猪瘟病毒基因芯片诊断技术的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(CSF)是由猪瘟病毒(CSFV)引起的一种猪病毒性传染病,猪瘟兔化弱毒疫苗有效地控制了猪瘟在我国的急性发生和大流行。但自上世纪80年代以来,我国开始出现了温和、非典型性猪瘟。究其原因,可能与CSFV出现了新的变异株等因素有关。尤其是亚临床感染猪,依靠常规诊断方法很难确诊并剔除此类病猪,给CSF的防制工作带来新的困难。因此,有必要建立一种新的迅速、准确诊断CSF的实验室诊断系统,为在我国彻底消灭CSF奠定基础。
     基因芯片(Gene Chip)是生物技术与电子芯片融合的结晶,是由固定于固相载体(如硅片、玻璃、塑料等)表面的核苷酸阵列构成的一种新型微型器件。由于其快速、微量、准确的应用优点,正在成为新一代的自动化医学检验工具。通过设计针对基因的探针,与被检测基因的碱基序列互补匹配,可快速、准确地检测到基因,用于疫病的诊断。
     本研究采用以基因测序为基础的系统进化树分析方法,对黑龙江省部分地区猪瘟病毒流行株进行分离鉴定和E2基因序列分析,并与传统的石门强毒和猪瘟兔化弱毒在抗原基因上存在的变异进行比较。研究结果表明:病料为CSFV感染,CSF流行毒株和疫苗株在核苷酸和氨基酸序列上存在一定的差异,E2基因部分序列接近Alfort,与Brescia同源性最低。该试验从核酸和蛋白质水平上研究了黑龙江省部分地区猪瘟病毒流行株与其它标准毒株之间的同源性及其变异情况,揭示了在该省猪瘟流行的本质,为实施科学有效的猪瘟防制措施提供依据。
     本研究通过RT-PCR扩增CSAV相当保守的NS基因作靶DNA制作芯片,将被检样品在PCR过程中用Cy-5标记,得到DNA产物与芯片杂交,达到检测CSFV的目的,建立CSF基因芯片诊断方法;同时通过研究不同靶探针浓度对检测结果的影响,确立最佳反应条件靶探针浓度为1 μg/μl;分析芯片诊断技术的特异性和敏感性等技术指标:与RT-PCR方法和间接荧光抗体试验方法进行比较,并开展了初步应用。本研究建立的CSFV基因芯片诊断技术,可以成功地检测到CSFV保守区基因,荧光信号清晰,敏感性利特异性高,实际应用效果奸,是一种检出率高的诊断方法。
     总之,本研究将基因芯片技术应用于动物疫病的诊断,成功建立了CSFV基因芯片诊断技术平台,解决了CSF诊断中的难题,具有重大的理论意义和应用价值。为今后利用基因芯片开展动物疫病诊断和研究提供理论依据,也为控制和消灭CSF奠定基础。但要实现基因芯片在动物疫病方面的广泛应用,还要做更深入的研究。
CSF(Classical swine fever), the virulent infectious disease caused by CSFV (Classical swine fever virus), had been controlled effectively by CSFV strain vaccine in the country. But atypical HC and inapparent CSF began to appear after 1980s, which had resulted in great loss. This result may have something to do with the appearance of the new variation virus of CSFV and other factors. Even sub-clinic infections swine is difficult to diagnose and eliminate them, depending on the general diagnosis method and bring new problem to the prevention and treatment. Thus it is necessary to establish a new, swift and reliable diagnosis system in the lab to pave a way for completely annihilating CSF.Gene chip or microarray, the combination of biology and microelectronics technology, is a kind of new micro-device. It is composed of DNA arrays immobilized on solid supports. Because of its many virtues, such as rapid, sensitive and accurate, gene chip plays an important role in the study of diseases. Through the match of mutation probes and sequences, we can detect the mutation quickly, lightly and accurately. The detection can effectively instruct disease diagnosis.The study utilized phylogenetic tree based on gene sequence to isolate and identify CSFVs in some areas of Heilongjiang province and sequence E2 gene of every virus. The results showed in the following: Doubtful materials were infected with CSFVs, the sequences of E2 genes nearer to Alfort, the homology with Brescia was the lowest. We researched the homology and variation among prevalent CSFVs on nucleic acid and protein level in some areas in the province. At the same time, the antigenic variation between traditional Shimen virus and virus cultivated in rabbits was compared in order to disclose the prevalent essence of CSF in the province and tried to acquire new efficient methods for preventing and treating CSF better and better.In this study a microarray-based assay for the detection CSFV was developed. The captor-DNA fragments, which were reamplified from CSFV C stain, were spotted on a glass-bound microarray. Cy5-labeled fluorescent PCR production were hybridized to these captor-DNA on microarray. At the same time, we studied the effects of the different concentration of the captor-DNA on the detecting result, confirmed the concentration of captor-DNA is 1μg/μl, established the option reaction condition, analyzed the specialty and sensitivity and compared it with RT-PCR and IFA experiment method. The result show that microarray diagnosis method of CSFV established in this research can successfully
