilomar, CA, 1997.
    48. Asch D K and Kinsey J A. Relationship of vector inserts size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene[J]. Mol Gen Genet, 1990, 221:37-43.
    49. Bahler J, Wu J Q, Longtine M S, Shah N G, McKenzie A 3rd, Steever A B, Wach A, Philippsen P and Pringle J R. Heterologousmodules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe[J]. Yeast, 1998, 14: 943-951.
    50. Bahn Y, Kojima K, Cox G and Heitman J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans[J], Mol Biol Cell, 2005, 16(5): 2285 -2300.
    51. Bannon J S and Hudson R A. The effect of application timing and lighting intensity on efficency of CASST (Alternaria cassiae) on sicklepod (Cassia obtusifoilia) [J]. Weed Sci. Soc Am, 1988, 29:51.
    52. Banuett F and Herskowitz I. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and-independent steps in the fungal life cycle[J]. Genes Dev, 1994, 8: 1367-1378.
    53. Banuett F. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in Maize[J]. Annu Rev Genet, 1995, 29:179-208.
    54. Banuett F. Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev, 1998, 62:249-274.
    55. Becherel P A, Chosidow O and Frances C. Cutaneous alternariosis after renal trans-plantation. Ann Intern Med, 1995, 122:71.
    56. Bencina M, Panneman H, Ruijier G J G, et al. Characterization and over expression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalystic subunit [J]. Microbiology, 1997, 143: 1211-1220.
    57. Benjamin E, Adams D O, Lloyd J and Cleaver D O. Cutaneous Alternaria Infection in a Patient with Waldenstrom Macroglobulinemia, Journal of the American Osteopathic college of Dermatology, 2006, 5(1):9-11.
    58. Berbee M, Payne B, Zhang G, Roberts R and Turgeon B. Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria[J]. Mycol. Res, 2003, 107(2):169-182.
    59. Bilsland E, Molin C, Swaminathan S, Ramne A and Sunnerhagen P. Rck1 and Rck2 MAPK kinases and the HOG pathway are required for oxidative stress resistance[J]. Mol Microbiol, 2004, 53:1743-1756.
    60. Bilsland-Marchesan E, Arino J, Saito H, Sunnerhagen P and Posas F. Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1[J]. Mol Cell Biol, 2000, 20:3887-3895.
    61. Bird D and Bradshaw R. Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans[J]. Mol Gen Genet, 1997, 255: 219-225.
    62. Blodgett J T and Swart W J. Infection, Colonization, and Disease of Amaranthus hybridus Leaves by the Alternaria tenuissima Group. Plant Disease, 2002, 86(11):1199-1205.
    63. Bottalico A and Logrieco A. Toxigenic Alternaria species of economic importance. In: Mycotoxins in Agriculture and Food Safety (Eds. H.K. Sinha & D. Bhatnagar) Marcel Dekker Inc., 1998. pp. 65-108.
    64. Brewater J L, de Valoir T, Dwyer N D, Winter E and Gustin M C. An osmosensing signal transduction pathway in yeast[J]. Science, 1993, 259: 1760-1763.
    65. Brower A V Z, Desalle R and A Vogler. Gene tree, species trees, and systemtics: A Cladistic Perspective[J].Annu Rev.Ecol.Syst , 1996, 27: 423 -450.
    66. Bruno K S, Aramayo R, Minke P F, et al. Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent mutant altered in the regulatory subunit of cAMP-dependent protein kinase [J]. J EMBO, 1996, 15: 5772-5782.
    67. Camenen I, De Closets F, Vaillant L, De Muret A, Pillette M, Fouquet B and Lorette G. Cutaneous Alternaria tenuissima alternariosis[J].Ann Dermatol Venereol, 1988, 115 (8): 839 -842.
    68. Carninci P, Westover A and Aishiyama Y. High-efficiency selection of full-length cDNA by improved biotinylated cap trapper[J]. DNA Res, 1997, 4(1):61-66.
    69. Casselton L A and Olesnicky N S. Molecular genetics of mating recognition in basidiomycete fungi[J]. Microbiol Mol Biol Rev, 1998, 62: 55-70.
    70. Castanet J, Lacour J, Toussaint-Gary M, Perrin C, Rodot S and Ortonne J. Alternaria tenuissima plurifocal cutaneous infection[J].Ann Dermatol Venereol, 1995, 122(3):115-118.
