绵羊多产性状的DNA分子标记及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

Techniques such as candidate genes, microsatellite marker linkage analysis were used to study the frequency of prolific genes and the relationship among litter size, growth and development in seven sheep breeds or strains. A rapid and simple method for detection of FecB gene was established in this study. The purpose of the current study is to provide a method for molecular marker assistant breeding. The main contents presented as follows:1. Study of candidate genes on sheep prolificacyDNA samples were collected and amplified for bone morphogenetic protein receptor type IB gene (BMPR-IB), BMP 15 gene and GDF genes by PCR-RFLP method from 553 sheep from 7 breeds or strains such as Hu, Chinese Merino meat-Prolificacy strain, Suffolk, Dorset, Charolais, Chinese Merino and Romney Hills. Furthermore, relationship between the polymorphism of BMPR-IB gene and prolificacy as well as growth and development were analyzed. The results showed that the genotype frequency of BMPR-IB gene was significantly different in these breeds or strains. In Chinese Merino meat-prolificacy strain, the genotype frequency of BB, B+ and ++ is 51% 30% and 19% respectively. Except for Hu sheep with only BB genotype, other breeds had only ++ genotype. Analyzing the litter size, body weight and body size within Chinese Merino meat-Prolificacy strain, we found show that the mean litter size at 1st lambing of BB, B+ and ++ genotype populations is 2.0, 1.5 and 1.1 respectively, and there are significantly difference between groups (BB vs B+, P<0.05; BB vs ++, P<0.01). Sheep with genotype BB and B+ had a greater total litter size than those with genotype ++ (P<0.01), the number is 2.8, 2.3 and 1.2 respectively. At ages of 90 days, the body weight of lambs with genotype BB and B+ were (18.6±3.70)kg and ( 18.0 ± 3.31 ) kg, which were significantly greater than that of population with ++ (15.6 + 2.22 kg) genotype (p<0.05). Furthermore, at this age, the lambs with genotype BB and B+ were significantly greater than those with genotype ++ in chest circumstance and chest width, but at age of 120 days there was no significant difference between these two groups.
    These findings indicate that the BMPR-IB gene is a major gene that regulates litter size and affects growth and development during a certain period.2 . Study on polymorphisms of microsatellites in different sheeppopulationsSix microsatellite markers named LscvO43, BMS2508, GC101, 300U, Bulge5 and 471U which were closely linked to the FecB gene were analyzed in samples of Hu collected from Natural Source Conservative Region and Shanghai.for genetic diversity and relationship on litter size in Hu sheep as candidate markers. And Chinese Merino prolific meat strain as control. To evaluate the Hu breed by comparison with polymorphism information content (PIC), genetic heterozygosity (h), index of genetic diversity (H), and effective number of allele (E). The results showed that six markers were all polymorphic markers within Hu sheep, and total mean PIC, H, h and E within Hu come from Natural Source Conservative Region were higher than that of from Shanghai, but was lower than that of Chinese Merino prolific meat strain. The genetic distance (D) and index of similarity (I) of three different sheep population is in according with its breeding process. The mean litter size at 1st lambing for LscvO43 site HObp/llObp was the highest and total mean litter size for 300U site 148bp/148bp was the highest within Hu sheep population. Total mean litter size for LscvO43 site 107bp/123bp was significantly higher than that for LscvO43 site H0bp/123bp (PO.05). The 1st mean litter size for BMS2508 site 154bp/154bp, 154bp/170bp and 154bp/200bp was significantly higher than that for BMS2508 site 170bp/170bp (PO.05). There was difference between the mean litter size at 1st lambing and total mean litter size of microsatellite markers GC101, 300U, 471U and Bulge5 but no significantly difference was detected.3. Development of a method using tetra-primer ARMS PCR for detection of FecB gene mutation in sheepTetra-primer ARMS PCR is a rapid, simple and efficient method to detect single nucleotide polymorphism (SNP). Bone morphogenetic protein receptor IB (BMPR-IB) gene was a major effect gene that control prolific trait in Booroola Merino sheep. To establish a tetra-primer ARMS PCR method to genotype BMPR-IB gene. Specific primers around the mutation locus (A746G) were designed on the basis of tetra-primer
引文
[1] 张细权,李加琪,杨关福.动物遗传标记[M].北京:中国农业出版社,1997.
    [2] 王晓梅,杨秀荣.DNA分子标记研究进展[J].天津农学院学报,2000,7(1):21~24.
    [3] 杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展[J].中国医学科学院学报,2000,22(4):392~394.