    verify the conservative sequence of the CSFV. The signal of the fluorescence is clear, the specialty is high.In fact it is an efficient diagnosis method.To sum up, this study successfully established a diagnosis technique platform of microarray and solved the difficult problem for CSFV, with afford a theoretical base for prevention and diagnosis of animal's epidemic diseases, control and annihilate CSF.But in order to abroad applicate microarray in animal disease,we need to do more reseach.
引文
[1] Adel M T, Preston H, Stephen A J. Ggenome-directed primers for selective labeling of bacterial transcripts for DNA microarray analysis. Nature biotechnology, 2000June, 17:679~682
    [2] Alison Abbott. Betting on tomorrow's chips. Nature, 2002, 415:112~114
    [3] Alon U, Barkai N, Notterman DA, et al. Broad patterns ofgene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA, 1999, Jun 8: 96(12): 6745~6750
    [4] Anderw M. Nat Biotechnal, 1998, 16
    [5] Anthony R M, Brown T J, French, G L . Rapid diagnosis ofbacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J. Clin. Microbiol, 2000, 38:781~788
    [6] Barry Schweitzer, Steven Wiltshire, Jeremy Lambert, etal. Inaugural Article: Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection DNA, PNAS 97: 10113~10119
    [7] Bassett, D. E. Jr., M. B. Eisen , etal. Gene expression informatics--it's all in your mine. Nature Gene, 1999, 21: 51~55
    [8] Beecher J E, MicalG, Glenn H, et al. Chemically amplified photolithography for the fabrication of high density oligonucleotide assays. Mater Sci Eng, 1997, 76: 597~598
    [9] Behr MA, Wilson M A, Gill W P, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 1999, 284(5419): 1520~1523
    [10] Biagetti M, Greiser-Wilke I, Rutili D. Molecular epidemiology of classical swine fevers in Italy. Vet Microbiol, 2001 Nov 26, 83(3):205~215
    [11] Bjorklund H V, Stadejek T, Vilcek S, et al. Molecular characterization of the 3'noncoding region of classical swine fever virus vaccine strains. Virus Genes, 1998, 16(3):307~312
    [12] Bowtell D D. Options available--from start to finish--for obtaining expression data by microarray. Nature Genet, 1999, 21:25~32
    [13] C·W·迪芬巴赫、G·S·德维克斯勒等[美]编著,《PCR技术实验指南》,科学出版社
    [14] Case-Green S C, K U Mir, C E Pritchard, et al. Analysing genetic information with DNA arrays. Curr. Op. Chem. Biol, 1998, 2:404~410
    [15] Chambers J, Angulo A, Amaratunga D, et al. DNA microarrays of the complex H CMV genome profiling kinetic class with drug sensitivity of viral gene expression, J. Virol, 1999, 73: 5757~5766
    [16] Chechetkin V R, Turygin A Y, Proudnikov D Y, et al. Sequencing by hybridization with the generic 6-mer oligonucleotide microarray: an advanced scheme for data processing. J Biomol Struct Dyn, 2000Aug, 18(1): 83~101
    [17] Chee M R , Yang E., Hubbell A , et al. Accessing genetic information with high-density DNA arrays. Science, 1996, 274: 610~614
    [18] Chizhikov V, Wager M, Ivshina A, et al. Detecition and genotyping of group A rotaviruses by oligonucleotide microarray hybridization . J Clinical microbiology, 2002 , 40:2398~2407
    [19] Christine D, Peter N G. DNA microarrays in drug discovery and development. Nature genetic, svolume 21, supplement pp 48~50
    [20] Debouck C, P N Goodfellow. DNA microarrays in drug discovery and development. Nature Genet, 1999, 21(1 Suppl):48~50
    [21] Diaz de Arce H J I, NunezL, GangesM , et al. An RT-PCR assay for the specific detection of classical swine fever virus in clinical samples, Vet. Res 1998, 29(5):431~440
    [22] Duggan D J, Bittner M, Chen Y, et al. Expression profiling using cDNA microarrays. Nature Genetics, 1999, Jan, 21:10~14
    [23] Editorial: To attinity and beyond Nat Genet, 1996, 14(4): 367~368
