新疆兔属物种的群体遗传学及系统发育关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兔属物种由于适应性强,生存环境多样,其群体遗传学和系统发育研究对于揭示物种进化、探索物种与地理环境的适应性等热点问题具有重要意义。中国的兔属动物共有9种,新疆分布有三种:塔里木兔(Lepus yarkandensis Gunther 1875),草兔(Lepus capensis Linnaeus, 1758)和雪兔(Lepus timidus Linnaeus, 1758)。目前,针对这三个物种的群体遗传学以及系统发育研究有限。
     塔里木兔和雪兔为国家二级保护动物,其中塔里木兔为我国特有种,仅分布于新疆塔里木盆地周围分散的绿洲,栖息地片段化程度日益严重。本研究选用两个线粒体基因(mtDNA)标记:控制区(D-loop)和细胞色素b(Cytb)基因,以检测塔里木兔种群的遗传多样性水平、基因交流状况;分析地理隔离对该物种群体遗传结构的作用;评价第四纪气候变化对塔里木兔遗传多样性及群体历史的影响。本研究测定了来自塔里木盆地周围二十个采集地224个塔里木兔样本的D-loop区553bp序列和Cytb全长1140bp的序列。通过对所得基因的序列特征分析,结合Mantel tests分析和多层次分子变异分析(AMOVA),发现塔里木兔群体总体的mtDNA核苷酸多样度与其它哺乳动物的相比属于较低水平(D-loop 3.3%和Cytb 0.8%),各地理种群具有丰富的特有单倍型,种群间已经出现显著分化,这种遗传分化和单倍型的地理分布模式是由于地理隔离(河流、绿洲、沙漠、戈壁)及栖息地片段化(绿洲退缩及分散分布)而导致的种群间有限的基因流造成的。对这两个多态性遗传标记的单独及合并数据分别用邻接法(Neighbor- joining;NJ)和贝叶斯法(Bayesian inference)构建系统发育树,结果显示:224个塔里木兔样品分为五个进化枝,每个进化枝包含的样品分布区稍显混杂,然而,当将这20个采样地划分为东西南北四个地理种群时,西南部群体与东北部群体便呈现出明显的遗传分化,合并数据的中介网络图更清晰地反映了这种系统地理分化格局。种群动力学及遗传多样性数据显示,塔里木盆地西南部可能是塔里木兔在最大冰期时的避难所,分别发生在0.21 MYA、0.090 MYA及0.054 MYA的三次冰期后扩张事件导致塔里木兔现今的分布格局。值得注意的是,不是冰期,而是水源,才是塔里木兔退缩至避难所的主要推动力。从系统树及实际的地理隔离看,塔里木兔可能经历了从塔里木盆地西南部到北部再到东部的扩散过程。种群历史过程及冰期避难所的研究也为塔里木兔生物多样性保护重点区域的划分提供了依据。基于本文线粒体基因的研究结果,塔里木兔五个进化枝具有较高的支持率和较多的突变步数,各进化枝间的遗传距离(0.7%-2.3%)达到亚种水平,西南组群与东北组群间分歧显著,均提示塔里木兔可能存在亚种的分化。但是,这种亚种划分仅基于我们线粒体基因的研究结果,是否有效还需要结合核基因、形态学以及生态学方面的证据。
     新疆草兔(Lepus capensis)的群体遗传结构至今无系统的研究报道,亚种水平的分类也长期存在争议。本文测定了形态分类上的新疆草兔三个亚种共74个个体的mtDNA控制区553bp和Cytb全长1140bp的序列。新疆草兔核苷酸多样度为0.021±0.010;单倍型多样度为0.974±0.007。Mantel tests和AMOVA分析显示,新疆草兔除东部与中部种群间没有明显分化外,其余种群间已产生十分明显的分化,种群间的基因交流有限,可能是由于山脉戈壁等地理隔离而造成的。新疆草兔群体的中性检验和核苷酸错配分析显示多峰分布,这主要是由新疆草兔群体存在较为明显的遗传分化而致。基于新疆草兔mtDNA D-loop和Cytb的合并数据所构的NJ树和贝叶斯树以较高的支持率聚为三枝,每枝包含了来自相同或相邻地理区域的草兔样品,显示出了一定的地理分布格局。中介网络图也得到了相同的结果。本研究的结果支持形态分类上草兔西域亚种(L.c. lehmanni)的分类地位;但中亚亚种(L.c. centrasiaticus)被分为两个独立的进化枝,提示可能存在两个亚种;帕米尔亚种(L.c. pamirensis)可能已达到种的分化水平。
     目前关于新疆兔属物种间的系统发育关系还不清楚。本研究采用线粒体两个基因(D-loop和Cytb)以及一个核基因(MGF)标记来探讨新疆兔属物种间的系统发育关系。线粒体系统发育树的构建采用邻接法和贝叶斯法,核基因采用邻接法和最小进化法(Minimum Evolution; ME)。我们共测定了353个新疆野兔样本的线粒体控制区553bp和Cytb全长1140bp的序列;由于存在高比例的杂合子,通过分子克隆共得到了304个个体的453条核基因MGF序列(592bp)。从线粒体的系统发育树上可以看出,新疆的草兔和塔里木兔序列分为3个世系:其中两个世系分别代表塔里木兔与草兔各自特有的世系,另一个世系为新发现的世系。新世系包含了来自塔里木兔及草兔采集地的样品。三个世系中草兔最先分歧出来,塔里木兔与新世系形成姐妹群的关系。唯一的一条新疆雪兔线粒体序列包含在草兔的世系中。核基因MGF的分析结果表明,草兔和塔里木兔序列在核基因进化树上相互混杂并大致分为两大类群。雪兔的核基因单独形成一枝,并且最先分歧出来。线粒体与核基因的结果相矛盾说明新疆草兔、塔里木兔以及雪兔之间可能存在杂交,但是进一步的证据还需要来自形态方面如外形及头骨的考查。
Hares (Lepus) distribute throughout China and occupy a wide variety of habitats, including deciduous, boreal and temperate rain forest, prairie and shrub-steppe. Study about hare species is very worthful to understand the species evolution and assess the relationships between species and environment. Of the nine Chinese hare species,three distribute in Xinjiang: Lepus yarkandensis Gunther 1875, Lepus timidus Linnaeus 1758 and Lepus capensis Linnaeus, 1758. To date, studies about molecular evolution of these three species are rather limited.