    71. Chenk P W and Snaar Jagalska B E. Signal perception and transductionthe role of protein kinases [J]. Biochim.Biophys. Acta, 1999, 1449:1-24.
    72. Cobb M H and Goldsmith G J. How MAP kinase are regulated [J]. J. Biol. Chem, 1995, 270: 14842-14846.
    73. Davidson R C, Cruz M C, Sia R A, Allen B, Alspaugh J A and Heitman J. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans[J]. Fungal Genet Biol, 2000, 29: 38-48.
    74. De Bievre C. Alternaria spp. Pathogenic to man: epidemiology. Journal de Mycologie Medicale, 1991, 1:50-58.
    75. de Hoog G and Horre R. Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory[J]. Mycoses, 2002,45(7):259-276.
    76. de Nadal E, Alepuz P M and Posas F. Dealing with osmostress through MAP kinase activation[J]. J EMBO Rep, 2002, 3:735-740.
    77. de Nadal E, Casadome L and Posas E Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase[J]. Mol. Cell. Biol, 2003, 23:229 -237.
    78. De Nadal E, Zapater M, Alepuz P M, Sumoy L, Mas G and Posas F. The MAPK Hogl recruits Rpd3 histone deacetylase to activate osmoresponsive genes[J]. Nature, 2004,427:370-374.
    79. Degols G, Shiozaki K and Russell P. Activation and Regulation of the Spcl Stress-Activated Protein Kinase in Schizosaccharomyces pombe[J]. Molecular and Cellular Biology, 1996, 16(6): 2870 -2877.
    80. Delgado-Jarana J, Sousa S, Redondo J, Rey M and Llobell A. Characterization of the Stress response in Trichoderma harzianum: Role of HOG Kinase and cAMP Pathways. 7th European Conference on Fungal Genetics Copenhagen, 2004, 17-20, April: 103.
    81. Dickman M B and Yarde O. Serine/threonine protein kinases and phosphatases in filamentious fungi[J]. Fungal Genetics and Biology, 1999, 26: 99-117.
    82. Dihazi H, Kessler R and Eschrich K. HOG-pathway induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress[J]. J Biol Chem, 2004, 279:23961-23968.
    83. Di-Pietro A, Garcia-Maceira F I, Meglecz E, et al. A mitogen-activated protein kinase of the vascular wilt fungus Fusarium oxysporum is dispensable for vegetative growth but essential for pathogenicity. The Abstract of The 5 European Conference on Fungal Genetics, Arca chon, France, March 25-29, 2000, 227.
    84. Dixon K P, Xu J R, Smirnoff N and Talbot N J. Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea[J]. The Plant Cell, 1999, 11: 2045-2058.
    85. Dugan F M and Lupien S L. Filamentous fungi quiescent in seeds and culm nodes of weedy and forage grass species endemic to the Palouse Region of Washington and Idaho[J]. Mycopathologia, 2002, 156(1):31-40.
    86. Estruch F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast[J]. FEMS Microbiol. Rev, 2000, 24:469-486.
    87. Farr D F, Bills G F, Chamuris G P and Rossman A Y. Fungi on Plants and Plant Products in the United States. American Phytopathology Society, 1989, St. Paul, Minnesota.
    88. Ferrigno P, Posas F, Koepp D, Saito H and Silver P A. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the import in beta homologs NMD5 and XPO1[J]. J EMBO, 1998, 17: 5606 -5614.
    89. George F and Sprague Jr. Control of MAP kinase signaling specificity or how not to go HOG wild [J]. Genes Dev, 1998, 12:2817-2820.
    90. Gerdsen R M, Uerlich G S, de Hoog T, Bieber and Horre R. Sporotrichoid phaeohyphomycosis due to Alternaria infectoria[J]. Br. J. Dermatol, 2001, 145: 484- 486.
    91. Gilmour T K, Rytina E, O'Connell P B and Sterling J C. Cutaneous alternariosis in a cardiac transplant recipient[J]. Aust. J. Dermatol, 2001,42:46-49.
    92. Gold S E, Brogdon S M, Mayorga M E, et al. The Silage maydays regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize [J]. Plant Cell, 1997, 9: 1585-1594.
    93. Gold S E, Duncan G A, Barrett K J, et al. cAMP regulates morphogenesis in the fungus Silage maydays[J]. Genes Dec, 1994, 8:2805-2816.
    94. Gubler U and Hoffman B J. A simple and very efficient method for generating cDNA libraries. Gene, 1983, 5:263-269.
    95. Gustin M C, Alberty n J, Alexander M and Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev, 1998, 62: 1264-1300.
