玉筋鱼和松江鲈微卫星标记的开发及群体遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用富集文库——菌落原位杂交法和PCR扫描法筛选了11对玉筋鱼和14对松江鲈的微卫星分子标记,并利用开发的微卫星分子标记评价了这两种海洋鱼类的群体遗传结构和遗传多样性等指标。综合分析了影响海洋鱼类遗传多样性和地理格局的因素以及物种自身生活史特征对其遗传结构影响。主要研究结果如下:
     1.两种海洋鱼类微卫星标记的筛选和评价
     (1)玉筋鱼微卫星标记的筛选及评价
     首先,利用HaeⅢ酶对玉筋鱼基因组进行酶切,经过膜富集(AC)n和(AG)n后构建了玉筋鱼的微卫星富集文库。运用菌落原位杂交的方法,使用(AC)n和(AG)n为探针经过杂交后,筛选得到阳性克隆,经测序共获得了108个玉筋鱼的微卫星序列。在对玉筋鱼微卫星序列设计的31对引物中,11对可以扩增出清晰的微卫星条带。利用36个个体对能够扩增清晰微卫星条带的位点进行主要遗传学参数的估算,结果显示11对引物具有高多态性。多态性标记中,扩增出的等位基因数目从8到29个不等,观测杂合度和期望杂合度分别为0.441到0.886和0.818到0.965。这些标记的开发为后续的玉筋鱼种群遗传学研究做好了准备。
     (2)松江鲈微卫星标记的筛选及评价
     不同于玉筋鱼微卫星标记的筛选,在构建松江鲈部分基因组文库后,我们采用PCR扫描法筛选了松江鲈的微卫星序列。在设计的18对松江鲈微卫星标记中,有14对引物在文登29个个体中得到了较为清晰的、能够准确判断的扩增条带。随机抽取部分样本进行2~3次的重复实验表明,微卫星的扩增结果稳定、重复性高。读取全部基因型,14个位点获得了113个等位基因,其中有5个位点仅获得了2个等位基因。不同的引物获得的等位基因数为2~13个不等,观测和期望杂合度在0.682到1.000和0.853到0.953之间。
     2.玉筋鱼遗传多样性及分子系统地理格局
     玉筋鱼是西北太平洋的重要的经济种类,在玉筋鱼渔业区的渔业捕捞中占有比较高的比重。我们利用微卫星分子标记评估了其种群遗传多样性和系统地理格局。基于8对微卫星标记和16个玉筋鱼群体共计318个玉筋鱼个体的研究结果发现,玉筋鱼存在两个独立的自由交配组。在混合模型下,大连、青岛、相岛、香川、爱知、濑户内海、鹿岛、大津、仙台小个体、深辅大部分个体被分配于一号自由交配群;陆奥湾、仙台大个体、青森、石狩湾、礼文岛、宗古个体的大部分个体被分配于二号自由交配群。基于微卫星分子标记的遗传多样性研究发现玉筋鱼个群体个位点均具有较高的遗传多样性水平。综合大量微卫星研究结果,海洋鱼类通常表现出较高的遗传多样性水平,可能是由于海洋鱼类巨大的群体数量与微卫星DNA高的突变速率。
     3.松江鲈鱼遗传瓶颈及种群评估
     松江鲈是一种溯河洄游鱼类。由于环境污染和人类的过度捕捞,在中国的东南海域松江鲈鱼迅速的减少或几近消失。松江鲈鱼的科学管理和可持续的开采已经迫在眉睫。我们利用微卫星标记研究了6个松江鲈地理群体的遗传多样性和遗传结构。研究结果显示,多态信息含量(PIC)值在0.683-0.928之间,期望杂合度在0.763(C79-E)~0.970(E95-E)之间,观测杂合度(HO)在0.333(C44-E)~1.000(C46-E、C44-QTJ)之间变化。文登和荣成天鹅湖有比较小的有效群体大小,在4000以下,其余群体的都在4000以上。利用BOTTLENECK软件进行Mode shift测试发现天鹅湖与钱塘江群体均显示瓶颈事件的发生。
     通过9个微卫星位点等位基因频率计算6个松江鲈群体间遗传分化指数在0.0131(丹东和秦皇岛)和0.0467(日本有明海与杭州钱塘江)之间变化。基于分子标记的个体分配模式显示,日本有明海群体95%以上个体被分配于一号自由交配群;钱塘江、丹东、秦皇岛和文登大部分个体(>93%)被分配于二号自由交配群;天鹅湖群体则表现为两类基因型混杂的现象,其中43.7%的为红色类型的基因型,56.3%的为绿色类型的基因型。松江鲈营淡水生活,降河产卵,产卵场一般位于潮间带,距离沿岸1~2km处。这些生物学特征和地理分布会限制松江鲈鱼群体间的交流。
MicrosatelliteDNA markers for Sand lance (Ammodytes personatus) and roughskinsculpin (Trachidermus fasciatus) were isolated developed by enrichmentlibraries-colony hybridization and PCR screening. Population structure and geneticdiversity were using these microsatelliteDNA markers in the two species.
     1. Isolation and characterization of microsatellite markers for two marine fishes
     (1) Isolation and characterization of microsatellite markers for Sand lance (A.personatus)
     Microsatellite enrichment library of Sand lance (A. personatus) was constructed,which was digested by HaeⅢ. The primers flanking31microsatellites isolated fromthe genomic library enriched for (AC)nand (AG)nwere designed in the Sand lance (A.personatus). Eleven primer pairs provided clear and polymorphic amplificationproducts. Based on characterization with36Sand lance individuals, the number ofalleles ranged from8to29. The values of HOand HEvaried from0.441to0.886and0.818to0.965, respectively. These markers are therefore potentially useful for studiesof the population genetics of the species.
     (2) Isolation and characterization of microsatellite markers for roughskin sculpin (T.fasciatus)
     Different from Sand lance (A. personatus), PCR screening after genomic libraryenriched constructed were used to develop14novel polymorphic and informativemicrosatellite markers for the roughskin sculpin (T. fasciatus). We characterized theseloci by genotyping29individuals in Wendeng population. A total of113alleles werefound. The number of alleles ranged from2to13across the14microsatellite loci. The values of HOand HEvaried from0.682to1.000and0.853to0.953, respectively.
     2. Molecular phylogeography and Genetic diversity for sand lance (A. personatus)
     The Japanese sand lance A. personatus is a common and commercially importantspecies in northwestern Pacific. Sand lance, A. personatus, usually constitutes a highproportion of the fish biomass in the regions where they occur. Microsatellite DNAmarkers were used to estimate the population structure and demographic history ofSand lance. Two high distinct lineages were detected in318individuals from16populations across the range of the species based on sequence variations ofmicrosatellite. The majority of individuals of the Dalian(Dl)、 Qingdao(Qd)、Fukuoka(Fuku)、Kagawa (Kag)、Ise Bay (Ise)、Hyogo (Hy)、Kashima(Kas)、Otsuko(Ot)、Sendai Bay Small (Ss)、Fukaura Kuka populations of sand lance were assignedto an inferred cluster, and above the93%of the individuals of the fourpopulations(Mutsu Bay (Mu)、Sendai Bay Large (Sl)、Hachinohe (Ha)、Ishikari Bay(Ish)、Rebun Island (Re)、Cape Soya (Ca) of sand lance were assigned to the other.Pleistocene coastal glaciations might have divergent in the Sea of Japan and Pacificcostal waters of Japanese Island, during the low sea level. Two major ecologicalgroups of sand lance may be accomplished since then. The high genetic diversity wasfound for sand lance based on microsatellite DNA markers. The large effectivepopulation size coupled with the high mutation rate may be responsible for the highgenetic diversity.