     Yarkand hare and mountain hare were listed in the Second Category of State Key Protected Wildlife List in 1988. The Yarkand hare is endemic to China and restricted to the scattered oases around the Taklamakan Desert in Tarim Basin. Unfortunately, in recent years, habitat fragmentation of Yarkand hare is becoming serious. In this study, two mitochondrial DNA (mtDNA) markers, control region (D-loop) and cytochrome b (Cytb), were used to examine population genetic diversity and assess the impact of geological isolation on phylogeographical structure of Yarkand hare. Also, Quaternary climatic oscillations may have affected the ecosystems and, consequently, the distributions and genetic structuring of the Yarkand hare. In this study, we obtained 553bp D-loop and 1140bp Cytb full sequences from 224 Yarkand hares. Nucleotide diversity value of Lepus yarkandensis is relatively low (D-loop 3.3%, Cytb 0.8%) compared with that of other reported mammals. Mantel tests and molecular variance analysis (AMOVA) suggested that population divergence was significant because a large number of private haplotypes were identified in different populations of Yarkand hare. This differentiation indicated gene flow among populations was limited, which might result from geographical isolation (rivers, oases, deserts) and habitat fragmentation. On genealogical tree, haplotypes of Yarkand hare were divided into 5 deeply divergent clades with high bootstrap support. When the samples were combined into four geographical groups, phylogeographic differentiation between the southwest group and the northeast group was observed and this structure was supported by pairwise FST values and Median-joining network (MJN). Populations from the northern and eastern Tarim Basin shared a similar history, as did those from the western and southern regions. Moreover, Demographical analysis and genetic diversity estimation indicated that the western and southern regions might have served as glacial refugia for the Yarkand hare during Quaternary climatic oscillations. The distribution of the Yarkand hare, especially in the northern and eastern parts, probably represented 3 postglacial colonization events, dated to 0.21, 0.090 and 0.054MYA, which corresponded to known interglacial periods. Given the relatively complete geographic isolation between the eastern and southern populations, the Yarkand hare likely dispersed during postglacial periods from the southwest to the north, and then onward to the east. Significantly, availability of water, rather than displacement by glaciers, was the dominant driving force for the retreat of the Yarkand hare to refugia. This differed from the dynamic mechanism for refugia occupation in Europe, North America, and the Qinghai-Tibetan Plateau in China. The demographical and historical patterns have important implications for conservation. In addition, significant sequence divergence (0.7%-2.3%) among five clades might suggest that subspecies differentiation based on mtDNA existed in Yarkand hare. However, whether the division of subspecies valid or not will require additional evidence from morphology and behavior.