    [4] Botstein D. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet, 1980, 32:314~331.
    [5] 冯登祯,刘红霞.DNA分子遗传标记技术及其研究进展[J].宁夏农学院学报,2001,22(03):80~83.
    [6] Donis-Keller H, Green P. A genetic linkage map of the human genome[J]. Nature, 1987, 51: 319~377.
    [7] 刘树俊,陈光潮.DNA指纹技术的应用和局限性[J].生物工程进展,1992,12(5).13~17.
    [8] 李祥龙,田庆义,刘铮铸,等.几个绵羊品种线粒体DNA限制性片断长度多态性比较研究[J].畜牧兽医学报,2001,32(4):295~298.
    [9] 李祥龙,郑桂茹,张亚平.绵羊、山羊和岩羊mtDNA的RFLP及其遗传分化研究[J].畜牧兽医学报,2000,31(4):289~295.
    [10] Davis G H, Galloway S M, Ross L K, et al. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola(FecB)mutation[J]. Biology of Reproduction, 2002, 66: 2869—1874.
    [11] 柳淑芳,姜运良,杜立新.BMPR-IB和BMP15基因作为小尾寒羊多胎性能候选基因的研究[J].遗传学报,2003,30(8):755~760.
    [12] 季从亮,储明星,陈国宏,等.4个绵羊品种褪黑激素受体1a基因第二外显子PCR~RFLP分析[J].华中农业大学学报,2003,22(2):105~109.
    [13] 储明星,桑林华,王金玉,等.小尾寒羊高繁殖力候选基因BMP15和GDF9的研究[J].遗传学报,2005,32(1):38~45.
    [14] Hanrahan J P, Gregan S M, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries)[J]. Biol Reprod, 2004, 70: 900~909.
    [15] 王昕,耿社民,朱育红.微卫星标记在畜禽育种中的应用[J].黄牛杂志,20002,28(1):39~41.
    [16] Beckmann J S, Weber J L. Survey of human and rat microsatelites [J]. Genomics, 1992(12): 627~631.
    [17] 张云武,张亚平.微卫星及其应用[J].动物学研究,2001,22(4)315~320.
    [18] 胡波,周新.微卫星DNA的研究概况[J].国外医学临床生物化学与检验学分册.2000,21 (2):88~90.
    [19] 李成华,李太武,宋林生.微卫星DNA技术及其应用的探讨[J].浙江海洋学院学报,2003,22(4):352~355.
    [20] Weber J L. Informative ness of human (dC-dA)n (dG-dT)n polymorphisms[J]. Genomics, 1990, 7: 524~530.
    [21] 管峰,杨利国,曹少先.DNA指纹技术及其在动物遗传育种中的应用[J].中国草食动物,2003,4:40~42
    [22] 管峰,杨利国,贾名威,等.微卫星构成及检测[J].生物学杂志,2004,21(2):1~3.
    [23] 邢晋炜,帅素容.RFLP和PCR-RFLP技术与猪分子育种[J].畜禽业,2001,7:24~25.
    [24] 贾名威,杨利国,管峰,等.应用6个STR基因座进行奶牛亲子鉴定[J].南京农业大学学报,2004,27(1):74~77.
    [25] 管峰,杨利国,贾名威,等.用微卫星标记技术对动物进行亲子鉴定[J].黑龙江畜牧兽医 2003,4:43~44.
    [26] 贾斌,陈杰,赵茹茜,等.新疆8个绵羊品种遗传多样性和系统发生关系的微卫星分析[J].遗传学报,2003,30(9):847~854.
    [27] 储明星,程金华,过纬.微卫星标记OarAE101和BM1329在五个绵羊品种中的初步研究[J].遗传学报,2001,28(6):510~517.
    [28] Haberfeld A, Cahaner A, Plotsky Y. DNA fingerprints of farm animals generated by microsatellite and minisatellite DNA probes[J]. Anim Genet, 1991, 22(3): 299~305
    [29] Ponsuksili S, Lizuka M, Slarkin M. Evaluation of genetic variation within and between different chicken lines by DNA fingerprinting[J]. J Hered. 1998, 89 (1): 17~23
    [30] 黄海根,盂安明.DNA指纹图带与鸡的蛋重性状的遗传相关分析[J].遗传,1998,20(3):13~15.
    [31] 王金玉,龚允陈.鸡的DNA指纹与屠宰性能的相关性研究[J].遗传学报,1999,26(4):324~328.
    [32] Schook L B, Alexander L. Mapping the porcine genome[J]. Pig News and Information, 1997, 18: 53~56.