     3. Bottleneck effect and population estimate for roughskin sculpin (T. fasciatus)
     Roughskin sculpin (T. fasciatus) is a Catadromous species. The distribution area ofthe species in China has been reduced greatly and almost disappears completely alongthe sea areas in the east and the south caused by environmental pollution andover-catching. It is urgent for scientific management for sustainable exploitation. Toexamine population genetic diversity and structure of T. fasciatus, samples from fivedifferent locations of China and Ariake population in Japan were analyzed by usingmicrosatellite technology. The Polymorphism Information Content (PIC) were high(PIC=0.683-0.928). The expected heterozygosities ranged from0.763(C79-E) to0.970(E95-E). The observed heterozygosities varied from (HO)0.333(C44-E) to 1.000(C46-E、C44-QTJ). An effective population size reduction (bottle effect) isdetected in Te and Qt by Mode shift test. The effective population size of Wd and Tepopulation was below4000, and smaller than other populations.
     High significant genetic differentiations were found among6populations byscanning9microsatellite loci variations. The pairwise FSTvalues ranged from0.0131to0.0467. The majority of individuals (>95%) of the Ariake populations of roughskinsculpin were assigned to an inferred cluster, and above the93%of the individuals ofthe four populations of roughskin sculpin were assigned to the other. Current and itslife cycle might restrict the gene flows between populations.
引文
陈昌海,唐明芝.黄海的玉筋鱼资源及其渔业.海洋渔业,2000,22(2):71-72
    陈昌海.黄海玉筋鱼资源及其可持续利用.水产学报,2004,28(5):603-607
    陈建华,赵志安,李堃宝.松江鲈的染色体组型分析.动物学研究,1984,5(1):103-104
    陈金平,董崇智,孙大江,等.微卫星标记对黑龙江流域大麻哈鱼遗传多样性的研究.水生生物学报,2004,28(6):607-612
    陈微.牙鲆微卫星分子标记的筛选及多态性检测.硕士学位论文.青岛:中国海洋大学,2005
    董颖,韩洁,蔡厚才.对赤点石斑鱼多态性微卫星位点的跨种扩增和特征分析.北京师范大学学报(自然科学版),2008,44(5):511-514
    根井正利等.汪家玉译.分子群体遗传学与进化论.北京:北京农业出版社,1983
    公维华,宋憬愚,姜运良,等.微卫星标记分析泰山螭霖鱼的遗传多样性.山东农业大学学报,2004,35(3):339-342
    韩志强.三种海洋鱼类分子系统地理学研究.博士学位论文.青岛:中国海洋大学,2009
    何平.真核生物中的微卫星及其应用.遗传,1998,20(4):42-47
    江鑫.花鲈与日本鲈群体遗传结构与多样性研究.博士学位论文.青岛:中国海洋大学,2009
    金鑫波.中国动物志硬骨鱼纲鮋形目.北京:科学出版社,2006:252
    乐佩琦,陈宜瑜.中国濒危动物红皮书—鱼类.北京:北京科学出版社,1998:240-243
    李堃宝,邵炳绪,芮菊生,等.松江鲈降河洄游期间消化器官的组织学研究.复旦学报(自然科学版),1984,23(1):7-16
    李琪,木岛明博.长牡蛎(Crassostrea gigas)微卫星克隆快速分离及特性分析.海洋与湖沼,2004,35(4):364-370
    梁宏伟,王长忠,李忠,等.聚丙烯酰胺凝胶快速、高效银染方法的建立.遗传,2008,30(10):1379-1382
    刘海林,章群,唐优良,等.黄渤海松江鲈线粒体控制区结构与序列多态性分析.海洋通报,2010,6(3):283-288
    刘名.太平洋鲱和大头鳕的群体遗传学研究.博士学位论文.青岛:中国海洋大学,2010
    刘萍,孟宪红,何玉英,等.中国对虾黄、渤海3个野生地理群体遗传多样性的微卫星DNA分析.海洋与湖沼,2004,35(3):252-257
    刘奇.大泷六线鱼(Hexagrammos otakii)生物学特征与遗传多样性研究.硕士学位论文.青岛:中国海洋大学,2010
    刘占江,冯纪年.斑点鳃鱼的基因图谱及遗传标记选育研究.西北农业学报,2001,10(2):110-114
    马洪雨,姜运良,郭金峰,等.利用微卫星标记分析东平湖黄颡鱼的遗传多样性.激光生物学报,2005,15(2):136-139
    孟庆闻,苏锦祥,缪学祖.鱼类分类学第1版.北京:中国农业出版社,1995:840-842
    潘连德,蔡飞,马召腾,等.中国境内松江鲈的种群特征以及资源保护.水产科技情报,2010,37(5):211-213
    潘连德.养殖松江鲈主要病害诊断和控制.水产科技情报,2007,34(6):261-264
    邵炳绪,唐子英,孙帼英,等.松江鲈繁殖习性的调查研究.水产学报,1980,4(1):81-89
    邵炳绪.松江鲈的生态初步观察.复旦学报,1959,2:213-218
    邵炳绪.松江鲈甲状腺的周年变化及其与降河洄游的关系.海洋与湖沼,1978,9(2):230-235
    邵昭君.鲟形目鱼类中微卫星Spl-106位点的复杂变异.博士学位论文.武汉:中国科学院研究生院(水生生物研究所),2005
    孙效文,梁利群.鲤鱼的遗传连锁图谱(初报).中国水产科学,7(1):1-5
    唐明芝,连大军,慕康庆.玉筋鱼资源开发利用现状分析.海洋渔业,2003,25(4):192-193
    王金秋,梁鸿子.基于形态性状的松江鲈(Trachidermus fasciatus)种群鉴别.海洋与湖沼,2008,39(4):348-353
    王金秋,潘连德,梁天红,等.松江鲈(Trachidermus fasciatus)鱼胚胎发育的初步观察.复旦学报(自然科学版),2004,43(2):250-254
    王金秋,石椿,成功.鸭绿江流域中国境内松江鲈(Trachidermus fasciatus)天然种群的同工酶分析.复旦学报(自然科学版),2002,41(6):688-693
    王金秋,石椿.松江鲈(Trachidermus fasciatus)不同组织同工酶的研究.复旦学报(自然科学版),2001,40(5):465-470
    王幼槐.关于松江鲈学名和模式产地以及地理分布之探讨.海洋渔业,2006,28(4):209-303
    韦正道,王昌燮,杜懋琴,等.控制松江鲈(Trachidermus fasciatus)生长的环境因子的研究.复旦大学学报(自然科学版),1997,36(2):581-585
    夏颖哲,盛岩,陈宜瑜.利用线粒体DNA控制区序列分析细鳞鲑种群的遗传结构.生物多样性,2006,14(1):48-54
    徐建荣,韩晓磊,郁建锋,等.松江鲈群体遗传多样性的ISSR分析.淡水渔业,2009,139(11):21-24
    徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选.海洋与湖沼,2001,32(3):255-259
    徐鹏.中国对虾微卫星标记的筛选.硕士学位论文.青岛:中国科学院研究生院(海洋研究所),2002
    杨金权,胡雪莲,唐文乔,等.长江口邻近水域刀鲚的线粒体控制区序列变异与遗传多样性.动物学杂志,2008,43(1):8-15
    于诗群,王世党.松江鲈生物学特征及养殖技术.齐鲁渔业,2008,8:25-27
    战爱斌.栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用.博士学位论文.青岛:中国海洋大学,2007
    钟金城,陈智华.分子遗传学与动物育种.成都:四川大学出版社,2001
    周涵韬,郑文竹,周以侹,等.不同作物间共用SSR引物的初步研究.厦门大学学报自然科学版,2002,41(1):89-93
    Ambali, A.J.D., Doyle, R.W., Cook, D.I. Development of polymorphic microsatellite DNA loci for characterizingOreochromis shiranus subspecies in Malawi. J.Appl. Ichthyol,2000,16:121-125
    Appleyard, S.A., Grewe, P.M., Innes, B.H. et al. Population Structure of Yellowfin Tuna (Thunnus albacares) inthe Western Pacific Ocean, Inferred from Microsatellite Loci. Marine Biology,2001,139:383-393
    Ardren, W.R., Borer, S., Thrower, F., et al. Inheritance of12microsatellite loci in Oncorhynchus mykiss. Journal ofHeredity,1999,90:529-536
    Avise, J.C. and Hamriek, J.L. Conservation Genetices, Case Histories from Nature. Chapman&Hall, NewYork,1996
    Avise, J.C. Phylogeography: the history and formation of species. Cambridge, MA, USA: Harvard UniversityPress,2000
    Avise, J.C., Helfman, G.S., Saunders, N.C., et al. Mitochondria DNA differentiation in North Atlantic eels:population genetic consequences of an unusual life history pattern. Poceedings of the Ntional Aademy of Sciencesof the USA,1986,83:4350-4354
    Balloux, F., Brunner, H., Lugon-Moulin, N., et al. Microsatellites can be misleading: An empirical and simulationstudy. Evolution,2000,54:1414-1422
    Balloux, F., Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. MolecularEcology,2002,11(2):155-165
    Bassam, B.J., Caetano-Anolles, G., Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamidegels. Analytical Biochemistry,1991,19:680-683
    Beacham, T.D., Lapointe, M., Candy, J.R., et al. DNA in action: rapid application of DNA variation to sockeyesalmon fisheries management. Conservation Genetics,2004,5:411-416
    Beck, N.R., Double, M.C., Cockburn, A. Microsatellite evolution at two hypervariable loci revealed by extensiveavian pedigree. Molecular Biology and Evolution,2003,20:54-61
    Bell, J.J. and Okamura, B. Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria inreserve design. Proceedings of the Royal Society of London Series B-biological Sciences,2005,272:1067-1074
    Bergstad, O.A., Hoines, A.S., Kruger, J.E.M. Spawning time, age and size at maturity, and fecundity of sandeel,Ammodytes marinus in the north-eastern North Sea and in unfished coastal waters off Norway. Aquatic LivingResources,2001,14(5):293-301
    Birky, C.W., Fuerst, P., Maruyama, T. Organelle gene diversity under migration, mutation and drift: equilibriumexpectations, approach to equilibrium, effects of heteroplasmic cells and comparison to nuclear genes. Genetics,1989,121:613–627
    Bostein, D., White, R.L., Skolnick, M., et al. Construction of a genetic linkage map in man using restrictionfragment length polymorphisms. American Journal of Human Genetics,1980,32:314-33l