     To date, the genetic structure and genetic diversity of Lepus capensis in Xinjiang has not been systematically studied at the molecular level, and its subspecies taxonomic status has been under debate for years. According to traditional morphology, there are three subspecies of Lepus capensis distributed in Xinjiang: L.c. centrasiaticus, L.c. lehmanni and L.c. pamirensis. In this study, we determined 553bp D-loop and 1140bp Cytb sequences of 74 cape hares from Xinjiang Province. Nucleotide diversity of Cape hare in Xinjiang is 0.021±0.010 and haplotype diversity is 0.974±0.007. Mantel test and AMOVA analysis revealed a high level of differentiation among populations except central and eastern populations, suggesting that mountains and deserts may make an effective barrier against gene flow. Phylogenetic tree based on mtDNA grouped 74 Cape hare sequences into three clades with high bootstrap support. Each clade included samples from the same area or neighboring areas, which indicate a significant phylogeographic division pattern in Cape hare. Results from median-joining network analysis are in accordance with the phylogenetic analysis. Neutrality tests was insignificant and mismatch distrbution analysis showed a multimodal distribution which was caused by significant differentiation among populations. Our data supported the subspecies status of L. c. lehmanni. The fact that haplotypes of L. c. centrasiaticus were grouped into two distinct clades suggests that this traditional subspecies should be considered as two subspecies. In addition, L. c. pamirensis shows a significantly higher sequence divergence compared to other subspecies, and the difference even reached the level of species.
     The phylogenetic relationships among hare species in Xinjiang remain unclear. Here, we sequenced two mtDNA markers (D-loop and Cytb) in 353 samples and one nuclear fragment (MGF) in 304 samples to explore the evolutionary relationships of three hare species in Xinjiang. Gene tree based on mtDNA data clustered all haplotypes into three major clades with strong bootstrap support. One L. capensis clade included the majority of L. capensis haplotypes and one L. yarkandensis clade included the majority of L. yarkandensis haplotypes. However, the third clade contained haplotypes both from L. capensis and L. yarkandensis. This is a new mtDNA lineage. The only one L. timidus haplotype was placed into L. capensis clade. Of the three clades, the L. capensis clade branched first; The L. yarkandensis clade and the new lineage formed sister relationship. On nuclear gene tree, haplotypes of L. capensis and L. yarkandensis mixed together and grouped into two major groups. Haplotype of the only one L. timidus specimen formed a separate clade and branched first. The discrepancy between mtDNA and nuclear DNA analysis suggested that introgressive hybridization might occur among L. capensis, L. yarkandensis and L. timidus in Xinjiang. But evidence from morphology, especially skull characters, is essential to confirm this hypothesis.
引文
[1] Chapman JA, and Flux JEC. The introduction and overview in Rabbits, Hares and Pikas: status survey and Conservation Action Plan[M]. Gland, Switzerland: International Union for Conservation of Nature and Natural Resources, 1990.
    [2] Angerman, R, Flux JEC, Chapman JA, Smit AT. Lagomorph Classification. Rabbits, hares and pikas: Status survey and conservation action plan (Chapman JA and Flux JEC, Eds) [M]. Gland, Switzerland: International Union for Conservation of Nature and Natural Resources,1990: 7-13.
    [3] Nowak R M. Walker’s mammals of the world, 6th ed[M]. Baltimore: John Hopkins university Press, 1999.
    [4] Yu N, Zheng CL, Zhang YP, Li WH. Molecular Systematics of Pikas (Genus Ochotona) Inferred from Mitochondrial DNA Sequences[J]. Mol. Phylogenet Evol. 2000, 1: 84-95.
    [5] Andrew TS and Yan Xie. Mammal of China[M]. Princeton university press. 2008.
    [6] Chapman JA, Flux JEC. Introduction to the Lagomorpha. In: Alves PC, Ferrand N, Hacklder K. Lagomorph Biology: Evolution Ecology and Conservation[M]. Berlin Heidelberg New York: Springer, 2008: 1-12.
    [7] Hall ER. The mammals of North America. Second ed[M]. New York: John Wiley and Sons, 1981.
    [8] Corbet GB. The mammals of the Palaearctic region, a taxonomic review[M]. London: British Museum (Natural History), 1978:313.
    [9] Corbe GB, Hill JE. A World List of Mammalian Species.1st Ed[M]. London: British Museum (Natural History) - Cornell University Press. 1980: 225.