    [33] Archibald A L, Brown J F, Hardge T, et al. Four new porcine polymorphic microsatellite loci (S0032, S0034, S0036, S0037) [J]. AnimGenet, 1994, 25 (5): 365
    [34] Dib C, Faure S. Fizames C, et al. A comprehensive genetic map of the human genome based on 5264 microsatellites[J]. Nature, 1996, 380: 152~154.
    [35] Dietrich W F, Miller J C, Steen R G, et al. A comprehensive genetic map of the mouse genome[J]. Nature, 1996, 380: 149~152.
    [36] Barendse W Moore S S, Byrne K, et al. Characterization of 65 bovine microsatellites [J]. Mamm Genome, 1994, 5 (2): 84~90.
    [37] Bishop M D. A genetic linkage map for cattle[J]. Genetics, 1994, 136: 619~639.
    [38] Crawford A M, Swarbrick P A, Schmack A E. et al. MAF45, a highly polymorphic marker for the pseudoautosomal region of the sheep genome, is not linked to the FecⅪ (Inverdale) gene[J]. Genomics, 1992, 13(3): 849~851.
    [39] Gortari M J, Freking B A, Stone R T, et al. Chromosomal assignment by linkage of 19 unassigned bovine microsatellites using ovine reference populations[J]. Anim Genet, 1998, 29(2): 150~151.
    [40] Vaiman D, Koutita O, Oustry A, et al. Genetic mapping of the autosomal region involved in XX sex-reversal and horn development in goats[J]. Mamm Genome, 1996, 7(2): 133~137.
    [41] Teale A J, Lewin H A, Barendse W, et al. A panel of polymorphic bovine, ovine and caprine microsatellite markers[J]. Anim Genet, 1995, 26(5): 299~306
    [42] Nei M, Takezaki N. Estimation of genetic distance and phylogenetic trees from DNA analysis [J]. Proc 5th Word Congr GenetAppl Livest Prod, 1994, 21: 405~411.
    [43] MacHugh D E, Loftus R T, Cunningham P, et al. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers[J]. Anim Genet, 1998, 29(5): 333~340.
    [44] Martin-Burriel I, Garcia-Muro E, Zaragoza P, et al. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites[J]. Animal Genetics, 1999, 30:177~182
    [45] 吴伟,王栋,曹红鹤,等.微卫星标记对五个中外牛品种群体遗传结构的研究[J].吉林农业大学学报,2000,22(4):5~10.
    [46] 孙少华,桑润滋,师守坤,等.肉牛群体遗传变异的微卫星多态性分析[J].中国农业大学学报,1999,4 (增刊):83~87.
    [47] Farid A E, O'Reilly, Dollard C, et al. Genetic analysis of ten sheep breeds using microsatellite markers[J]. Canadian Joumal of animal science, 1999, 11: 9~17.
    [48] Saitbekova N, Gaillard C, Oberex-Ruff G, et al. Genetic diversity in Swiss goat breeds based on microsatellies analysis[J]. Animal Genetics, 1999, 30: 36~41.
    [49] Van-Zeveren A. A genetic study of four Belgian pig populations by means of seven microsatellite loci[J]. J Anim Breed Genet, 1995, 112 (3): 191~204.
    [50] Martinez A M, Delgado J V, RoderoA, et al. Genetic structure of the Iberian pig breed using microsatellite[J]. Anim Genet. 2000, 31: 295~301.
    [51] 商海涛,牛荣,魏泓.三品系小型猪35个微卫星基因座的遗传学研究[J].遗传,2001,23 (1):17~20.
    [52] Zajc I, Sampson J. Utility of canine microsatellites in revealing the relationship of pure bred dogs [J].The Journal of Heredity, 1999, 90 (1): 104~107.
    [53] 张细权.用微卫星多态性研究家鸡品种的遗传结构及亲缘关系[J].Anim Biotechn Bullet, 1996, 5(Suppl):54~58.
    [54] Zhou H, Lamont S J. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers[J]. Anim Genet, 1999, 30: 256~264.
    [55] O'Brien J, Hutton K, Tomlin F, et al. A genetic linkage map of microsatellites in the domestic cat (Felis catus) [J]. Genomics. 1999, 57: 9~23.
    [56] 樊斌,彭中镇,李奎,等.微卫星标记及其在猪遗传育种中的应用[J].河南农业大学学报,1999,33(2):161~165.
    [57] Georges M. Maping quantitative trait loci for prolificacy and growth by exploiting progeny testing[J]. Genetics, 1995,139: 907~920.