    Boulcott, P., Wright, P.J., Gibb, F., et al. Regional variation in the maturation of sandeels in the North Sea. ICESJournal of Marine Science,2007,64:369-376
    Buchnan, J.C., Archie, E.A., Van Horn, R.C., et al. Locus effects and sources of error in noninvasive genotyping.Molecular Ecology Notes,2005,5:680-683
    Buonaccorsi, V.P., Kimbrell, C.A., Lynn, E.A., et al. Population structure of copper rockfish (Sebastes caurinus)reflects postglacial colonization and contemporary patterns of larval dispersal. Canadian Journal of Fisheries andAquatic Sciences,2002,59:1374-1384
    Callen, D.F., Thompson, A.D., Shen, Y., et al. Incidence and origin of null alleles in the (AC)nmicrosatellitemarkers. American Journal of Human Genetics,1993,52:922-927
    Carlsson, J., McDowell, J.R., Díaz-James, P., et al. Microsatellite and Mitochondrial DNA Analyses of AtlanticBluefin Tuna (Thunnus thynnus) Population Structure in the Mediterranean Sea. Molecular Ecology,2004,13:3345-3356
    Carreras-Carbonell, J., Macpherson, E., Pascual, M. Population structure within and between subspecies of theMediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci. MolecularEcology,2006,15:3527-3539
    Chakraborty, R., De Andrade, M., Daiger, S.P., et al. Apparent heterozygote deficiencies observed in DNA typingdata and their implications in forensic applications. American Journal of Human Genetics,1992,56:45-57
    Cho, Y.G., Ishii, T., Temnykh, S., et al. Diversity of microsatellites derived from genomic libraries and GenBanksequences in rice (Oryza sativ L.). Theoretical and Applied Genetics,2000,100:713-722
    Choi, K., Jeon, S., Kim, I. The atlas of Korean fresh-water fishes,8thedn (in Korean with English abstract).Korean Institute of FreshWater Biology, Seoul,1984
    Christensen, A., Hochbaum, U., Jensen, H., et al. Hydrodynamic backtracking of fish larvae by individual-basedmodelling. Marine Ecology Progress Series,2007,347:221-232
    Corbin, P.G. and Vati, V. The post-larval sandeels (Ammodytidae) of the Celtic Sea and Plymouth Area. Journal ofthe Marine Biological Association of the United Kingdom,1949,28:287-313
    Cordeiro, G.M., Casu, R., McIntyre, C.L., et al. Microsatellite markers from sugarcane (Saccharum spp.) ESTscross transferable to erianthus and sorghum. Plant Science,2001,160:1115-1123
    Cornuet, J-M. and Luikart, G. Description and power analysis of two tests for detecting recent populationbottlenecks from allele frequency data. Genetics,1996,144:2001-2014
    Covill, R.W. Food and feeding habits of larvae and postlarvae of Ammodytes americanus. Bulletin of the BinghamOceanographic collection, Yale University,1959,17:125-146
    Cronin, L.E. Fisheries and resource stress in the19thcentury. Journal of Washington Academy of Sciences,1986,76:188-198
    Crow, J.F. and Aoki, K. Group selection for a polygenic behavioral trait: Estimating the degree of populationsubdivision. Proceedings of the National Academy of Sciences of the USA,1984,81,6073-6077
    Crow, J.F. and Kimura, M. An Introduction to Theoretical Population Genetics. Harperand Row, New York,1970Daunt, F., Wanless, S., Greenstreet, S.P.R., et al. The impact of fishery closure on seabird food consumption,distribution and productivity in the northwestern North Sea. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(3):362-381
    De Vicente, C. and Fulton, T. Molecular marker Learning Modules Vol.1.IPGRI. Rome, Italy and Institute forGenetic Diversity, Ithaca, New York, USA.2003
    DeWoody, J.A. and Avise, J.C. Microsatellite variation in marine, freshwater and anadromous fishes comparedwith other animals. Journal of Fish Biology,2000,56:461-473
    Di Rienzo, A., Peterson, A.C., Garza, J.C., et al. Mutational processes of simple-sequence repeat loci in humanpopulations. Proceeding of the National Academy of Sciences of the USA,1994,91:3166-3170
    Dodson, J.J., Tremblay, S., Colombani, F., et al. Trans-Arctic dispersals and the evolution of a circumpolar marinefish species complex, the capelin (Mallotus villosus). Molecular Ecology,2007,16:5030-5043
    Ede, A.M. and Crawford, A.M. Mutations in the sequence flanking the microsatellite at the KAP8locus preventthe amplification of some alleles. Animal Genetics,1995,26:43-44
    Edwards, K., Johnstone, C., Thompson, C. A simple and rapid method for the preparation of plant genomic DNAfor PCR analysis. Nucleic Acids Research,1991,19(6):1349
    Edwards, K.J., Barker, J.H., Daly, A., et al. Microsatellite libraries enriched for several microsatellite sequences inplants. Biotechniques,1996,20(5):758-760
    Ellegren, H. Microsatellite: simple sequence with complex evolution. Nature Review Genetics,2004,5:435-445
    Englbrecht, C.C., Freyhof, J., Nolte, A., et al. Phylogeography of the bullhead Cottus gobio (Pisces: Teleostei:Cottidae) suggests a pre-Pleistocene origin of the major central European populations. Molecular Ecology,2000,9:709-722
    Estoup, A., Rousset, F., Michalakis, Y., et al. Comparative analysis of microsatellites and allozyme markers: a casestudy investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology,1998,7:339-355
    Evanno, G., Regnaut, S., Goudet, J.M. Detecting the number of clusters of individuals using the softwareSTRUCTURE: a simulation study. Molecular Ecology,2005,14:2611-2620
    Excoffier, L., Laval, G., Schneider, S. Arlequin (version3.0): an integrated software package for populationgenetics data analysis. Evolutionary Bioinformatics,2005,1:47-50
    Excoffier, L., Smouse, P.E., Quattro, J.M. Analysis of molecular variance inferred from metric distances amongDNA haplotypes-application to human mitochondrialDNA restriction data. Genetics,1992,131:479-491
    Falk, D.A. and Holsinger, K.E. Genetics and conservation of rare plants. Oxford University Press, USA,1991Falush, D., Stephens, M., Pirtchard, J.K. Inference of population structure from multilocus genotype data: linkedloci and correlated allele frequencies. Genetics,2003,164:1567-1587
    Falush, D., Wirth, T., Linz, B., et al. Traces of human migrations in Helicobacter pylori populations. Science,2003b,299:1582-1585
    Frankham, R. Genetics and extinction. Biological Conservation,2005,126:131-140
    Frankham, R., Ballou, J.D., Briscoe, D.A. Introduction to Conservation Genetics. Cambridge University Press,Cambridge, UK,2005
    Fratini, S. and Vannini, M. Genetic differentiation in the mud crab Scylla serrata (Decapoda: Portunidae) withinthe Indian Ocean. Journal of Experimental Marine Biology and Ecology,2002,272:103-116
    Frederiksen, M., Edwards, M., Richardson, A. J., et al. From plankton to top predators: bottom-up control of amarine food web across four trophic levels. Journal of Animal Ecology,2006,75:1259-1268
    Frederiksen, M., Furness, R.W., Wanless, S. Regional variation in the role of bottom-up and top-down processes incontrolling sandeel abundance in the North Sea. Marine Ecology Progress Series,2007,337:279-286