    [10] Honacki JH, Kinan KE, Koeppl JW. Mammal species of the world[M]. ASC, Lawrence, Kansas: Allen press, 1982.
    [11] Flux JEC, Angermann R. Report on the symposium:“Taxonomy of the genus Lepus”, Lagomorph Newsletter[R]. 1984, 4:2-11.
    [12]吴春花。兔属和盘羊属的分子进化研究[D]。中国科学院昆明动物所,2005。
    [13] Ben SH, Suchentrunk F, Ben A A .On shortcomings of using mtDNA sequence divergence forthe systematics of hares (genus Lepus): An example from cape hares[J]. Mamm biol, 2007, 02.
    [14] Van der LW, James A, Schro¨der J. Chromosome evolution in Leporids. In: Myers K, MacInnes CD (Eds) [M]. Guelph, Ontario: University of Guelph Press, 1981, 28-36.
    [15] Hibbard C. The origin of the P3 pattern of Sylvilagus, Caprolagus, Oryctolagus, and Lepus[J]. J Mammal, 1963, 44:1-15.
    [16] Halanych KM, Demboski JR, Van Vuuren BJ, Klein DR, Cook JA. Cytochrome b phylogeny of North American hares and jackrabbits (Lepus, Lagomorpha) and the effects of saturation in outgroup taxa[J]. Mol Phylogenet Evol, 1999, 11: 212-221.
    [17] Halanych KM, Robinson TJ. Multiple substitutions affect the phylogenetic utility of cytochrome b and 12S rRNA data, examining a rapid radiation in leporid (Lagomorpha) evolution[J]. J Mol Evol. 1999, 48: 369-379.
    [18] Matthee CA, Vuuren BJV, Bell D, Robinson TJ. A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene[J]. Syst Biol, 2004, 53: 432-447.
    [19] Halanych KM, Demboski JR, Van Vuuren BJ, Klein DR, Cook JA. Cytochrome b phylogeny of North American hares and jackrabbits (Lepus, Lagomorpha) and the effects of saturation in outgroup taxa[J]. Mol Phylogenet Evol, 1999, 11: 212-221.
    [20] Alves PC, Ferrand N, Suchentrunk F, Harris DJ. Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian peninsula[J]. Mol Phylogenet Evol. 2003, 27:70-80.
    [21] Koh HS, Chun TY, Yoo HS, Zhang YP, Wang JX, Zhang MH, Wu CH. Mitochondrial cytochrome b Gene Sequence Diversity in the Korean Hare, Lepus coreanus Thomas (Mammalia, Lagomorpha) [J]. Biochemical Genetics. 2002, 39: 417-429.
    [22] Yamada F, takaki M, Suzuki H. Molecular phylogeny of Japanese Leporidae, the Amami rabbit Pentalagus furnessi, the Japanese hare Lepus brachyurus, and the mountain hare lepus timidus, inferred from mitochondrial DNA sequences[J]. Genes Genet Syst. 2002, 77: 107-115.
    [23] Franz S, Hichem BS, Ute K. Molecular evidence of conspecificity of South African hares conventionally considered Lepus capensis L., 1758[J]. Mamm boil. 2009, 74: 325-343.
    [24] Hoffmann RS, Smith AT. Lagomorpha. In: Wilson, D.E., Reeder, D.M. (Eds.), Mammal Species of the World– A Taxonomic and Geographic Reference, third ed[M]. Baltimore: Johns Hopkins University Press, 2005.
    [25] Suchentrunk F, Ben SH, Sert H. Phylogenetic aspects of nuclear and mitochondrial gene pool characteristics of South and North African cape hares (Lepus capensis) and European brown hares (L. europaeus). In: Alves PC, Ferr and N Hackla¨nder K (Eds.), Lagomorph Biology: Evolution, Ecology, and Conservation[M]. Heidelberg: Springer Publ, 2007: 65-85.
    [26] Suchentrunk F, Flux JEC, FluxMM, BenSlimen H. Multivariate discrimination between East African cape hares (Lepus capensis) and savanna hares (L. victoriae) based on occipital bone shape[J].Mamm Biol. 2007, 72: 373-383.
    [27] Ben SH, Suchentrunk F, ShahinAAB, BenAmmar EA. Phylogenetic analysis of mtCR-1 sequences of Tunisian and Egyptian hares (Lepus sp. or spp., Lagomorpha)with different coat colours[J]. Mamm Biol. 2007, 72: 224-239.