    [58] Charilier C. The mh gene causing double muscling in cattle maps to bovine chromosome 2[J]. Mammalian Genome, 1995, 6: 788~792.
    [59] 曹红鹤,王雅春,陈幼春.五种微卫星标记在肉牛群体中的研究[J].中国农业科学,1999,32(1):78~82.
    [60] Napolitano F. Explotation of microsatellites as genetic markers of beef performance traits in Pimontese x Chianina crossbred cattle [J]. J Anim Breed Genet, 1996, 113: 157~162
    [61] 曹红鹤,王雅春,陈幼春.探讨微卫星DNA作为皮尔蒙特牛和南阳杂交牛生长性状的遗传标记[J].遗传学报,1999,26(6):621~626. .
    [62] Ashwell M S, Roxroad C E, Miller R H, et al.. Mapping economic trait loci for somatic cell in Holstein cattle using microsatellite markers and selecting genotyping[J]. Anim Genet, 1996, 27: 235~242.
    [63] 徐宁迎,H Thomsen, N Reinsch, 等.德国奶牛奶用性状的QTL研究[A].第十次全国动物遗 传育种学术讨论会论文集[C],1999,343~346.
    [64] Schrooten C, Bovenhuis H, et al. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle[J]. J Dairy Sci, 2000, 83 (4): 795~806
    [65] 白文林.DNA遗传标记与绵山羊遗传育种[J].西南民族学院学报 (自然科学版),2002,28 (1):50~54
    [66] Mulsant P, Lecerf F, Fabre S, et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes [J]. Proc Natl Acad Sci USA, 2001, 98(9): 5104~5109.
    [67] Souza C J, MacDougal C, Campbell B K, et al. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1B (BMPR-1B) gene [J]. J Endocrinol, 2001, 169(2): R1~6.
    [68] Wilson T, Wu X Y, Juengel J L, et al. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells [J]. Biology of Reproduction, 2001, 64: 1225~1235.
    [69] 赵书红,杨晓鹏,刘榜等.猪12号染色体几个微卫星标记与部分生产性状的关系研究[J].华中农业大学学报,2000,19(4):360~362
    [70] 刘伟敏,熊远著,蒋思文.9个微卫星标记在资源家系群体中的多态性检测[J].华中农业大学学报.2000,19(5):475~477
    [71] 张细权,李加琪,杨关福.动物遗传标记[M].北京:中国农业大学出版社,1997.
    [72] 张亚平,王文,宿兵.大熊猫微卫星DNA的筛选及其应用[J].动物学研究,1995,16(4):301~306
    [73] Glowatzki-Mullis M L, Gaillard C, Wigger G, et al. Microsatellite-based parentage control in cattle[J]. Anim Genet, 1995, 26(1): 7~12
    [74] Heyen D W, Beever J E. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexs for semiautomated parentage testing[J]. Animal Genetics, 1997, 28, 21~27
    [75] Luikart G, Biju-Duval M P, Ertugrul O, Zagdsuren Y, Maudet C, Taberlet P. Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats[J]. Animal Genetics, 1999, 30:431~438
    [76] CMBE译文组.现代临床医学生物工程学杂志,2003,9(6):540~541.
    [77] Kruglyak L. The use of a genetic map of biallelic markers in link age studies[J].Nat Genet, 1997, 17: 21~24.
    [78] 杨昭庆,洪坤学.单核苷酸多态性的研究进展[J].国外医学遗传学分册,2000,23(1):4~8.
    [79] 赵广荣,扬帆,元英进,等.单核苷酸多态性检测方法的新进展[J].遗传,2005,27(1):123~129.
    [80] 颜志强,杨胜利,巩毅.PCR及其衍生技术在基因突变检测中的应用[J].遗传,2003,25(2):198~200.
    [81] 高秀丽,景奉香,杨剑波,等.单核苷酸多态性检测分析技术[J].遗传,2005,27(1):110~122.
    [82] 杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展[J].中国医学科学院学报,2000,22(4):392~394.
    [83] 吴昕彦,张庆华,陈竺.单核苷酸多态性研究及应用[J].中华医学遗传学杂志,2000,17,1:57~59
    [84] 邹喻苹,葛颂.新一代分子标记—SNPs及其应用[J].生物多样性,2003,11(5):370~382.
    [85] Wang DG, Fan JB, Siao CJ, et al. Large scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science,1998, 280:1077~1082.
    [86] 徐恩萍,来茂德.单核苷酸多态性的研究及应用[J].临床与实验病理学杂志,2002,18(4):424~426.