    Frederiksen, M., Jensen., H., Daunt, F., et al. Differential effects of a local industrial sand lance fishery on seabirdbreeding performance. Ecological Applications,2008,18(3):701-710
    Furness, R.W. and Tasker, M.L. Seabird consumption in sand lance MSVPA models for the North Sea, and theimpact of industrial fishing on seabird population dynamics. Forage Fishes in Marine Ecosystems. LowellWakefield Fisheries Symposium Series,1997,14:147-169
    Garza, J.C. and Williamson, E.G. Detection of reduction in population size using data from microsatellite loci.Molecular Ecology,2001,10:305-318
    Gauld, A. Movements of lesser sandeels (Ammodytes marinus Raitt) tagged in the northwestern North Sea. ICESJournal of Marine Science,1990,46(3):229-231
    Gauld, J.A. and Hutcheon, J.R. Spawning and fecundity in the lesser sandeel, Ammodytes marinus Raitt, in thenorth-western North Sea. Journal of Fish Biology,1990,36:611-613
    Gharrett, A.J., Matala, A.P., Peterson, E.L., et al. Two genetically distinct forms of rough eye rockfish are differentspecies. Transactions of the American Fisheries Society,2005,134:242-260
    Gharrett, A.J., Mecklenburg, C.W., Seeb, L.W., et al. Do genetically distinct rougheye rockfish sibling speciesdiffer phenotypically? Transactions of the American Fisheries Society,2006,135:792-800
    Gillespie, J.H. Population Genetics: A Concise Guide. Baltimore&London, the Johns Hopkins University Press,1997
    Girsa, I.I. and Danilov, A.N. Defensive behaviour in sand lance, Ammodytes hexapterus of the White Sea. Journalof Ichthyology,1976,16:862-865
    Goldstein, D.B., Linares, A.R., Cavalli-Sforza L.L., et al. Genetic absolute dating based on microsatellites and theorigin of modern humans. Proceedings of the National Academy of Sciences of the USA,1995,92:6723-6727
    Goto, A. and Arai, T. Diverse migratory histories of Japanese Trachidermus and Cottus species(Cottidae) as inferred from otolith microchemistry. Fish Biology,2006,(68):731-1741
    Goudet, J. FSTAT (vers.1.2): a computer program to calculate F-statistics. Journal of Heredity,1995,86:485-486Goudet, J. FSTAT, Version2.9.3: a program to estimate and test gene diversities and fixation indices. Availablefrom http://www.unil.ch/izea/softwares/fstat.html,2001
    Grant, W.S. and Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: insightsfrom sardines and anchovies and lessons for conservation. Journal of Heredity,1998,89:415-426
    Grantham, B.A., Eckert, G.L., Shanks, A.L. Dispersal potential of marine invertebrates in diverse habitats.Ecological Applications,2003,13:108-116
    Greaves, D.R., Patient, R.K., Lilley, D.M.J. Facile cruciform formation by an (A-T)34sequence from a Xenopusglobin gene. Journal of Molecular Biology,1985,185(3):461-478
    Greenstreet, S., Armstrong, E., Mosegaard H., et al. Variation in the abundance of sandeels Ammodyes marinus offsoutheast Scotland: an evaluation of area-closure fisheries management and stock abundance assessment methods.ICES Journal of Marine Science,2006,63:1530-1550
    Hamada, H., Petrino, M.G., Kakunaga, T. Molecular structure and evolutionary origin of human cardiac muscleactin gene. Proceeding of the National Academy of Sciences of the Sciences of the USA,1982,79(19):5901-5905
    Hamada, T. Fishery Biology of the Sand-lance (Ammodytes personatus Girard) in Japan. Japan Fisheries ResourceConservation Association, Tokyo,1985
    Hamada, T. Studies on the fluctuation in the abundance of larval sand-lance in the Harima-Nada and Osaka Bay.III: Relationship to weather and sea conditions during the breeding season. Bulletin of Japan Society Sciences andFisheries,1996,32(7):579-584
    H nfling, B., Hellemans, B., Volckaert, A.M. et al. Late glacial history of the cold-adapted freshwater fish Cottusgobio, revealed by microsatellites. Molecular Ecology,2002,11:1717-1729
    Harding, R.M., Boyee, A.J., Clegg, J.B. The evolution of tandemly repetitive DNA: recombination rules. Genetics,1992,132(3):847-859
    Hardy, O.J. and Vekemans, X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at theindividual or population levels. Molecular Ecology Notes,2002,2:618-620
    Hart, P.J.B. The distribution and long term changes in the abundance of larval Ammodytes marinus (Raitt) in theNorth Sea. The early life history of fish (Ed. by JHS Blaxter). Springer-Verlag, Berlin,1974
    Harwood, J. and Croxall, J.P. The assessment of competition between seals and commercial fisheries in the NorthSea and the Antarctic. Marine Mammal Science,1988,4:13-33
    Hashimoto, H. and Kawasaki, T. Population studies of sandeel, Ammodytes personatus (Girard), in Sendai Bay andits neighborhood. Tohoku Journal of Agricultural Research,1981,31:173-197
    Hashimoto, H. Population structure of the sandeel around Japan. Bulletin of the Japanese Society of ScientificFisheries,1984,50:1357-1365
    Hedgecock, D., Li, G., Hubert, S., et al. Widespread null alleles and poor cross-species amplification ofmicrosatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. Journal of Shellfisheries Research,2004,23:379-385
    Hemmer-Hansen, J., Nielsen, E.E.G., Gr nkj r, P., et al. Evolutionary mechanisms shaping the genetic populationstructure of marine fishes; lessons from the European flounder (Platichthys flesus L.). Molecular Ecology,2007,16:3104-3118
    Henderson, G.T.D. Continuous plankton records; the young fish and fish eggs,1932-39and1946-49. MarineEcology,1954,3:215-52
    Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907-913Hille, S.M., Nesje, M., Segelbacher, G. Genetic Structure of Kestrel Populations and Colonization of the CapeVerde Archipelago. Molecular Ecology,2003,12:2145-2151
    Hislop, J.R.G., Harris, M.P., Smith, J.G.M. Variation in the calorific value and total energy content of the lessersandeel (Ammodytes marinus) and other fish preyed on by seabirds. Journal of Zoology,1991,224:501-517
    Hobson, E.S. Predation on the Pacific sand lance, Ammodytes hexapterus (Pisces: Ammodytidae), during thetransition between day and night in southeastern Alaska. Copeia,1986,1:223-226
    Hoffman, E.A. and Blouin, M.S. Historical data refute recent range contraction as a cause of low genetic diversityin isolated frog populations. Molecular Ecology,2004,13:271-276
    Hoffman, J.I. and Amos, W. Microsatellite genotyping errors: detection, approaches, common sources andconsequence for paternal exclusion. Molecular Ecology,2005,14:599-612
    Hopkins, P.J. Herring predation on fish eggs and larvae in the North Sea. ICES Marine Science Symposia,1989
    Hu, J., Nakatani, M., Lalusin, A., et al. Development and characterization of microsatellite markers in sweet potato.Breeding Science,2004,54:177-188
    Hubisz, M., Falush, D., Stephens, M., et al. Inferring weak population structure with the assistance of samplegroup information. Molecular Ecology Resources,2009,9(5):1322-1332