    [28] Scandura M, Iacolina L, BenSlimen H, Suchentrunk F, Apollonio M. Mitochondrial CR-1variationin Sardinian hares and its relationships with other old world hares (Genus Lepus) [J]. Biochem Genet. 2007,45:305-323.
    [29] Ben Slimen H, Suchentrunk F, Stamatis C, Mamuris Z, Sert H,Alves PC, Kryger U, Shahin AAB, Ben Ammar EA. Population genetics of cape and brown hares (Lepus capensis and L. europaeus) [J]: a test of Petter’s hypothesis of conspecificity. Biochem Syst Ecol. 2008, 36: 22-39.
    [30] Franz S, Hichem BS, and Hakan S. Phylogenetic Aspects of Nuclear and Mitochondrial Gene-Pool Characteristics of South and North African Cape Hares (Lepus capensis) and European Hares (Lepus europaeus) [J]. Lagomorph Biology. 2008, 1: 65-85.
    [31] Thulin CG, Jaarola M, Tegelst. The occurrence of mountain hare mitochondrial DNA in wild brownhares[J]. Mol Ecol. 1997, 6: 463-467.
    [32] Thulin CG, Tegelstrom H. High mtDNA haplotype diversity among introduced Swedish brown hares Lepus europaeus[J]. Acta Therio. 2001, l(46): 375-384.
    [33] Thulin CG, Tegelstrom H. Biased geographical distribution of mitochondrial DNA that passed the species barrier from mountain hares to brown hares (genus Lepus): an effect of genetic incompatibility and mating behaviour? [J] J Zool. 2002, 258: 299-306.
    [34] Thulin CG, Stone J, Tegelstrǒm H, Walker CW. Species assignment and hybrid identification among Scandinavian hares Lepus europaeus and L. timidus[J]. Wildl Biol. 2006, 12:29-38.
    [35] Thulin CG, Fang M, Averianov AO. Introgression from Lepus europaeus to L. timidus in Russia revealed by mitochondrial single nucleotide polymorphism and nuclear microssatellites[J]. Hereditas. 2006, 143: 68-76.
    [36]. Melo-ferreir J, Boursot P, Suchentrunk F, Ferrand N,. Alvers PC. Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia[J]. Molecular Ecology. 2005, 14: 2459-2464.
    [37] Melo-Ferreira J, Boursot P, Randi E, Kryukov A, Suchentrunk F, Ferrand N, Alves, PC. The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula[J]. Mol Ecol. 2007, 16: 605-618.
    [38]罗泽珣。中国野兔[M]。北京:中国林业出版社,1988。
    [39]王应祥。中国哺乳动物种和亚种分类名录与分布大全[M]。北京:中国林业出版社,2003:231-235。
    [40]潘清华,王应祥,岩崑。中国哺乳动物彩色图鉴[M]。北京:中国林业出版社,2007:339-346。
    [41] Xiang Y. Molecular systematics of the Genus Lepus in China[D]. MS Thesis. Beijing: Chinese Academy of Sciences. 2004.
    [42] Wu Chunhua, Wu Jianping, Thomas D. Bunch d, Li Qingwei, WanYingxiang, Zhang Yaping. Molecular phylogenetics and biogeography of Lepus in Eastern Asia based on mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution, 2005, 37: 45-61.
    [43] Wilson DE, Reeder DM. (Eds.), Mammal Species of the World– A Taxonomic and Geographic Reference, third ed[M]. Baltimore: Johns Hopkins University Press, 2005.
    [44]Ellerman JR, Morrison-Scott TCS. Check list of Palaearctic and Indian mammals, 1758-1945[J]. Brit Mus (Nat. Hist), 1951: 419-445.
    [45] Loukashkin AS. On the hares of northern Manchuria[J]. Jour Mamm. 1943, 18: 327-332.
    [46] Tate GHH. Mammals of Eastern Asia[M]. New York: MacMillan, 1947, 201-207.
    [47]钱燕文,张洁,王松,郑宝赉,关贯勋,沈孝宙。新疆南部的鸟兽[M]。北京:科学出版社,1965:179-183。
    [48]张荣祖。中国地质事件与哺乳动物的分布[J]。动物学报,2002, 48:141-153。
    [49] Grzimek B. Grzimek’s Animal Life Encyclopedia. Mammals III[J]. Van Nostrand Reinhold Company, 1975, 12: 419-462.
    [50] Dawson MR. Evolution of modern leporids. Proceedings of the World Lagomorph Conference (Myers K and MacInnes C D. Eds.) [M]. Ontario: University of Guelph Press. 1981: 1-8.