    96. Halonen M, Stern D A, Wright A L, Taussing L M and Martinez F D. Alternarias a major allergen for asthma in children raised in a desert environment[J]. Am J Respir Crit Care Med, 1997, 155: 1356-1361.
    97. Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation [J]. Nature, 1997, 386(20): 296-299.
    98. Hanks S and Hunter T. Protein kinases 6. The eukaryotic protein kinase super family: kinase (catalytic) domain structure and classification[J] . J FASEB, 1995, 9:576-596.
    99. Hanks S K and Hunter T. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification based on phylgenetic analysis [M]. In the protein kinase facts book (D.C.Hardie andS. K. Hands, Eds.)pp. 7-47, 1995, Academic Press, London.
    100. Hartley J L, Temple G F and Brasch M A. DNA cloning using invitro site-specific recombination [J]. Genome Research, 2000, 10(11):1788-1795.
    101.Hartmann H A, Kruger J, Lottspeich F, et al. Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator prf1 [J]. Plant Cell, 1999, 11: 1293-1305.
    102. Herskowitz I. MAP kinase pathways in yeast: for mating and more [J]. Cell, 1995, 80: 187-197.
    103. Hiram Sanchez and Robert K Bush. A review of Alternaria alternata sensitivity[J]. Rev Iberoam Micol, 2001, 18: 56-59.
    104. Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev, 2002, 66(2):300-372.
    105. Hong S G, Liu D and Pryor B M. Restriction mapping of IGS region in the Alternaria spp. reveals variable and conserved domains[J]. Mycol Res, 2005, 109(1): 87-95.
    106. Horwitz B A, Sharon A, Lu S, et al. A Gprotein alpha subunit from Cochliobolus heterostrophus involved in matingand appressorium formation[J]. Fung Genet Biol, 1999, 26: 19 -32.
    107. Huang J M, Wei Y E, Kim Y H, et al. Purification of a protein histidine kinase from the yeast Saccharomyces cerevisiae. The first member of this class of protein kinase[J]. J. Biol. Chem, 1991, 266:9023-9031.
    108. Huang L S, Doherty H K and Herskowitz I. The Smk1p MAP kinase negatively regulates Gsc2p, a 1,3-beta-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae[J]. PNAS USA, 2005, 102: 12431-12436.
    109. Hynes M J. Genetic transformation of filamentous fungi[J]. J Genet, 1996, 75: 297-311.
    110. Iwatsu T. Case report-cutaneous alternariosis[J]. Arch Dermatol, 1988,124(12):1822-1825.
    111. Jasalavich C A, Morales V M, Pelcher L E and Seguin-Swartz G. Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers[J]. Mycol, Res, 1995, 99 (5): 604 -614.
    112. Jiang Y, Li Z, Schwarz E M, et al. Structure function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and auto phosphorylation, but not upstream kinase selection [J]. J Biol Chem, 1997, 27: 11096-11102.
    113. Jiang Y, Liu A H, Huang Q B, et al. p38 MAPK signal is necessary for TNF2 α gene expression in RAW264. 7 cells stimulated by LPS [J]. Acta BiochimiBiophys Sin, 1999, 31(1):9215.
    114. Jimenez R, Zarzuelo A, Galisteo M, et al. Involvement of protein kinase C and Na~+/K~+-ATPase in the contractile response induced by myricetin in rat isolated aorta[J]. Plantar med, 2002, 68 (2): 133-137.
    115. Jonak C, Okresz L, Bogre L and Hirt H. Complexity, cross-talk and integration of plant MAP kinase signaling[J]. Cur Opin Plant Biol, 2002, 5: 425-424.
    116. Kahmann R, Basse C and Feldbrugge M. Fungal-plant signaling in the Ustilago maydis-maize pathosystem[J]. Current Opinion in Microbiol, 1999, 2: 647- 650.
    117. Kan W, Zhao K S, Jiang Y, et al. Role of p38 mitogen-activated protein kinase in signal transduction of inducible nitricoxide synthase expression [J]. Shock, 2004, 213: 281-287.
    118. Karlsson-Borga A, Jonsson P and Rolfsen W. Specific IgE antibodies to 16 widespread mold genera in patients with suspected mold allergy[J]. Ann. Allergy, 1989, 63:521-526.