    Hui, M., Bao, Z., Zhan, A., et al. Ten polymorphic dinucleotide microsatellite markers of the noble scallopChlamys nobilis. Molecular Ecology Notes,6:1033-1035
    Hwang, J.S. and Wong, C.K. The China Coastal Current as a driving force for transporting Calanus sinicus(Copepoda: Calanoida) from its population centers to waters off Taiwan and Hong Kong during the winternortheast monsoon period. Journal of Plankton Research,2005,27(2):205-210
    Hyde, J.R., Kimbrell, C.A., Budrick, J.E., et al. Cryptic speciation in the vermilion rockfish (Sebastes miniatus)and the role of bathymetry in the speciation process. Molecular Ecology,2008,17:1122-1136
    ICES2005b. Report of the Study Group on Multispecies Assessments in the North Sea (SGMSNS). ICES CM2005/D:06
    Inoue, A. An ecological note on sandeel, Ammodytes personatus (Girard). Bulletin of Japan Society Sciences andFisheries,1949,15:458-468
    Inoue, A., Takamori, S., Kuniyuki, K. Studies on fishery biology of the sand-launce, Ammodytes personatus Girard.Bulltin of Nankai Reg. Fisheries Research Lab.,1967,25(121,122):1-347
    Islam, M.S., Hibino, M., Tanaka, M. Distribution and diet of the roughskin sculpin, Trachidermus fasciatus, larvaeand juveniles in the Chikugo River estuary, Ariake Bay, Japan. Ichthyological Research,2007,54:160-167
    Islam, M.S., Hibino, M., Tanaka, M. Tidal and diurnal variations in larval fish abundance in an estuarine inlet inAriake Bay, Japan: implication for selective tidal stream transport. Ecology Research,2007,22:165-171
    Jaquiéry, J., Vogel, V., Keller, L. Multilevel genetic analyses of two European supercolonies of the Argentine ant,Linepithema humile. Molecular Ecology,2005,14(2):589-598
    Jeffreys, A.J., Tamaki, K., MacLeod, A., et al. Complex gene conversion events in germline mutation at humanminisatellites. Nature Genetics,1994,6:136-145
    Jiang, X., Liao, M.J., Liu, Y.J., et al. Isolation and characterization of22polymorphic microsatellite DNA markersof Japanese sea bass (Laterolabrax japonicus). Molecular Ecology Notes,2007,7:492-494
    Jiang, Y., Zhang, R., Lu, S., et al. Fish eggs and larvae in the offshore waters of China (in Chinese). ShanghaiScience and Technology Press, Shanghai,1985,179-180
    Jones, A.G., Stockwell, C.A., Walker, D., et al. The molecular basis of microsatellite null allele from the WhiteSands pupfish. Journal of Heredity,1998,9:339-342
    Karagyozov, L., KalchevaI, D., Chapman, V. Construction of random small-insert genomic libraries highlyenriched for simple sequence repeats. Nucleic Acids Research,1993,21:3911-3912
    Kashi, Y. and Soller, M."Functional Roles of Microsatellites and Minisatellites." In: Microsatellites: Evolution andApplications. Oxford University Press,1999
    Kenchington, E.L., Patwary, M.U., Zouros, E., et al. Genetic differentiation in relation to marine landscape in abroadcast-spawning bivalve mollusc (Placopecten magellanicus). Molecular Ecology,2006,15:1781-1796
    Kim, J.K., Park, J.H., Kim, Y.S., et al. Geographic variations in pacific sand eels Ammodytes personatus(Ammodytidae) from Korea and Japan using multivariate morphometric analysis. Journal of Ichthyology,2008,48(10):904-910
    Kim, J.K., Park, J.Y., Kim, Y.S. Genetic diversity, relationships and demographic history of three geographicpopulations of Ammodytes personatus (Ammodytidae) from Korea inferred from mitochondrial DNA controlregion and16S rRNA sequence data. Korean Journal of Genetics,2006,28(4):343-351
    Kimura, M., Crow, J.F. The number of alleles that can be maintained in a finite populations. Genetics,49:725-738Kimura, M., Otha, T. Stepwise mutation model and distribution of allelic frequencies in a finite populations.Proceeding of the National Academy of Sciences of the Sciences of the USA,1978,75:2868-2872
    Kimura, S., Kishi, M., Nakata, H., et al. A numerical analysis of population dynamics of the sand lance(Ammodytes personatus) in the eastern Seto Inland Sea, Japan. Fish Oceanogr,1992,1(4):306-320
    King, T.L., Kalinowski, S.T., Schill, W.B., et al. Population structure of Atlantic salmon (Salmo salar L.): arange-wide perspective from microsatellite DNA variation. Molecular Ecology,2001,10:807-821
    Kitagawa, D., Yamashita, Y. Occurrence and Distribution of the Japanese Sand Eel, Ammodytes personatus, Larvaein the Coastal Waters of Iwate Prefecture. Bulletin of the Japanese Society of Scientific Fisheries,1986,50:205-213
    Kitamura, A., Takano, O., Takata, H., et al. Late Pliocene-early Pleistocene paleoceanographic evolution of the Seaof Japan. Palaeogeogr Palaeocl,2001,172:81-98
    Kumar, S., Tamura, K., Nei, M. MEGA3: integrated software for molecular evolutionary genetics analysis andsequence alignment. Briefings in bioinformatics,2004,5:150
    Kunzlik, P.A., Gauld, J.A. Hutcheon, J.R. Preliminary results of the Scottish sandeel tagging project. ICES CM1986/G:71986
    Lai, Y. and Sun, F. The relationship between microsatellite slippage mutation rate and the number of repeat units.Molecular Biology and Evolution,2003,20:2123-2131
    Lambeck, K., Esat, T.M., Potter, E.K. Links between climate and sea levels for the past three million years. Nature,2002,419:199-206
    Levinson, G. and Gutman, G.A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution.Molecular Biology and Evolution,1987,4(3):203-221
    Lewy, P., Nielsen, N., Gislason, H. Stock dynamic of sandeel in the North Sea and sub-regions includinguncertainties. Fisheries Research,2004,68:237-248
    Li, C.L., Wadud, M.A., Geng, Q.F., et al. Microsatellite: genomic distribution, putative functions, and mutationalmechanisms: a review. Molecular Ecology,2002,11:2453-2456
    Li, G., Hubert, S., Bucklin, K., et al. Characterization of79microsatellite DNA markers in the Pacific oystersCrassostrea gigas. Molecular Ecology Notes,2003,3:228-232
    Li, H., Song, L., Wang, L., et al. Screening microsatellite markers from EST sequence of Chlamys farreri. HighTechnology Letters,2003,12:72-75
    Litt, M. and Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeatwithin the cardiac muscle act in gene. American Journal of Human Genetics,1989,44(3):397-401
    Liu, J.X., Gao, T.X., Wu, S.F., et al. Pleistocene isolation in the Northwestern Pacificmarginal seas and limiteddispersal in a marine fish Chelon haematocheilus (Temminck and Schlegel,1845). Molecular Ecology,2007,16:275-288
    Liu, J.X., Gao, T.X., Yokogawa, K., et al. Differential population structuring and demographic history of twoclosely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabraxmaculatus) in Northwestern Pacific. Molecular Phylogenetics and Evolution,2006a,39:799-811
    Lorenzen, E.D. and Siegismund, H.R. No Suggestion of Hybridiza-tion Between the Vulnerable Black-facedImpala (Aepyceros melampus petersi) and the Common Impala (A.m. melampus) in Etosha National Park, Namibia.Molecular Ecology,2004,13:3007-3019