    [51] Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Dashzeveg D, Novacek MJ. Stem Lagomorpha and the antiquity of Glires[J]. Science. 2005, 307:1091-1094.
    [52] Marincovich LJ, Yu A, Gladenkov. Evidence for an early opening of the Bering Strait[J]. Nature. 1999, 397:149-151.
    [53] Matthew WR, Granger W, Simpson GG. Additions to the Gashato Formation of Mongolia[J]. Amer Mus. 1929, 189: 12.
    [54] Wood AE. What, If, Anything, is a Rabbit? Evolution[J]. 1942, 1: 417-425.
    [55]杨钟健。脊椎动物的演化[M]。科学出版社。1955:332-335。
    [56] Van Valen L. A possible origin for rabbits Evolution.Whittaker RH, Levin SA, Root RB. Niche, habitat, and ecotope[J]. American Nature. 1964, 107: 321-338.
    [57] Corbert EH. Evolution of vertebrates, A History of Backboned Animals through Time. 2rd Ed[M]. 1969.
    [58] Hakan S, Hichem BS, Ali E, Franz S. Mitochondrial HVI sequence variation in Anatolian hares (Lepus europaeus Pallas, 1778) [J]. Mamm Boil, 2008.
    [59] Robinson TJ, Yang F, Harrison WR. Chromosomepainting refines the history of genome evolution in hares and rabbits (order Lagomorpha) [J]. Cytogenet. Genome Res. 2002, 96: 223-227.
    [60] Wu CH, Li HP, Wang YX, Zhang YP. Low genetic variation of theYunnan Hare (Lepus comus Allen 1927) as Revealed by Mitochondrial Cytochrome b Gene Sequences[J]. Biochemical Genetics. 2000, 8: 149-155.
    [61] Pierpaoli M, Riga F, Trocchi V, Randi E. Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitichondrial DNA sequencing[J]. Mol Ecol. 1999, 8: 1805-1817.
    [62] Halanych KM, Demboski JR, Van Vuuren BJ, Klein DR, Cook JA. Cytochrome b phylogeny of North American hares and jackrabbits (Lepus, Lagomorpha) and the effects of saturation in outgroup taxa[J]. Mol Phylogenet Evol. 1999,11: 212-221.
    [63] Halanych KM, Robinson TJ. Phylogenetic relationships of Cottontails (Sylvilagus, lagomorpha) Congruence of 12sRNA and Cytogenetic Data[J]. Mol Phylogenet Evol. 1997,7: 293-302.
    [64] Pe′rez-Sua′rez G, Palacios F, Boursot P. Speciation and paraphyly in western Mediterranean hares (Lepus castroviejoi, L. europaeus, L. grantensis, and L. capensis) revealed by mitochondrial DNA phylogeny[J]. Biochem Genet. 1994, 32: 423-435.
    [65] Flux JEC. Reproduction and body weights of the hare Lepus europaeus Pallas, in New Zealand[J]. N Z J Sci. 1967, 10: 357-401.
    [66] Avise JC. Phylogeography: the History and Formation of Species[M]. Cambridge:Harvard University Press, 2000.
    [67] Avise JC. Molecular population structure and the biogeographic history of a reginal fauna:A case history with lessons for conservation biology[J]. Oikos, 1992, 63: 62-76.
    [68] Avise JC. Toward a regional conservation genetic perspective: phylogeography of faunas in thesoutheastern United States. In Conservation Genetics: Case Histories from Nature (eds Avise JC and JL Hamrick) [M]. 1996: 431-470.
    [69]陆佩红。分子系统地理学研究进展[J]。生物学教学。2006,31(2):4-5。
    [70] Kasapidis P, Suchentrunkb F, Magoulasa A, Kotou G. The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined in Xuence of Late Pleistocene climatic Xuctuations and anthropogenic translocations[J]. Molecular Phylogenetics and Evolution. 2005, 34:55-66.
    [71] Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics[J]. Annual Review of Ecology and Evolution. 1987, 18: 489-522.
    [72] Bermingham E, and Moritz C. Comparative phylogeography: concepts and applications[J]. Molecular Ecology. 1998, 7: 367-369.
    [73] Nass MMK, Nass S. Intramitochondrial fibers with DNA characteristics.I. Fixation and electron staining reactions[J]. J Cell Biol. 1963, 19: 593-611.
    [74] Nass MMK, Nass S.Intramitochondrial fibers with DNA characteristics.II. Enzymatic and other hydrolytic treatments[J]. J Cell Biol. 1963, 19: 613-629.