    [24] Editorial: Getting hip to the chip. Nature Genetics, 1998, 18(3): 195~197
    [25] Eggers M, Ehrlicn D. A review of microfabricated devces for gene-based diagnostics. Hematol Pathol, 1995, 9: 151~159
    [26] Gary N S, Wodicka L, Thunnissen A M, et al. Exploiting chemical libraries, structure, and genomics in the search of kinase inhibitor. Science, 1998, 281:533~535
    [27] Gingeras TR, Ghandour G, Wang E, etal. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. GenRes, 1998, 8:435~448
    [28] Graham CR, Leslie D, et al. Biosen. Bioelection, 1992, 7:487~493
    [29] GuoZ, Guifoyle R A, et al. Nuc. acids. Res, 1994, 22: 5456~5465
    [30] Hacia JG, Fan JB, Ryder O, et al. Determination of an-cestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet, 1999, 22(2): 164~167
    [31] Hacia J G. Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet, 1999, 21: 42~47
    [32] Harasawa R, Giangaspero M. Genetic variation in the 5' end and NS5B regions of classical swine fever virus genome among Japanese isolates. Microbiol Immunol, 1999, 43(4):373~379
    [33] Hashimoto K, Ito K, and lshimori Y. Anal. Chem. Acta, 1994, 286:219~224
    [34] Heishi M, Kagaya S, Katsunuma T, et al. High-density oligonucleotide array analysis of mRNA transcripts in peripheral blood cells of severe atopic dermatitis patients, Int Arch Allergy Immunol, 2002 Sep, 129(1): 57~66
    [35] Heller M J. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 2002, 4:129~153
    [36] Heller R A, SchenaM, Chai A, et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci USA, 1997, 94(6): 2150~2155
    [37] Hilary A. Coller, Carla Grandori, Pablo Tamayo, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion, PNAS 97: 3260~3265
    [38] http://www.Affymetrix.com
    [39] http://www.DNA.net.cn
    [40] http://www.nanogen.com
    [41] Hua, Jian-Ping C, Gargi M, et al. Cellular gene expression altered by human cytomegalovirus:Global monitoring with oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 1998 November 24, Vol. 95, Issue 24, 14470~14475,
    [42] Lashkari D A, et ai. Proc. Natl. Acad. Sci. USA, 1997, 94:13057~13062
    [43] Lee PH, Sawan SP, Modrusan Z, et al. An efficient binding chemistry for glass polynucleotide microarrays. Bioconjug Chem , 2002 Jan-Feb, 13(1): 97~103
    [44] Li J, Chen S, Evans DH, et al. Typingand Subtyping Influenza Virus Using DNA Microarrays and Multiplex Reverse Transcriptase PCR. Clin Microbiol, 2001 Feb;39(2): 696-704
    [45] Lipshutz R J, Fodor S P, Gingeras T R, et al. High density synthetic oligonucleotide arrays. Nat Genet, 1999 Jan, 21:20~24
    [46] Liu Y, GanserD, SchneiderA, et al. Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem, 2001 Sep 1, 73(17): 4196~4201
    [47] Lowings J P, Ibata G, Needham J, et al. Classical swine fever virus diversity and enolution [J] J Gen Virol, 1996, 77: 1311~1321
    [48] Lowings J P, Paton D J, Sands J J, et al. Classical swine fever: genetic detetion and analysia of differences between virus isolates[J] J Gen Virol, 1994, 75:3461~3468
    [49] Marshall A, Hodgson J. DNA chips: an array of possibilities. Nat Biotechnol, 1998, 16: 27~31
    [50] Marton M J, DeRisi J L, Bennett H A, et al. Drug target validation of secondary drug target effects using DNA microarrays. Nature Medicine, 1998, 4(11): 1293~1301
    [51] Mc Gall G H, BaroneA D, Diggelmann M, et al. The efficiency of light-directed synthesis of DNA arrays on glass substrates. J Am Che m Aoc, 1997, 119:5081~5050
    [52] Medlin J. Array of hope for gene technology. Environ Health Perspect, 2001 Jan, 109(1): A34~A37
    [53] Meyers G, T Rumenpf, H J Thiel. Molecu lar cloning and nucleotide sequence of the Genome of Hog Cholera virus. Virology , 1989, 171: 555~567.