    Luikart, G. and Cornuet, J-M. Empirical evaluation of a test for identifying recently bottlenecked populations fromallele frequency data. Conservation Biology,1998,12:228-237
    Luikart, G., Allendorf, F.W., Cornuet, J-M, et al. Distribution of allele frequency distributions provide a test forrecent population bottlenecks. Journal of Heredity,1998,89:238-247
    Macer, C.T. Sand eels (Ammodytidae) in the south-western North Sea; their biology and fishery. FisheryInvestigations. Series2. Great Britain Ministry of Agriculture, Fisheries and Food,1966,24:1-55
    Macer, C.T. The distribution of larval sand eels (Ammodytidae) in the southern North Sea. Journal of the MarineBiological Association of the United Kingdom,1965,45:187-207
    Machado-Schiaffino, G., Campo, D., Garcia-Vazquez, E. Strong genetic differentiation of the Austral hake(Merluccius australis) across the species range. Molecular Phylogenetics and Evolution,2009,53:351-356
    Maes, G.E. and Volckaert, F.A.M. Clinal genetic variation and isolation by distance in the European eel Anguillaanguilla (L.). Biological Journal of the Linnean Society,2002,77:509-521
    Makova, K.D., Nekrutenko, A., Baker, R.J. Evolution of Microsatellite Alleles in Four Species of Mice (GenusApodemus). Journal of Molecular Evolation,2000,51:166-172
    Manel, S., Gaggiotti, O.E., Waples, R.S. Assignment methods: matching biological questions with appropriatetechniques. Trends in Ecology&Evolution,2005,20:136-142
    Martin, A.P. and Palumbi, S.R. Body size, metabolic rate, generation time and the molecular clock. Proceedings ofthe National Academy of Sciences of the USA,1993,90:4087-4091
    Matsuoka, Y., Vigouroux, Y., Goodman, M.M., et al. A single domestication for maize shown by multilocusmicrosatellite genotyping. Proceedings of the National Academy of Sciences of the USA,2002,99(9):6080-6084
    Michael, K.S., Gordon, L., Robin, S. Waples Genetic monitoring as a promising tool for conservation andmanagement. Trends in Ecology and Evolution,2006,22(1):25-33
    Michael, L. and Russell, L. The critical effective size for a genetically secure population. Animal Conservation,1998,1:70-72
    Miya, M. and Nishida, M. Speciation in the open sea. Nature,1997,389:803-804
    Mousadik, A. and Petit, R.J. High level of genetic differentiation for allelic richness among populations of theargan tree (Argania spinosa (L) Skeels) endemic of Morocco. Theoretical and Applied Genetics,1996,92(7):832-839
    Nakata, H. Wind effects on the transport of Japanese sand eel larvae in the eastern part of the Seto Inland Sea.Bulletin of Japan Society Sciences and Fisheries,1988,54(9):1553-1561
    Nei, M., Maruyama, T., Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution,1975,29:1-10
    Nei, M., Maruyama, T., Wu, C.I. Models of evolution of reproductive isolation. Genetics,1983,103:557-579
    Nei, M., Tajima, F., Tatano, Y. Accuracy of estimated phylogenetic trees from molecular data. Journal of MolecularEvolution,1983,19:153-170
    Neigel, J.E. A comparison of alternative strategies for estimating gene flow from genetic markers. Annual Reviewof Ecology and Systematics,1997,28:105-128
    Neigel, J.E. and Avise, J.C. Application of a random walk model to geographic distribution of animalmitochondrial DNA variation. Genetics,1993,135:1209-1220
    Neill, W.H., Miller, J.M., Van der Veer, H.W., et al. Ecophysiology of Marine Fish Recruitment: A ConceptualFramework for Understanding Interannual Variability. Netherlands Journal of Sea Research,1994,32:135-152
    Nelson, R.J., Beacham, T.D., Small, M.P. Microsatellite analysis of the population structure of a Vancouver Islandsockeye salmon (Oncorhynchus nerka) stock complex using nondenaturing gel electrophoresis. Molecular MarineBiology and Biotechnology,1998,7:312-319
    Nielsen, E.E., Nielsen, P.H., Meldrup, D., et al. Genetic population structure of turbot (Scophthalmus maximus L.)supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea andthe North Sea. Molecular Ecology,2004,13(3):585-595
    Nussey, D.H., Coltman, D.W., Coulson, T., et al. Rapidly declining fine-scale spatial genetic structure in femalered deer. Molecular Ecology,2005,14(11):3395-3405
    O’Reilly, P.T., Canino, M.F., Bailey, K.M., et al. Inverse relationship between FSTand microsatellitepolymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weakpopulation structure. Molecular Ecology,2004,13:1799-1814
    Okamoto, H., Yamazaki, F., Mishima, S. Genetic Divergence Among Sand-lance Ammodytes personatusPopulation in Japan. Nippon Suisan Gakkaishi,1988,54:1297-1304
    Olivier, L. Populations1.2.28. http://www.cnrs-gif.fr/pge/bioinfo/populations
    Olsen, J.B., Seeb, L.W., Bentzen, P., et al. Genetic interpretation of broad-scale microsatellite polymorphism inodd-year pink salmon. Transactions of the American Fisheries Society,1998,127:535-550
    Onikura, N., Takeshita, N., Matsui, S., et al. Spawning grounds and nests of Trachidermus fasciatus (Cottidae) inthe Kashima and Shiota estuaries system facing Ariake Bay, Japan. Ichthyological Research,2002,49:198-201
    stergaard, S., Hansen, M.M., Loeschcke, V. et al. Long-term temporal changes of genetic composition in browntrout (Salmo Trutta L.) populations inhabiting an unstable environment. Molecular Ecology,2003,12(11):3123-3135
    Ovenden, J.R., Salini, J., O’Connor, S., et al. Pronounced genetic population structure in a potentially vagile fishspecies (Pristipomoides multidens, Teleostei; Perciformes; Lutjanidae) from the East Indies triangle. MolecularEcology,2004,13(7):1991-1999
    Palm, S., Laikre, L., Jorde, P.E., et al. Effective population size and temporal genetic change in stream residentbrown trout (Salmo trutta, L.). Conservation Genetices,2003,4(3):249-264
    Palumbi, S.R. Genetic divergence, reproductive isolation, and marine speciation. The Annual Review of Ecology,Evolution, and Systematics,1994,25:547-572
    Palumbi, S.R. Population genetics, demographic connectivity, and the design of marine reserves. EcologicalApplications,2003,13(1):146-158
    Pedersen, S.A., Lewy, P., Wright, P. Assessments of the lesser sandeels (Ammodytes marinus) in the North Seabased on revised stock divisions. Fisheries Research,1999,41:221-241
    Pemberton, J.M., Slate, J., Bancroft, D.R., et al. Non-amplifying alleles at microsatellite loci-a caution forparentage and population studies. Molecular Ecology1995,4(2):249-252
    Pérez, T., Albornoz, J., Domínguez, A. Phylogeography of Chamois (Rupicapra spp.) Inferred from Microsatellites.Molecular Phylogenetics and Evolution,2002,25:524-534
    Petersen, G.H. The occurrence of the sand eel (Ammodytes dubius) in0.1m2van Veen grab samples taken duringwinter in Godhavn Havn, Disko Bugt. J. Cons int. Explor. Mer.,1977,37(3):309-310