    [75] Cann RL, Brown WM, Wilson AC. Evolution of human mitochondrial DNA: A preliminary report[J]. In Human Genetics, 1982:157-165.
    [76] Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondria DNA[J]. Proc Natl Acad Sci USA. 1979, 76: 1967-1971.
    [77] Yoder AD, Yang Z. Estimation of primate speciation dates using local molecular clocks[J]. Mol Siol Evol. 2000, 17(7): 1081- 1090.
    [78] Avise JC. The history and preview of phylogeograhy:a personal reflection[J]. Molecular Ecology. 1998, 7: 371-379.
    [79] Voelker G. Dispersal, vicariance, and clocks: historical biogeography and Speciation in cosmopolitanpasserine genus (Anthus: Motacillidae) [J]. Evolution. 1999, 53:1536-1552.
    [80] Hedges SB, Parker PH, Sibley CG, Kumar S. Continental breakup and the Ordinal diversification of birds and mammals[J]. Nature. 1996, 381:226-229.
    [81] Kumar S and Hedges SB. A molecular time scale for vertebrate evolution[J]. Nature. 1998, 392:917-920.
    [82] Archibald JC. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation[J]. Syst Biol. 1999, 48:107-118.
    [83] Yang Z. Among-site rate variation and its impact on phylogenetic analyses Tree. 1996, 11:367-372.
    [84] Da Silva MNF, Patton JL. Molecular phylogeography and the evolution and conservation of Amazonian mammals[J]. Molecular Ecology. 1998,7: 475-486.
    [85] Mihajla D, Dragana O, Ljiljana V. Polymorphism of mtDNA regions in brown hare (Lepus europaeus) populations from Vojvodina (Serbia and Montenegro) [J]. Eur J Wildl Res. 2006, 52: 288-291.
    [86] Taberlet P, Bouvet J. Mitochondrial DNA polymorphism phylogeography and conservation genetics the brow bear (Ursus arctos) in Europe. Proc R Soc Lond B. 1994, 255:195-200.
    [87] LI ZC, Xia L, Yang QS, Liang MY. Population Genetic Structure of the Yarkand Hare (Lepus yarkandensis) [J]. Acta Theriologica Sinica. 2005, 25(3): 224-228.
    [88]LI ZC, Xia L, LI YM, Yang QS, Liang MY. Mitochondrial DNA variation and population structure of the Yarkand hare Lepus yarkandensis[J]. Acta Theriologica. 2006, 51 (3): 243-253.
    [89] Wu YH, Xia L, Zhang Q, Yang QS. Habitat fragmentation affects genetic diversity and differentiation of the Yarkand hare[J]. Conserv Genet. 2010, 11:183-194.
    [90] Talbot SL, Shields GF. Phylogeography of brown bears (ursus actors) of Alaska and Paraphyly within the Ursidae[J]. Molecular Phylogenetics and Evolution. 1996, 5(3): 477-494.
    [91] Zhao L, Zhang J, Liu ZJ. Complex population genetic and demographic history of the Salangid, Neosalanx taihuensis, based on cytochrome b sequences[J]. BMC Evolutionary Biology. 2008, 8:201.
    [92] Redenbach Z, Taylor EB. Zoogeographical implications of variation in mitochondrial DNA of Arcticgrayling (Thymallus arcticus) [J]. Molecular Ecology. 1999, 8: 23-35.
    [93] Brown RP, Pestano J. Phylogeography of skinks (Chalcides) in the Canary Islands inferred from mitochondrial DNA sequences[J]. Molecular Ecology. 1998: 1183-1191.
    [94] Johnson WE, Slattery JP, Eizirik E, Kim JH, Raymono MM, Bonacic C. Disparatep hylogeographic patterns of molecular genetic variation in four closely related South American small cat species[J]. Molecular Ecology, 1999, 8: 879-894.
    [95] Trevino SE, Dizon AE. Phylogeography, in traspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondria and microsatellite DNA analyses[J]. Molecular Ecology. 2009:1049-1060.
    [96] Robert MZ, Alexandra P, Sievert R,Sergei VD. Barn swallows before barns: population histories and intercontinental colonization[J]. Proc R Soc B. 2006, 273: 1245-1251.
    [97] Andone E, Ainhoa S, Iriondo M, Mar?′a J. The genetic distinctiveness of the three Iberian hare species: Lepus europaeus, L. granatensis, and L. castroviejoi[J]. Mamm biol. 2006, 71 (1): 52-59.