    119. Kishore K, Kanjilal, Misra, Reddy C and Murty U. Comparative chemical characterization of pigmented and less pigmented cell walls of Alternaria tenuissima[J]. Curr. Microbiol, 2005, 51 (6): 399-401.
    120. Kluwer Academic Publishers. Two cases of cutaneous phaeohyphomycosis by Alternaria alternata and Alternaria tenuissima[J] . Mycopathologia, 1997, 137:65-74.
    121. Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T and Tetsuro O. Fungicide activity through activation of a fungal signalling pathway[J]. Molecular Microbiology, 2004, 53(6): 1785-1796.
    122. Kothe G O and Free S J. The isolation and characerization of nrc-1 and nrc-2, two genes encoding protein kinase that control growth and development in Neurospora crassa [J]. Genetics, 1998, 149: 117-130.
    123. Krantz M, Becit E and Hohmann S. Comparative genomics of the HOG-signalling system in fungi[J]. Curr Genet, 2006, 49: 137-151.
    124. Kronstad J S. Virulence and cAMP in smuts, blasts and blights[J]. Trends Plant Sci, 1997, 2: 193 -199.
    125. Kronstad J W and Staben C. Mating type in filamentous fungi[J]. Annu Rev Genet, 1997, 31: 245 -276.
    126. Kruppa M and Calderone R. Two-component signal transduction in human fungal pathogens[J]. FEMS Yeast Res, 2006, 6(2):149-159.
    127. Kusaba M and Tsuge T. Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA [J]. Current Genetics, 1995, 28: 491- 498.
    128. Lengeler K B, Davidson R C, D'Souza C, Harashima T, Shen W C. Wang P, Pan X, Waugh M and Heitman J. Signal Transduction Cascades Regulating Fungal Development and Virulence[J]. Microbiology and Molecular Biology Reviews, 2000, 12: 746-785.
    129. Lev S, Sharon A, Hadar R, et al. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: Diverse roles for mitogen-activated protein kinase homologues infoliar pathogens[J]. PNAS, USA, 1999, 96: 13542-13547.
    130. Li D, Rogers L and Kolattukudy P E. Cloning and expression of cDNA encoding a mitogen-activated protein kinase from a phytopathogenic filamentous fungus[J]. Gene, 1997, 195: 161-166.
    131. Lima I G, Duarte R T, Furlaneto L, Baroni C H, Fungaro M H and Furlaneto M C. Transformation of the entomopathogenic fungus Paecilomyces fumosoroseus with Agrobacterium tumefaciens[J]. Lett Appl Microbiol, 2006, 42: 631-636.
    132. Liu G, Qian Y, Zhang P, et al. Etiological role of Alternaria alternata in human esophageal cancer [J]. J. Chin Med, 1992, 105: 394-400.
    133. Liu H, Kohler J and Fink G R. Suppression of hyphal formation in Candida albicans by mutationof a STE12 homolog[J]. Science, 1994, 266: 1723 -1726.
    134. Lo Cascio G, Ligozzi M, Maccacaro L and Fontana R. Utility of Molecular Identification in Opportunistic Mycotic Infections: a Case of Cutaneous Alternaria infectoria Infection in a Cardiac Transplant Recipient[J] . Journal of Clinical Microbiology, 2004, 42(11): 5334-5336.
    135. Long S, Zhang N, Qiu W, Li D and Huang W. Construction of a cDNA library of Alternaria sp. strain JH505 using Gateway technology [J]. Acta Microbiol. Sinica, 2005, 45(6): 963-965.
    136. Lugauskas A, Prosychevas I, Levinskaite L and Jaskelevicius B. Physical and chemical aspects of long-term biodeterioration of some polymers and composites [J]. Environmental Toxicology, 2004, 19(4):318 - 328.
    137.Maeda T, Takekawa M and Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor[J]. Science, 1995, 269:554-558.
    138. Maeda T, Wurglermurphy S M and Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast [J]. Natrue, 1994, 369: 242-245.
    139. Malathi K, Ganesan K and Datta A. Identification of a putative transcriptionfactor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae stel2 mutants[J]. J Biol Chem, 1994, 269: 2294-2295.
    140. Marcus Krantz, Evren Becit and Stefan Hohmann. Comparative genomics of the HOG-signalling system in fungi[J]. Curr Genet, 2006, 49: 137-151.
    141. Martin B D and Ode Y. Serine/Heroine protein kinesis and phosphates in filamentous fungi[J]. Fung. Genet. Biol, 1999, 26:99-117.