    Piry, S., Luikart, G., Cornuet, J.M. BOTTLENECK: a computer program for detecting recent reductions in theeffective population size using allele frequency data. Journal of Heredity,1999,90(4):502-503
    Poulsen, N.A., Nielsen, E.E., Schierup, M.H., et al. Long-term stability and effective population size in North Seaand Baltic Sea cod (Gadus morhua). Molecular Ecology,2006,15(2):321-331
    Pritchard, J.K., Stephens, M., Donnelly, P. Inference of population structure using multilocus genotype data.Genetics,2000a,155:945-959
    Pritchard, J.K., Stephens, M., Rosenberg, N.A., et al. Association mapping in structured populations. AmericanJournal of Human Genetics,2000b,67:170-181
    Pritchard, J.K., Wen, W. Documentation for structure software: Version2,2003,http://pritch.bsd.uchicago.edu/software.html. Date last accessed:23rd May2006
    Puebla, O., Bermingham, E., Guichard, F. Population genetic analyses of Hypoplectrus coral reef fishes provideevidence that local processes are operating during the early stages of marine adaptive radiations. MolecularEcology,2008,17:1405-1415
    Raymond, M. and Rousset, F. An exact test for population differentiation. Evolution,1995,49:1280-1283
    Raymond, M. and Rousset, F. GENEPOP (version1.2): population genetics software for exact tests andecumenicism. Journal of Heredity,1995,86:239
    Reay, P.J. Synopsis of biological data on North Atlantic sandeels of the genus Ammodytes. FAO Fisheries Synopsis,1970, No.82
    Reeves, S.A. Seasonal and annual variation in catchability of sandeels at Shetland. ICES C.M.1994/D:19
    Ren, G.J., Hu, J.J., Bao, Z.M., et al. Isolation and characterization of eleven polymorphic microsatellite markers ofsand lance (Ammodytes personatus). Conservation Genetices,2009,10:1837-1839
    Repaci, V., Stow, A.J., Briscoe, D.A. Fine-scale genetic structure, co-founding and multiple mating in theAustralian allodapine bee (Ramphocinclus brachyurus). Journal of Zoology,2007,270:687-691
    Rice, W.R. Analyzing tables of statistical tests. Evolution,1989,43:223-225
    Rico, C. and Turner, G.F. Extrem Microallopatric Divergence in A Cichlid Species from Lake Malawi. MolecularEcology,2002,11:1585-1590
    Robards, M.D., Willson, M.F., Armstrong, R.H., et al. Sand lance: A review of biology and predator relations andannotated bibliography. Exxon Valdez,1999
    Rooney, A.P., Honeycutt, R.L., Davis, S.K., et al. Evaluating a putative bottleneck in a population of bowheadwhale from patterns of microsatellite diversity and genetic disequilibria. Journal of Molecular Evolution,1999,49:682-690
    Roques, S., Sevigny, J.M., Bernatchez, L. Evidence for broadscale introgressive hybridization between two redfish(genus Sebastes) in the North-west Atlantic: a rare marine example. Molecular Ecology,2001,10(1):149-65
    Saccheri, I., Kuussaari, M., Kankare, M., et al. Inbreeding and extinction in a butterfly meta-population. Nature,1998,392:491-494
    Sambrook, J., Fritsch, E.F., Maniatis, T. Molecular cloning. Alaboratory manual,2nd edn. Cold Spring HarborLaboratory Press, New York,1989
    Sang, T.Z., Chang, H.Y., Chen, C.T., et al. Population structure of the Japanese eel, Anguilla japonica. MolecularBiology and Evolution,1994,11:250-260
    Scheltema, R.S. and Williams, I.P. Long distance dispersal of planktonic larvae and the biogeography andevolution of some Polynesian and Western Pacific mollusks. Bulletin of Marine Science,1983,33:545-565
    Schl tterer, C. Evolutionary dynamic of microsatellite DNA. Chromosoma,2000,109:365-371
    Schrey, A.W. and Heist, E.J. Microsatellite analysis of populaion structure in the shortfin mako (Isurus oxyrinchus).Canadian Journal of Fishery of Fisheries and Aquatic Science,2003,60:670-675
    Serapion, J., Kucuktas, H., Feng, J., et al. Bioinformatic mining of typeI microsatellites from expressed sequencetags of channel catfish (Ictalurus punctatus). Marine Biotechnology,2004,6:364-377
    Shaklee, J.B., Beacham, T.D., Seeb, L., et al. Managing fisheries using genetic data: case studies from four speciesof Pacific salmon. Fisheries Research,1999,43:45-78
    Shao, B., Shen, G., Qiu, Y., et al. On the breeding habit of Trachidermus fasciatus Heckel. Journal of Fish China,1980,4:81-86, pls1-2
    Shaw, P.W., Arkhipkin, A.I., Al-khairulla, H. Genetic structuring of Patagonian toothfish populations in theSouthwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to geneticexchange. Molecular Ecology,2004,13:3293-3303
    Sherman, K., Jones C., Sullivan, L., et al. Congruent shifts in sand eel abundance in western and eastern NorthAtlantic ecosystems. Nature,1981,291:486-489
    Sherman, K., Smith, W., Morse, W., et al. Spawning strategies of fishes in relation to circulation, phytoplanktonproduction, and pulses in zooplankton off the northeastern United States. Marine Ecology Progress Series,1984,18(1-2):1-19
    Silva, I.C., Mesquita, N., Schubart, C.D., et al. Genetic patchiness of the shore crab Pachygrapsus marmoratusalong the Portuguese coast. Journal of Experimental Marine Biology and Ecology,2009,378:50-57
    Skinner, D.M., Beattie, W.G., Blattner, F.R., et al. The sequence of a herm it carb satellite DNA in(TAGG)n-(TAGG)n. Biochemistry,1974,13:3930-3937
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution,1993,47:264-279Sork, V.L., Davis, F.W., Smouse, P.E., et al. Pollen movement in declining populations of California Valley oak,Quercus lobata: where have all the fathers gone? Molecular Ecology,2002,11(9):1657-1668
    Stockwell, C.V. and Ashley, M.V. Rapid adaptation and conservation. Conservation Biology,2004,18(1):272-273
    Sui, L.Y., Zhang, F.M., Wang, X.M., et al. Genetic diversity and population structure of the Chinese mitten crabEriocheir sinensis in its native range. Marine Biology,2009,156:1573-1583
    Takeshita, N., Ikeda, I., Onikura, N., et al. Growth of the fourspine sculpin Cottus kazika in the Gonokawa River,Japan, and effects of water temperature on growth. Fisheries Science,2005,71:784-790
    Takeshita, N., Matsui, S., Onikura, N., et al. The effects of salinity on the viability of eggs of the roughskin sculpin,Trachidermus fasciatus. Fisheries Science,1995,65:888-889
    Takeshita, N., Onikura, N, Matsui, S., et al. Comparison of early life-history in two catadromous sculpin,Trachidermus fasciatus and Cottus kazika. Journal of National Fisheries University,2004,52:83-92
    Takesshita, N., Onikura, N, Matsui, S. et al. Embryonic larval and juvenile development of the roughskin sculpin,Trachidermus fasciatu (Scorpaeniformes; cottidae). Ichthyol Research,1997,44(3):257-266
    Takezaki, N. and Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA.Genetics1996,144:389-399
    Takita, T. and Chikamoto, H. Distribution and life history of Trachidermus fasciatus in rivers around Ariake Sound,Kyushu, Japan (in Japanese with English abstract). Japan Journal of Ichthyology,1994,41:123-129
    Tamaki, K. and Honza, E. Global tectonics and formation of marginal basins: role of the western Pacific. Episodes,1991,14:224-230