    [87] 王启贵,李宁,邓学梅,等.鸡细胞外脂肪酸结合蛋白基因单核苷酸多态性与腹脂性状的相关研究[J].中国科学C辑,2001,31(3):266~270.
    [88] 聂庆华,张细权,雷明明.单核苷酸多态性及其在鸡QTL定位上的应用[J].遗传,2003,25(6):729~734.
    [89] 雷雪芹,陈宏,袁志发,等.牛FSHR基因第10外显子单核苷酸多态性及其与双胎性状的关系[J].中国生物化学与分子生物学报,2004,20(1):34~37.
    [90] 姜运良,吴常信.Booroola Merino绵羊多胎基因FecB的研究进展[J].中国畜牧杂志,1999,35(4):51~53.
    [91] 李凤娥,熊远著.绵羊FecB基因分离克隆的研究进展[J].国外畜牧科技,2001,28(6):42~44.
    [92] 储明星.Booroola羊FecB基因图谱研究进展[J].中国草食动物,2001,3(2):43~46.
    [93] 储明星.Booroola羊FecB基因的遗传标记研究进展.国外畜牧科技,2001,28(2):37~40.
    [94] 赵俊丽,吴登俊.绵羊QTL定位的研究进展.四川畜牧兽医,2001,28(10):29~30.
    [95] Montgomery G W, McNatty K P and Davis G H. Physiology and molecular genetics of mutations that increase ovulation rate in sheep [J].Indocrine Reviews, 1992,13:309~328.
    [96] Piper L R, Bindon B M and Davis G H. The single gene inheritance of the high litter size of the Booroola Merino [J]. Genetics of Reproduction in sheep, 1985, 38(2):115~125.
    [97] McNtty K P and Henderson K M. Gonadotrophins, fecundity genes and ovarian follicular function [J]. Journal of steroid Biochemistry, 1987,27: 365~373.
    [98] Souza C J, Campbell B K, Webb, et al. Secretion of inhibin A and follicular dynamics throughout the estrous cycle in the sheep with or without the Booroola gene (FecB)[J]. Endocrinology, 1997,138: 5333~5340.
    [99] McNtty K P, Smith P, Hudson N L, et al. Development of the sheep ovary during fetal and early neonatal life and the effect of fecundity genes [J]. Journal of Reproduction and fertility Supplement, 1995, 49:123~135.
    [100] McNttty K P, Hudson N, Henderson K M, et al. Differences in Gonadotrophin concentrations and pituitary responsiveness to GnRH between Booroola ewes which were homozygous (FF), heterozygous (F+) and non-carries (++) of a major gene influencing their ovulation rate [J].J Repro Fert, 1987,80:577~588.
    [101] McNatty K P, Hudosn N L, Shaw L, et al. Plasma concentration of FSH, LH, Thyriodstimulating hormone and Growth hormone after exogenous stimulation with GnRH in Booroola ewes that are hormozygous carrier or non-carrier of FecBgene [J]. J Repro Fert, 1994,102:177~183.
    [102] Fleming J S, Greenwood P J, Heath DA, et al. Expression of gonadotrophin subunit genes in sheep that were hormozygous carder and non-carrier of the Booroola fecundity gene FecB [J].J Repro Fert, 1995, 103:315~322.
    [103] Montgomery G W. Gene encoding the α and β chains of follicle-stimulation hormone are not site for the Booroola (FecB) mutation in sheep [J].J Repro Fert, 1992, 95:895~~901.
    [104] Montgomery G W, Tate M l, Henry H M, et al. The gonadotrophin-releasing hormone receptor maps to sheep 6 outside of the region of the FecB loucs[J].Mammalian Genome, 1995,6(6):436-438
    [105] McNatty K P. Major gene for Reproduction in sheep [A]. Eds, J-M Elsen, L.Bodin, J.Thimonier [C]. Institute Nationalde la Recherche, Agronomique, Paris, 1991: 105~124.
    [106] Montgomery G W, Lord EA, Penty J M, et al. The Booroola fecundity (FecB) gene maps to sheep chromosome 6 [J].Genomics, 1994, 22:148~153.
    [107] Montgomery G W, Crawford A M, Penty J M,et al.The ovine Booroola fecundity gene (FecB) is linked to markers from a region of human chromosome 4q[J]. Nature Genetics. 1993, 4:410~414.
    [108] Kirkatrick B W. Identification of quantitative trait loci for prolificacy and growth in mice [J], Mammalian Genome, 1998, 9: 907~920.