    142. Maude R B and Humpherson-Jones F M. Studies on theseed-borne phases of dark leaf spot (Alternaria brassicicola) and grey leaf spot (Alternaria brassicae) of brassicas[J]. Annals of Applied Biology, 1980, 95: 311-319.
    143. Mayorga M E and Gold S E. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence[J]. Mol Microbiol, 1999, 34: 485-497.
    144. Mayser P, Nilles M and de Hoog G S. Case report. Cutaneous phaeohyphomycosis due to Alternaria alternata[J]. Mycoses, 2002, 45:338-340.
    145. Merino E, Banulus J, Boix V, Franco A, Guijarro J, Portilla J and Betlloch I. Relapsing cutaneous alternariosis in a kidney transplant recipient cured with liposomal amphotericin B[J]. Eur. J. Clin. Microbiol.Infect. Dis, 2003, 22:51-53.
    146. Mitchell T K and Dean R A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea[J]. Plant Cell, 1995,7:1869-1878.
    147. Mizoguchi T, Ichimura K and Shinozaki K. Environmental stress respons in plants: the role of mitogen-activated protein kinases[J]. Trends Biotech, 1997, 15:15 - 19.
    148. Mohamed Zahidur Rahman, Yuichi Honda, Sayed Zahirul Islam, Nozomi Muroguchi and Sakae Arase. Leaf Spot Disease of Broad Bean (Vicia faba L.) Caused by Alternaria tenuissima-A. New Disease in Japan[J]. J. Gen. Plant Pathol, 2002, 68: 31-37.
    149. Monge R, Roman E, Nombela C and Pla J. The MAP kinase signal transduction network in Candida albicans[J] . Microbiol, 2006, 152(4):905-912.
    150. Montemurro N and Visconti A. Alternaria metabilites chemical and biological data[A].In: Chelkow ski J, Visconti A, eds. Alternaria: Biology, Plant Disease and Metabolites [M]. Am sterdam: Elsevier Science Publishers, 1992, 449-558.
    151.Morawetz R, Lendenfeld T, Mischak H, et al. Cloning and characterization of genes (pkc1 and pkcA) encoding protein kinase C homologues from Trichoderma reesei and Aspergillus niger[J]. Mol.Gen.Genet, 1996, 250: 17-28.
    152. Morris P C. MAP kinase signal transduction pathways in plants. New Pytologist, 2001, 151: 67-89.
    153. Muller M. Toxin-producing ability of molds of the genus Alternaria[J] Zentralbl Mikrobiol, 1992, 147(3-4): 207-213.
    154. Muller P, Aichinger C, Feldbrugge M, et al. The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis[J]. Mol Microbiol, 1999, 34: 1007-1017
    155. Nishida E and Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways[J]. Trends Biochem Sci, 1993, 18:128-131.
    156. Nutsugah S K. Ultrastructural changes in pigeon pea cell caused by a host-specific toxin from Alternaria tennuissima [J]. Ann. Phytopath. Soc. Jpn, 1993, 59:407-415.
    157. Nutsugah S K, Kohmoto K, Otani H, Kodoma M and Sunkeswari R R. Production of a host-specific toxin by germinating spores of Alternaria tenuissima causing leaf spot of pigeon pea [J]. Journal of Phytopathology, 1994, 140:19-30.
    158. O'Rourke S M and Herskowitz I. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Shol branch[J]. Mol.Cell.Biol, 2002, 22: 4739-4749.
    159. O'Rourke S M and Herskowitz I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae[J]. Genes Dev, 1998, 12:2874 - 2886.
    160. O'Rourke S M, Herskowitz I and O'Shea E K. Yeast go the whole HOG for the hyperosmotic response[J]. Trends Genet, 2002, 18:405-412.
    161.Ohara O and Temple G. Directional cDNA library construction assisted by the in vitro recombination reaction[J]. Nucleic Acids Research, 2001, 29(4): 1-8. 162. Ohara, Nagase, Mistui, Kohga, Kikuno, Hiraoka, Takahashi, Kitajima, Saga and Koseki. Characterization of size-fractionated cDNA libraries generated by the in vitro recombination-assisted method[J]. DNA Res, 2002, 9 (2): 47-57.
    163. Pan X and Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae[J] . Mol Cell Biol, 1999, 19: 4874-4887.
    164. Patil P J and Padule D N. Effects of grain mould fungi on seed germination and seedling vigour index of sorghum seeds Var. CSN-9 in western Maharashtra. Seed Research, 2000, 28(2): 190-192.