    Tanaka, M. Studies on the structure and function of the digestive system in teleost larvae. III. Development of thedigestive system during post larval stage. Japan Journal of Ichthyology,1971,18:164-174
    Tanaka, S. On the distribution of fishes in Japanese water. Bull of Tokyo University III-1,1931
    Tautz, D. and Renz, M. Simple sequences are ubiquitous repetitive components of genomes. Nucleic AcidsResearch,1984,12(10):4127-38
    Thorisson, K. Is metamorphosis a critical interval in the early life of marine fishes? Environmental Biology ofFishes,1994,40:23-36
    Tomiuk, J., Guldbrandtsen, B., Loeschcke, V. Population differentiation through mutation a drift-a comparison ofgenetic identity measures. Genetica,1998,102/103:545-558
    Tomiyama, M., Komatsu, T., Makino, M. Sandeel fisheries governance in Ise Bay, Japan. Case studies on fisheriesself-governance. FAO Fish Rep,2008,201-210
    Tomiyama, M., Yanagibashi, S. Effect of temperature, age class, and growth on induction of aestivation inJapanese sandeel (Ammodytes personatus) in Ise Bay, central Japan. Fisheries Oceanography,2004,13:81-90
    Toth, G., Gaspari, Z., Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis. GenomeResearch,2000,10:967-981
    Tsukahara, H. The life history and habits of the sculpin,"Yamano-kami", Trachidermus fasciatus Heckel.Science Bulletin of Faculty of Agriculture Kyushu University,1952,12:225-238
    Valle-Jimenez, R., Cruz, P., Perez-Enriquez, R. Population genetic structure of Pacific white shrimp (Litopenaeusvannamei) from Mexico to Panama: microsatellite DNA variation. Marine Biotechnology,2005,6:475-484
    Van De Zande, L., Van Apeldoorn, R.C., Blijdenstein, A.F., et al. Microsatellite analysis of population structureand genetic differentiation within and between populations of the root vole, Microtus oeconomus in theNetherlands. Molecular Ecology,2000,9(10):1651-1656
    Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., et al. MICRO-CHECKER: software for identifying andcorrecting genotyping errors in microsatellite data. Molecular Ecology Notes,2004,4:535-538
    Van Oppen, M.J., Rico, C., Turner, G.F., et al. Extensive homoplasy, nonstepwise mutations, and shared ancestralpolymorphism at a complex microsatellite locus in Lake Malawi cichlids. Molecular Biology and Hvolulion,2000,17:489-498
    Wang, S., Bao, Z., Pan, J., et al. AFLP linkage map of an intraspecific cross in Chlamys farreri. Journal ofShellfish Research,2004,23:491-499
    Waples, R.S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species.Journal of Heredity,1998,89:438-450
    Ward, R.D., Woodwark, M., Skibinsk, D.O.F. A comparison of genetic diversity levels in marine, fresh-water, andanadromous fishes. Journal of Fish Biology,1994,44:213-232
    Watson, J.D., Crick, F.H.C. A Structure for Deoxyribose Nucleic Acid. Nature,1953,171:737-738
    Wattier, R., Engel, C.R., Saumitou-Laprade, P., et al. Short allele dominace as a source of heterozygote deficiencyat microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta).Molecular Ecology,1998,7:1569-1573
    Weir, B.S. and Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution,1984,38:1358-1370
    Weising, K., Winter, P., Hutter, B., et al. Microsatellite markers for molecular breeding. Journal of Crop Product,1998,1:113-143
    William, W.H., Miller, J.M., Van der Veer, H.W., et al. Ecophysiology of marine fish recruitment: a conceptualframework for understanding interannual variability. Netherlands Journal of Sea Research,1994,32:135-152
    Winslade, P. Behavioural and embryological studies on the lesser sandeel Ammodytes marinus (Raitt). PhD Thesis.University East Anglia,1971
    Winslade, P. Behavioural studies on the lesser sandeel Ammodytes marinus (Raitt) II. The effect of light intensityon activity. Journal of Fish Biology,1974b,6:577-586
    Winslade, P. Behavioural studies on the lesser sandeel Ammodytes marinus (Raitt) I. The effect of food availabilityon activity and the role of olfaction in food detection. Journal of Fish Biology,1974a,6:565-576
    Winslade, P. Behavioural studies on the lesser sandeel Ammodytes marinus (Raitt) III. The effect of temperature onactivity and the environmental control of the annual cycle of activity. Journal of Fish Biology,1974c,6:587-599
    Wirth, T. and Bernatchez, L. Genetic evidence against panmixia in the European eel. Letters to Nature. Nature,2001,409:1037-1040
    Wright, P., Verspoor, E., Andersen, C., et al. Population structure in the lesser sandeel (Ammodytes marinus) and itsimplications for fishery-predator interactions. DG XIV no.1998,94/071
    Xu, X. and Oda, M. Surface-water evolution of the eastern East China Sea during the last36,000years. MarineGeology,1999,156:285-304
    Xu, Z., Primavera, J.P., Pena, L.D., et al. Genetic diversity of wild and cultured Black Tiger Shrimp (Penaeusmonodon) in the Philippines using microsatellites. Aquaculture,2001,199(1-2):13-14
    Yeh, F.C., Yang, R., Boyle, T.J., et al. POPGENE32, Microsoft Windows-based Freeware for Population GeneticAnalysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada,2000
    Yokoyama, R. and Goto, A. Evolutionary histry of freshwater sculpins, genius Cottus (Teleostei;Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny. MolecularPhylogenetics and Evolution,2005,36(3):654-668
    Yue, G.H., Ho, M.Y., Orban, L., et al. Microsatellites within genes and ESTs of common carp and theirapplicability in silver crucian carp. Aquaculture,2004,234:85-98
    Zane, L., Bargelloni, L., Patarnello, T. Strategies for microsatellite isolation: a review. Molecular Ecology,2002,11(1):1-16
    Zhan, A.B., Bao, Z.M., Hui, M., et al. Characterization of95novel microsatellite markers for Zhikong scallop(Chlamys farreri) using the methods of FIASCO-colony hybridization and EST database mining. Fisheries Science,2008,74(8):516-526
    Zhan, A.B., Bao, Z.M., Wang, X.L., et al. Microsatellite markers derived from bay scallop Argopecten irradiansexpressed sequence tags. Fisheries Science,2005,71(6):1341-1346
    Zhan, A.B., Bao, Z.M., Yao, B., et al. Polymorphic microsatellite markers in the Zhikong scallop Chlamys farreri.Molecular Ecology Notes,2006,6(1):127-129
    Zhan, A.B., Hu, J.J., Hui, M., et al. Geographic differentiation and genetic diversity of Zhikong scallop (Chlamysfarreri) in relation to marine currents: do marine currents form the genetic structure? Marine Biotechnology,2009,11:223-235
    Zhan, A.B., Hu, J.J., Wang, X.L., et al. A panel of polymorphic EST-derived microsatellite loci for the bay scallop(Argopecten irradians). Journal of Molluscan Studies,2006,72:436-438
    Zhang, Y., Wang, X., Ryder, O.A., et al. Genetic diversity and conservation of endangered animal species. Pureand Applied Chemistry,2002,74:575-584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700