    [54] Millan KM, SaraulloA, et ai. Anal. Chem, 1994, 66:2943~2944
    [55] Moenning V. Introduction to classical swine fever virus, disease and control policy. Vet. Micro, 2000, 73:93~102
    [56] Moiler R, Csaki A, Kohler J M, et al. DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold. Nucleic Acids Res, 2000 Oct 15, 28(20): E91
    [57] Moormann R G M, P A M Warmendarm, Van der mer, et al. Molecular cloning and nucleotide sequence of Hog Cholera virus strain Brescia and mapping of the genomic region encoding envelope glycoprotein E1. Virology, 1990, 177:184~198
    [58] Pandey PC, et ai. Anal. Chem, 1994, 66:1236~1241
    [59] Parinov S, Barsky V, Yershov G, et al. DNA sequencing by hybridization to microchip octa-and decanucleotides extended by stacked pentanucleotides. Nucleic Acids Res, 1996, 24:2998~3004
    [60] Pease AC, Solas D, Sullivan E J, et al. light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA, 1994, 91: 5022~5026
    [61] Piunno P A E, KrullU J, et al. Anal. Chem. Acta, 1994, 288:205~214
    [62] Puskas LG, Zvara A, Hackler L Jr, et al. Production of bulk amounts of universal RNA for DNA microarrays. Biotechniques , 2002Oct, 33(4): 898~900, 902, 904
    [63] Ra msay G. DNAchips: state-of-the-art. Nat Biotechnol, 1998, 16:40~44
    [64] RIjnbrand R, Mvan der Straten T, van Rijn P A, e t al. Internal entry of ribosome is directed by the 5'noncoding region of classical swine fever virus and is dependenton the presence of an RNA pseudoknot upstream of the initiation coden. J. Virol, 1997, 451~457
    [65] Ringeisen B R, Wu P K, Kim H, et al. Picoliter-scale protein microarrays by laser direct write. Biotechnol Prog, 2002 Sep-Oct, 18(5): 1126~1129
    [66] S Luccini, A Thompson, J C D Hinton Microarrays for microbiologists. Microbiology, 2001, 147, 1403~1414
    [67] Schnyder M, Stark K D, Vanzetti T, et al. Epidemiology and control of an outbreak of classical swine fever in wild boar in Switzerland. Vet Rec, 2002 Jan 26, 150(4): 102~109
    [68] Schultz RA, Nielsen T, Zavaleta J R, et al. Hyperspectral imaging: a novel approach for microscopic analysis. Cytometry , 2001 Apr 1, 43(4): 239~247
    [69] Stimpson D L, Hoijer J V, et al. Proc. Natl. Acad. Sci. USA, 1995, 92:6379~6383
    [70] Strachan N J C, et al. App. Microbiol, 1995, 21:5~9