    165. Pieter Vos, Rene Hogers, Marjo Bleeker, et al. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Research, 1995, 23(21): 4407-4414.
    166. Posas F and Saito H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator[J]. J EMBO, 1998,17:1385-1394.
    167. Posas F and Saito H. Osmotic activation of the HOG MAPK pathway via Stellp MAPKKK: scaffold role of Pbs2p MAPKK[J]. Science, 1997, 276:1702-1705.
    168. Posas F, Takekawa M and Saito H. Signal transduction by MAP kinase cascades in budding yeast [J]. Curr.Opin.Microbiol, 1998, 1:175-182.
    169. Posas F, Wurgler-Murphy S M, Maeda T. Witten E A, Thai T C and Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor[J]. Cell, 1996, 86:865-875.
    170. Pratt R J and Aramayo R. Improving the efficiency of gene replacements in Neurospora crassa: a first step towards a large scale functional genomics project[J]. Fungal Genet Biol, 2002, 37: 56-71.
    171.Proft M and Serrano R. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation[J].Mol.Cell.Biol , 1999, 19:537-546.
    172. Proft M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R and Posas F. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress[J]. J EMBO, 2001, 20:1123-1133.
    173. Pryor B M and Bigelow D M. Molecular characterization of Embelliaia and Nimbya spolles and their relationship to Alternaria, Ulocladium and Stemphylium[J]. Mycologia, 2003, 95: 1141-1154.
    174. Pryor B M and Gilbertson R L. Molecular phylogenetic relationships alignment Alternaria species and related fungi based upon analysis of nuclear ITS and mtSSUrDNA sequences [J]. Mycol Res, 2000, 104:1312-1321.
    175. Purushotham S P, Keshav L, Patkar H S, et al. Storage fungi and their influence on rice seed quality[J]. Indian Phytopathology, 1996, 49(2): 152-156.
    176. Qiang S. Alternative approaches to mass-production of Alternaria zinniae. The Research Report. Agric. Res. and Vet. Centre. Orange, 1994, Australia.
    177. Raitt D C, Posas F and Saito H. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hogl MAPK pathway[J]. J EMBO, 2000, 19:4623-4631.
    178. Ramezani Rad M, Jansen G, Buhring F and Hollenberg C P. Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and associates with Ste11p[J]. Mol. Gen. Genet, 1998, 259: 29-38.
    179. Ramezani-Rad M. The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast[J]. Curr Genet, 2003, 43:161-170.
    180. Raquel Vieira M, Luz Martins M, Ana Afonso, Fernanda Rego and Jorge Cardoso. Cutaneous alternariosis[J]. Rev Iberoam Micol, 1998, 15: 97-99.
    181. Reiser V, Raitt D C and Saito H. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure[J]. J Cell Biol, 2003, 161:1035-1040.
    182. Reiser V, Ruis H and Ammerer G Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog 1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae[i]. Mol Biol. Cell, 1999, 10:1147-1161.
    183. Reiser V, Salah S M and Ammerer G. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42[J]. Nat Cell Biol, 2000, 2:620-627.
    184. Renker C, Otto P, Schneider K, Zimdars B, Maraun M and Buscot F. Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species[J]. Microb Ecol, 2005, 50(4), 518 -528.
    185. Rep M, Krantz M, Thevelein J M and Hohmann S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes[J]. J. Biol. Chem, 2000, 275:8290-8300.
    186. Rep M, Reiser V, Gartner U, Thevelein J M, Hohmann S, Ammerer G and Ruis H. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hotlp[J]. Mol. Cell. Biol, 1999, 19:5474-5485.
    187. Roberts R G, Reymond S T and Anderson B. RAPD fragment pattern analysis and morphological segregation of small-spored Alternaria species and species group[J]. Mycological Research, 2000, 104(2):151-160.
    188. Robertshaw H and Higgins E. Cutaneous infection with Alternaria tenuissima in an immunocompromised patient[J]. British Association of Dermatologists British Journal of Dermatology, 2005, 153:1047-1049.
    189. Robinson MJ and Cobb M H. Mitogen-activatedprotein kinase pathways[J]. Curr. Opin. Cell Biol, 1997,9:180-186.
    190. Roeder T. Solid Phase cDNA library construction, a versatile approach[J]. Nucleic Acids Res. 1998, 26:3451-3452.
    191. Romano C, Fimiani M, Pellegrino M, Valenti L, Casini L, Miracco C and Faggi E. Cutaneous phaeohyphomycosis due to Alternaria tenuissima[J]. Mycoses, 1996, 39(5-6):211-215.