    [109] Lord E A, Davis G H, Dodds K G, et al. Identification of Booroola carries using microsatellite markes [J]. Wool Technology and Sheep Breeding, 1998, 46: 245~249.
    [110] Davis G H, McEwan J C, Fennessy P F, et al. Infertility due to bilateral ovarian hypoplasia in sheep homozygous (FecX~I FecX~H) for the Inverdale prolificacy gene located on the X chromosome [J]. Biology of Reproduction, 1992,46:636~640.
    [111] Davis GH, McEwan JC, Fennessy PF, et al. Evidence for the presence of a major gene influencing ovulation rate on the X chromosome of sheep [J]. Biology of Reproduction, 1991, 44:620~640.
    [112] Smith P, O WS, Corrigan KA, et al. Ovarian morphology and endocrine characteristics of female sheep fetuses that are heterozygous or homozygous for the Inverale prolificacy gene (FecX~I) [J]. Biology of Reproduction, 1997,57:1183~1192.
    [113] Montgomery G W, Galloway S M, Davis G H, et al. Genes controlling ovulation rate in sheep [J]. Reproduction, 2001,121: 843~852.
    [114] BrawTal R, McNtty KP, Smith P, et al. The ovaries of ewes homozygous for the X-linked lnverdale gene (FecX~I) are devoid of secondary and tertiary follicles but contain many abnormal structures [J]. Biology of Reproduction, 1993,49:895~907.
    [115] Shackell GH, Hudson N L, Heath DA, et al. Plasma gonadotrophin concentrations and ovarian characteristics in Inverdale ewes that are heterozygous for a major gene (FecX~I) on the X chromosome that influences ovulation rate [J]. Biology of Reproduction, 1993,48:1150~1156.
    [116] Juengel J L, Quirke L D, Tisdall D J, et al. Gene expression in abnormal ovarian structures of ewes homozygous for the Inverdale prolificacy gene [J]. Biology of Reproduction, 2000, 62: 1467-1478.
    [117] Galloway S M, Harahan V, Dodds K G, et al. A linkage map of the ovine X chromosome [J].Genome Research,1996, 6:667-678.
    [118] Galloway S M, McNatty K P, Cambridge L Met al. Mutations in an oocyte-derived growth differentiation factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner [J]. Nature Genetics, 2000, 25: 279~283.
    [119] 李碧侠,储明星,王金玉.生长分化因子9基因的研究进展[J].中国畜牧兽医,2002,29(6):33~36.
    [120] Juengel J L, Bodensteiner K J, Heath D A, et al. Physiology of GDF9 and BMP 15 signalling molecules [J]. Animal Reprod Sci, 2004, 82:447-460.
    [121] Juengel J L, Hudson N L, Heath D A, et al. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep [J]. Biol Reprod, 2002, 67: 1777~1789.
    [122] 苗竹林,王自能.卵母细胞来源的生长因子GDF9和GDF9B/BMP15[J].国外医学计划生育分册,2003,22(4):204~207.
    [123] Letterio J J, Roberts A B. Regulation of immune responses by TGF-β [J].Annu Revlmmunol, 1998,16:137~161.
    [124] Dube J L, Wang P, Elvin J, et al. The bone morphogenetic protein 15 gene is X linked and expressed in oocytes [J]. Molecular Endocinology, 1998,12:1809~1817.
    [125] Shimasaki S, Zachow R J, Li D, et al. A functional bone morphogenetic protein system in the ovary [J]. Proc Natl Acad Sci U S A, 1999, 96: 7282~7287.
    [126] Davis G H, Dodds K G, Wheeler R, et al. Evidence that an imprinted gene on the X chromosome increases ovulation rate in sheep [J].B iology of Reproduction,2001,64:216~221.
    [127] Jonmundosson J.V and Adalstinsson S. Single genes for fecundity in Icelandic sheep [J]. Genetics of Reproduction in sheep, 1985,159~168.
    [128] Fahmy M.H Prolific sheep [M].CAB International, 1996.
    [129] Lecerf F, Mulsant P, Elsen, et al. Localisation and mapping of a major gene controlling ovulation rate in Lacaune sheep. In: Proceedings of the Seventh World Congress on Genetics Applied to Livestock Production [J], Montpellier, France, CD-ROM Communication. 2002, 08~31, 4pp.
    [130] Martyniuk E, Radomsa M J. A single gene for prolificacy in Olkuska sheep. In: Elsen, J.M., Bodin, L., Thimonier, J. (Eds.), Major Genes for Reproduction in Sheep. INRA, Paris, France, 1991, pp. 85~92.