    [71] Tamura J K , P Warrener, M S Collett. RNA-stimulated NTPase activity associated with p80 protein of the pestivirus bovine viral diarrhea virus. J. Virol, 1993, 193: 1~10
    [72] Tratschin J D , C Moser, N Ruggli, et al. Classical swine fever virus leader proteinase N~(pro)is not required for viral replication in culture. J. Virol, 1998, 72: 7681~7684
    [73] Vilcek S , Paton D J , Application of genetic methods to study the relationship between classical swine fever virus outbreaks. Research of Veterinary Sciernce, 1988, 65(1): 89~90
    [74] Vladimir C, Avraham R , Konstantin C, et al. Microarray Analysis of Microbial Virulence Factors. Applied and Environmental Microbiology, July 2001, 67 (7):3258~3263
    [75] Warrener P, M S Collett. 1995. Pestivirus NS3 (p80) protein possesses RNA helicase activity. J. Virol. 69: 1720~1726
    [76] Watts H J, Yeung D, et al. Anal. Chem. 1995, 67:4283~4289
    [77] Weidenhammer E M, Kahl B F, Wang L, et al. Multiplexed, targeted gene expression profiling and genetic analysis on electronic microarrays. Clin Chem, 2002 Nov, 48(11): 1873~82
    [78] Wendisch J. M., R. Stark, E. Weiland, et al. Thiel RNase of classical swine fever virus: Biochemical characterization and inhition by virus-neutralizing monoclonal antibodies. J. virol, 1996, 70: 352~358
    [79] Wensvoort G, J Boonstra, B G Bodzinga. Immunoaffinity purification and characterization of the envelope protein E1 of hog chlera virus J. Gen. Virol., 1990, 71:531~540
    [80] Xu J., Mendez E., P. R. Caron, et al. Bovine viral diarrhea virus NS3 srrine protease: Polyprotein cleavage sitrs, cofactor requirement, and molecular model of an enzyme essential for pestivirus replication. J. Virol. 1997, 71: 5312~5322
    [81] Yamaguchi S, shimomura T. Anal. Chem, 1993, 65:1925~1927
    [82] Yershov G, Barsky V, Belgovskiy A, et al. DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci USA , 1996, 93:4913~4918
    [83] Zhang Y, Coyne M, et al. Nucleic Acids Research, 1991, 19(14): 1929~1933
    [84] 白东亭,祁自柏.生物芯片应用研究开发进展.微生物免疫学进展,2002,30 (3):108~112
    [85] 蔡宝祥.家畜传染病学,中国农业出版社,第二版:151~155
    [86] 蔡钦生,冯美卿,黄海,等.生物芯片、基因组学和蛋白质组学在药物研发中的应用.医学学报,2003,38(10):795~800
    [87] 陈亚利,甘霖,武建国.乙型肝炎病毒基因的玻片杂交检测.中华医学检验杂忠,1999,22:243
    [88] 陈亚利,陆祖宏.微芯片:生命科学领域的新工具,生物化学与生物物理进展,1998,25:517~522
    [89] 单虎.基因芯片的研究进展.莱阳农学院学报,2002,19(4):289~292