    192. Romano C, Valenti L, Miracco C, Alessandrini C, Paccagnini E, Faggi E and Difonzo E. Two cases of cutaneous phaeohyphomycosis by Alternaria alternata and Alternaria tenuissima[J] . Mycopathologia, 1997, 137(2): 65-74.
    193. Rossmann S, Cernoch P and Davis J. Dematiaceous fungi are an increasing cause of human disease[J]. Clin Infect Dis, 1996, 22(1): 73-80.
    194. Rotem J. The Genus Alternaria; Biology, Epidemiology and Pathogenicity. American Phytopathological Society Press, 1998, St. Paul, Minnesota.
    195. Rude S V, Duczek L J and Seidle E. The effect of alternaria brassicae, Alternaria raphani and Alternaria alternata on seed germination of Brassica rapa canola[J]. Seed Science &Technology, 1999, 27:795-798.
    196. Ruiz-Rold n M C, Maier F J and Schfer W. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity for Pyrenophora teres on barley[J]. Mol Plant-Microbe Interact, 2001, 14:116-125.
    197. Saenz-de-Santamaria M, Postigo I, Gutierrez-Rodriguez A, Cardona G, Guisantes J, Asturias J and Martinez J. The major allergen of Alternaria alternata (Alt al) is expressed in other members of the Pleosporaceae family[J]. Mycoses, 2006,49(2):91-95.
    198. Saito H and Tatebayashi K. Regulation of the osmoregulatory HOG MAPK cascade in yeast[J]. J Biochem (Tokyo), 2004, 136(3):267-272.
    199. Santos J L and Shiozaki K. Fungal histidine kinases. Sci STKE 2001: RE1 Catlett NL, Yoder O C, Turgeon B G, Whole-genome analysis of two-component signal transduction genes in fungal pathogens[J]. Eukaryot Cell, 2003, 2:1151-1161.
    200. Sato N, Kawahara H, Tohe A and Maeda T. Phosphorelay-regulated degradation of the yeast Ssklp response regulator by the ubiquitin-proteasome system[J]. Mol Cell Biol, 2003, 23 (18):6662-6671.
    201. Schuller C, Brewster J L, Alexander M R, Gustin M C and Ruis H. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene[J]. J EMBO, 1994, 13:4382-4389.
    202. Sean M, O'Rourke and Ira Herskowitz. Unique and Redundant Roles for HOG MAPK Pathway Components as Revealed by Whole-Genome Expression Analysis [J]. Molecular Biology of the Cell, 2004, 15:532-542.
    203. Seet BT and Pawson T. MAPK signaling: Sho business[J]. Curr Biol, 2004, 14:R708-R710.
    204. Sheikh-Hamad D and Gustin M C. MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals[J]. Am J Physiol Renal Physiol, 2004, 287: F1102-F1110.
    205. Sheppard J W. Seed-borne pathogens identification and control. Seed technology of vegetable and flower seeds: Their devastation, 1998, 20(2):187-197.
    206. Simmons E G Alternaria taxonommy: current status, viewpoint, challenge In: Alternaria: Biology Plant Disease and Metabolites[C]. Eds: J.Chelkowski and A.Visconti. Elsevier, Amsterdam, 1992, 1-29.
    207. Sivapalan A and Browning J W. Incidence of Alternaria brassicicola (Schw.) Wiltsh. on Brassica oleracea seeds[J]. Australian Journal of Experimental Agriculture, 1992, 32: 535-537.
    208. Stock A M, Robinson V L and Goudreau P N. Two-component signal transduction[J]. Annu. Rev. Biochem, 2000,69:183-215.
    209. Takano Y, Kikucki T, Kubo Y, et al. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis[J]. Mol Plant Microbe Interact, 2000, 13:374-383.
    210. Timmer L W, Peever T L, Solel Z, et al. Alternaria diseases of citrus- novel pathosystems[J]. Phytopathol. Mediterr, 2003, 42: 99-112.
    211. Tylkowska K and Grabarkiewicz I S. Toxinogenicity of Alternaria alternata isolates from carrot seeds and seedlings[J]. Seed Seience and Technology, 1995, 23:877-879.