    [131] Malher X, Le Chere A K. High prolificacy in Belle-lie sheep (Brittany, France): major effects of a putative single gene and the Awh colour gene on ovulation rate and litter size. [J] Reprod. Nutr. Dev. 1998, 38: 473~484.
    [132] Davis G H, Galloway S M, Wilson T, et al. Major genes for prolificacy in NZ flocks[J]. Proc. Soc. Sheep Beef Cattle Vet. 2003, 33: 35~42.
    [133] Davis G H. Fecunity genes in sheep [J]. Animal Reprod Sci, 2004,82: 247~253.
    [134] Davis G H, Dodds K G, Bruce G D. Combined effect of the Inverdale and Booroola prolificacy genes on ovulation rate in sheep [J]. Proc. Assoc. Adv. Anim. Breed. Genet. 1999, 13: 74~77.
    [135] 林海燕,王红梅,祝诚.转化生长因子-β信号传导的Smad通路[J].中国科学(c辑),2003,33(2):97~109.
    [136] Hoodless P A, Haerry T, Abdollah S, et al. MADRI, a MAD-related protein that functions in BMP-2 signaling pathways [J]. Cell, 1996, 85: 489~500.
    [137] Souza C J H, Campbell B K, McNeilly A S, et al. Effect of bone morphogenetic protein 2(BMP2) on oestradiol and inhibin A production by sheep granulose cells,and localization of BMP receptors in the ovary by immunohistoehemistry[J]. Reproduction, 2002,123:363~369.
    [138] Ye S, Dhillon S, Ke X, et al. An efficient procedure for genotyping single nucleotide polymorphisms [J]. Nucleic Acids Research, 2001, 29(17): E88~96.
    [139] Little S. ARMS analysis of point mutation. In Taylor, G. R.(ed.) Laboratory Methods for the detection of mutations and polymorphisms in DNA[J]. CRC press, Boca Raton, FL, pp: 45~51.
    [140] Yah Z Q, Tong Q, Wang F, et al. Use of a rapid mismatch PCR method to detect gyrA and parC mutations in ciprofloxacin-resistant clinical isolates of Escherichia coli [J]. J Antimicrob Chemother, 2002, 49: 549~552.
    [141] 卜莹,古卓良,张晓丹,等.四引物PCR扩增反应的单管SNP快速测定法[J].中国生物化学与分子生物学报,2004,20(2):252~256.
    [142] 李群.湖羊的来源及历史再探[J].中国农史,1997,16(2):91~95.
    [143] 李祥龙,田庆义,刘铮铸,等.几个绵羊品种线粒体DNA限制性片断长度多态性比较研究[J].畜牧兽医学报,2001,32(4):295~298.
    [144] 孙伟,常洪,杨章平,等.中亚以东南绵羊亲缘系统的研究[J].中国农业科学,2003,36(1):94~98.
    [145] 耿荣庆,常洪,杨章平,等.湖羊起源及系统地位的研究[J].西北农林科技大学学报(自然科学版)2002,30(3):21~28.
    [146] 鲁生霞,常洪,杜垒,等.东亚近海大陆绵羊群体遗传分化研究[J].畜牧兽医学报,2004,35(2):129~133
    [147] 巩元芳,李祥龙,刘铮铸,等.我国主要地方绵羊品种随机扩增多态DNA研究[J].遗传,2002,24(4):423~426.
    [148] 王元兴,王城,程瑞禾,等.江苏吴县东山湖羊保护区湖羊种质特性及提高措施[J].家畜生态,1998,19(3):26~28.
    [149] 王元兴,阎玉琴,程瑞禾,等.湖羊繁殖力单项选育效果[J].当代畜牧,2000,4:31~32.
    [150] 张泉福,徐苏标,白莲清,等.湖羊垂体~卵巢轴内分泌与性发育相关研究[J].浙江农业学报,1995,7(5):412~415.
    [151] 张德福,郑亦辉.湖羊多产的生殖内分泌机理研究[J].中国养羊,1994,1:25~26.
    [152] 谢庄,程瑞禾,韩玉刚.湖羊公羊产羔效应的统计学分析[J].南京农业大学学报,1998,21(1):77~81.
    [153] 刘守仁,邵长发,张凤林,等.美利奴羊(新疆军垦型)多胎品系的选育研究[J].畜牧与兽医,1995,27(6):246~248.
    [154] 王根林,毛鑫智,Davis G H,等.DNA分析发现我国湖羊和小尾寒羊存在Booroola(FecB)多胎基因[J].南京农业大学学报,2003,26(1):104~106.