    [90] 邓平建.基因芯片技术.中国公共卫生,2001,17(8):719~721
    [91] 邓沱,宁志强,周玉祥,等.生物芯片技术在药物研究与开发中的应用.中国新约杂志,2002,11(1):23~31
    [92] 冯永强,阎小君,苏成芝.基因芯片技术.国外医学分子生物学分册,2000,22 (1):1~5
    [93] 高勤,吴晓松,翁文.生物芯片及其在医药领域中的应用.广东药学院学报,2003,19(3):260~262
    [94] 韩雪清,刘湘涛,赵启祖等.CSFV遗传发生关系分析.中国兽医科技,1999,29(6):3~6
    [95] 贺猛,顾克东,马建秀.生物芯片的作用原理及其临床应用.西北民族学院学报,2003,24(47):65~67
    [96] 黄海燕,韩金祥.基因芯片核酸样品制备方法的优化.国外医学分子生物学分册,2003,25(2):118~121
    [97] 黄海燕,韩金祥.基因芯片接触式点样条件的优化.生物技术通信,2003,14(2):119~122
    [98] 李百京.禽流感的诊断.中国家禽,1999,27 (7):19~20
    [99] 李春阳,单松华,华修国.2个CSF野毒株E2基因主要抗原区域的扩增及其序列分析.上海交通大学学报,2001,21,(3):181~186
    [100] 李红卫,涂长春,金扩世,等.CSFV石门株与兔化弱毒株主要保护性抗原E2基因的序列测定[A].畜禽重大疫病免疫防治研究进展[C].北京:中国农业科技出版社,1997,22~26
    [101] 李宏卫,涂长春,金扩世,等.猪瘟病毒石门株和兔化弱毒株gp55基因克隆与序列分析.病毒学报,1998,14 (3):257~261
    [102] 李亚敏,王伟峰等,PPA-ELISA检测CSF抗体方法在江苏省的应用,畜牧与兽医,1995,27 (2):88~89
    [103] 陆祖宏,何农跃,赵雨杰,等.基因芯片的原理和应用.世界医疗器械.2000:6(8):56~59
    [104] 吕宗吉,涂长春,余兴龙,等.我国猪瘟的流行病学现状分析,中国预防兽医学报,2001,23 (4):300-303
    [105] 马立人,蒋中华.生物芯片.化学工业出版社,2000.2
    [106] 潘继红,韩金祥.基因芯片的制备方法.生命的化学,2002,22 (3):290~293
    [107] 潘继红,韩金祥.间隔臂和探针长度与寡核苷酸芯片重复性相关性研究.生物技术通讯,2003,14(1):12~15
    [108] 彭俊平,金奇.基因芯片技术在病毒学研究中的应用现状.病毒学报,2003,19(3):281~283
    [109] 齐华,程光伟.基于荧光标记的生物芯片信号检洲技术.现代电子技术,2003,148(5):41~46
    [110] 王家富.CSFV兔化弱毒株和石门强毒株基因组结构分析.博士学位论文.武汉:武汉大学,2000
    [111] 王雯慧,陈怀涛.猪瘟流行的病因学分析与防制.中国兽医科技,2000,30(3),15~18
    [112] 夏庆杰,张思仲,张元,等.一种提高基因芯片检测中杂交信号强度的简单方法.中华医学遗传学杂志,2002,19 (4):347~349
    [113] 肖昌,涂长春.CSFVE0、E2蛋白抗原表位的研究进展.畜牧兽医科技信息,2002,9:19~21
    [114] 邢汝冰,高福斌,张平.DNA芯片技术及国内外发展概况.光机电信息,2000,17 (8):6~10
    [115] 徐炳森,邵健忠.几种新型生物芯片的研究进展.生物化学与生物物理进展,2000,27(3):251~254
    [116] 徐伟文,李文全,毛裕民.表达谱芯片.生物化学与生物物理进展.2001,28 (6):822~825
    [117] 杨瑞馥,宋亚军.生物芯片技术及其应用.生物技术通讯,1999,Vol.10,No4
    [118] 尹双辉,韩雪清,胡永浩.CSF兔化弱毒株Erns基因的克隆及序列分析.甘肃农业大学学报,2004,39(3):235~238
    [119] 袁建平,郭晓奎.基因芯片在细菌基因组学和细胞微生物学研究中的应用.生命科学,2003,15(3):178~182
    [120] 曾浔,张建中.基因芯片在传染病分子流行病学中的应用.中华流行病学杂志,2002,23 (5):399~401
    [121] 张亮.基因芯片技术及其在药学领域的应用.基础医学与临床,2000,4:13~16
    [122] 张旭,杨承,黄成军,等.主动式生物芯片技术.微电子学,2003,33(4):324~330
    [123] 朱继名等,中华流行病学杂志,1993,14:180
    [124] 祝冀,马文丽,李凌,等.基因芯片制作中玻璃介质表面处理对DNA固定率的影响.华南理工大学学报,2002,30(3):94~97
    [125] 祝骥,马文丽,姚汝华.DNA芯片技术与基因表达研究.生命科学研究,2000,4 (2):106~111
    [126] 邹宗亮,王升启,王志清.基因芯片制备方法研究进展.基因技术通报,2000,1:7~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700