    212. Tylkowska K, Grabarkiewicz-Szczesna J and Iwanowska H. Production of toxins by Alternaria alternata and A. radicina and their effects on germination of carrot seeds[J]. Seed Science and Technology, 2003, 31:309-316.
    213. Van Wuytswinkel O, Reiser V, Siderius M, Kelders M C, Ammerer G, RuisH and Mager W H. Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway[J]. Mol. Microbiol, 2000, 37:382-397.
    214. Viviani M, Tortorano A, Laria G, Giannetti A and Bignotti G Two new cases of cutaneous alternariosis with a review of the literature[J]. Mycopathologia, 1986, 96(1):3-12.
    215. Wach A, Brachat A, Pohlmann R and Philippsen P. New heterologousmodules for classical or PCR-based gene disruptions in Saccharomyc escerevisiae[J]. Yeast, 1994, 10:1793-1808.
    216. Walhout A J, Sordella R, Lu X, Hartley J L, Temple G F, Brasch M A, Thierry-Mieg N and Vidal M. Protein interaction mapping in C. elegans using proteins involved in vulval development[J]. Science, 2000, 287:166-122.
    217. Wang R F, Wang X, Johnson S L, et al. Development of a retrovirus-based complementary DNA expression system for the Cloning of Tumor Antigens[J]. Cancer Res. 1998, 58:3519-3525.
    218. Welsh DT. Ecological significance of compatible solute. Accumulation by micro-organisms: From single cells to global climate[J]. FEMS Microbiol. Rev, 2000, 24: 263-290.
    219. Westfall P J, Ballon D R and Thorner J. When the stress of your environment makes you go HOG wild. Science, 2004, 306:1511-1512.
    220. Wong BY, Chen H, Chung S W, et al. High-efficiency identification of genes by functional analysis from a retroviral cDNA expression libraries[J]. J Virol, 1994, 68: 5523-5531.
    221. Xu J R and Hamer J E. MAP Kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J]. Genes Dev, 1996, 10:2696-2706.
    222. Xu J R, Staiger C J and Hamer J E. Inactivation of the mitogen-activated protein kinase MPS1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. PNAS USA, 1998, 95: 12713 - 12718
    223. Xu J R. MAP Kinases in Fungal Pathogens Fungal. Genetics and Biology, 2000, 31:137-152.
    224. Yarden N. Expression of calcium-sensing receptor gene by avian parathyroid gland in vivo: relationship to plasma calcium[J]. Gen-comp-endocrinol, 2000, 117(2): 173-181.
    225. Yu K F and Fauls K P. Optimization of the PCR program for RAPD analysis [J]. Nucleic Acids Research, 1992, 20(10): 2606.
    226. Yuzyuk T and Amberg D C. Actin recovery and bud emergence in osmotically stressed cells requires the conserved actin interacting mitogen-activated protein kinase kinase kinase Ssk2p/MTK1 and the scaffold protein Spa2p[J]. Mol Biol Cell, 2003, 14:3013-3026.
    227. Zarrinpar A, Bhattacharyya R P, Nittler M P and Lim W A. Sho1 and Pbs2 act as co-scaffolds linking components in the yeast high osmolarity MAP kinase pathway[J]. Mol Cell, 2004, 14:825 -832.
    228. Zhan X L and Guan K L. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase[J]. Genes Dev, 1999, 13:2811-2827.
    229. Zhang S Q and Daniel F lessig. MAPK cascades in plant defense signaling[J]. TRENDS in Plant Sri, 2001, 6(11):520-527.
    230. Zhang T Y and David J C. Notes on Alternaria species on Euphorbiaceae in IMI and K: I. Taxa on Euphobia, Acalypha and Sauropus[J]. Mycosystema, 1995-1996, 8-9: 109-121.
    231. Zheng L, Campbell M, Murphy J, et al. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea[J]. Mol Plant-Microbe Interact, 2000, 13: 724-732.
    232. Zohri A and Abdel-Gawad K. Survey of mycoflora and mycotoxins of some dried fruits in Egypt[J]. J Basic Microbiol, 1993, 33(4): 279-288.
    233. Zufall F and Hatt H. Dual activation of a sex pheromone-dependention channel from insect olfactory dendrites by protein kinase C activators and cyclic GMP[J]. PNAS, USA, 1991, 88 (19): 8520-8524.
    234. Zwerger K and Hirt H. Recent advances in plant MAP kinase signaling[J]. Biol Chem, 2001, 382: 1123-1131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700