    [155] 李碧侠,储明星,王金玉.绵羊GDF9基因PCR-SSCP分析[J].遗传学报,2003,30(4):307~310.
    [156] 刘守仁,邵长发,张凤林,等.中国美利奴肉用多胎品系的选育研究[J].新疆农业科学,1994,5:227~230.
    [157] 王启贵,钟发刚,李辉,等.绵羊BMPR-IB基因多态性与其产羔数的相关研究[J].草食家畜,2003,(2):20~23.
    [158] 刘震乙.家畜育种学[M](第二版).北京:中国农业出版社,1998.
    [159] 萨姆布鲁克 J,弗时奇 E F,曼尼阿蒂斯T.分子克隆实验指南[M].第2版.金冬雁,黎孟枫,译.北京:科学出版社,1998.
    [160] 贾名威.奶牛和肉牛STR基因座遗传多态性及亲权鉴定方法研究.硕士论文[M].南京农业大学,2002.
    [161] Davis G H, Montgomery G W, Allison A J, et al. Segregation of a major gene influencing fecundity in progeny of Booroola sheep. New Zealand J of Agricultural Research. 1982,25:525-529.
    [162] Smith P, O W S, Hudson N L, et al. Effects of the Booroola gene (FecB) on body weight, ovarian development and hormone concentrations during fetal life [J]. J Reprod Fertil, 1993, 98(1): 41~54.
    [163] 管峰,杨利国,艾君涛.一种SNP检测新技术:Tetra-primer ARMS PCR技术[J].生命的化学,2005,24(6):514~516.
    [164] McGrath S A, Esquela A F, Lee S J. Oocyte specific expression of growth differentiation factor 9 (GDF9). Mol Endoerinol, 1995, 9(1): 131-136.
    [165] Dong J, Albertini D F, Nishirnori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996, 10,383(6600):531-5.
    [166] Hayashi M, McGee E A, Min G, et al. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology. 1999,140 (3): 1236-1244,
    [167] Vitt UA, Hayashi M, Klein C, et al. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod. 2000, 62(2): 370-377.
    [168] Susan L, Fitzpatrick, Deborah M, et al. Expression of Growth Differentiation Factor-9 Messenger Ribonucleic Acid in Ovarian and Nonovarian Rodent and Human Tissues. Endocrinology, 1998, 139:2571-2578.
    [169] Montgomery G W, Zhao Z Z, Marsh A J, et al. A deletion mutation in GDF9 in sisters with spontaneous DZ twins. Twin Res. 2004, 7(6): 548-55.
    [170] 贾名威,杨利国,管峰,等.奶牛和肉牛6个STR基因座遗传多态性研究[J].遗传,2004,26(3):309~314.
    [171] 商海涛,牛荣,魏泓.三品系小型猪35个微卫星基因座的遗传学研究[J].遗传,2001,23(1):17~20.
    [172] 杨章平,常洪,孙伟,等.7个绵羊微卫星DNA标记在绵(山)羊群体中的多态性检测[J].西北农林科技大学学报(自然科学版),2004,32(12):69~74.
    [173] Takezaki N, Nei M. Genetic distance and reconstruction of phylogenetie trees from microsatellite DNA[J]. Genetics, 1996, 144:389~399.
    [174] Nei M, Roychoudhury A K. Sampling variance of heterozygosity and genetic diatance[J]. Genetics, 1974,76:379~390.
    [175] 许丽萍.中国人群微卫星位点DXYS156的多态性研究[J].人类学学报,2000,19(2):121~126.
    [176] 李雪梅,谷世新,李奎,等.应用微卫星标记对中国10个品种猪遗传变异的研究[J].山东农业大学学报,2000,31(3):261~264.
    [177] 吴凯锋,马月辉,浦亚斌,等.湖羊的保种和利用探讨[J].中国草食动物,2003,23(6):27~29.
    [178] 蒋遂安,张花菊,郭勤朝.绵羊杂交改良效果试验研究[J].中国养羊,1997,4:14-15.
    [179] 王元兴,杨若飞,张有法,等.肉用绵羊与湖羊杂交产羔性能的研究[J].畜牧与兽医,2003,35(12):18~19.
    [180] 冶政云,马增义,肖西山,等.陶赛特绵羊与藏系绵羊杂交试验[J].中国草食动物,2000,2(6):15~17.
    [181] 徐廷生,张杰.我国绵羊品种资源的保存与利用概况[J].洛阳农业高等专科学校学报,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700