    [98] Benninham E, Rohwer S, Freeman S and Wood C. Vicariance biogeography in the Pleistocene and speciation in North American wood warblers, a test of Mengel's model. Proceedings of the National Academy of Sciences, USA[J]. 1992, 89: 6624 - 6628.
    [99] Milot E, Gibbs HL, Hobson KA. Phylogeograpy and genetic structure of northern population of the yellow warbler (Dendroica petechia) [J]. Molecular Ecology. 2000, 9: 667-681.
    [100] Chen SY, Wu GU, Zhang DJ. Potential refugium on the Qinghai-Tibet Plateau revealed by the chloroplast DNA phylogeography of the alpine species Metagentiana striata (Gentianaceae) [J]. Botanical Journal of the Linnean Society. 2008, 157: 125-140.
    [101] Wang LY, Richard J, Zheng W et al. History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae) [J]. Molecular Ecology. 2009, 18: 709-721.
    [102] Eric W and Joesph AC. Hares on ice: phylogeography and historical demographics of Lepus arcticus,L. othus, and L. timidus (Mammalia: Lagomorpha) [J]. Molecular Ecology. 2006, 14: 3005-3016.
    [103] Schneider CJ, Cunningham M, Moritz C. Comparative phylogeography and the history of endemic vertebrates in the West Tropics rainforest of Australia[J]. Molecular Ecology. 1998, 7: 487-498.
    [104] Austin JD, Lougheed SC, Moler PE, Boag PT. Phylogenetics, zoogeography and the role of dispersal and vicariance in the evolution of the Rana catesbeiana (Anura, Ranidae) species group[J]. Biological Journal of the Linnean Society. 2003, 80: 601-623.
    [105]黄原。分子系统学:原理,方法及应用[J]。北京:中国农业出版社,1998。
    [106] Nei M, Kumar S. Molecular Evolution and Phylogenetics[M]. New York: Oxford University, , 2000.
    [107]吕宝钟,钟杨,高莉萍等译。分子进化与系统发育[M]。北京:高等教育出版社,2002。
    [108] Hendy M, Penny D. A framework for the quantitative study of evolutionary trees[J]. Syst Zool. 1989, 38: 297-309.
    [109] Nei M. Phylogenetic analysis in molecular evolutionary genetics[J]. Annu Rev Genet. 1996, 30: 371- 403.
    [110] Whelan S, LiòP, Goldman N. Molecular phylogenetics: state-of-the-art methods for looking into the past[J]. Trends Genet. 2001,17: 262-272.
    [111] Leitner T, Escanilla D, Franzen C, Uhlen M, Albert J. Accurate reconstruction of a known HIV-1 transmission history by phylogenetic tree analysis[J]. Proc Natl Acad Sci, USA. 1996, 93:10864-10869.
    [112] Strimmer K, Robertson DL. Inference and Applications of Molecular Phylogenies: An Introductory Guide. In Sansom CE, Horton RM eds. The Internet for Molecular Biologists[M]. Oxford UK:Oxford University Press, 2004.
    [113]Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference[J]. Mol Biol Evol, 1993, 10:1073-1095.
    [114] Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Mol Biol Evol. 1987, 4: 406-425.
    [115] Holder M, Lewis PO. Phylogeny estimation: traditional and Bayesian approaches[J]. Nat Rev Genet. 2003, 4: 275-284.
    [116] Hills DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis[J]. Syst Biol. 1993, 42: 182-192.
    [117] Zharkikh A, Li WH. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock[J]. J Mol Evol. 1992, 9: 1119-1147.
    [118] Rannala B, Yang Z. Probability distribution of molecular evolutionary trees, a new method of phylogenetic inference[J]. Journal of Molecular Evolution. 1996,43: 303-311.
    [119] Yang ZH, Rannala B. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method[J]. J Mol Evol. 1997,14: 717-724.
    [120] Bollback JP, Huelsenbeck JP. Phylogeny, genome evolution, and host specificity of single-stranded RNA bacteriophage (family Leviviridae) [J]. J Mol Evol. 2001, 52: 117-128.
    [121] Lutzoni F, Pagel M, Reeb V. Major fungal lineages are derived from lichen symbiotic ancestors[J]. Nature. 2001, 411: 937-942.
    [122] Furlong RF, Holland PWH. Bayesian phylogenetic analysis supports monopoly of Ambulacraria and cyclostomes[J]. Zool Sci. 2002, 19: 593-599.
    [123] Rannala B. Identifiability of parameters in MCMC Bayesian inference of phylogeny[J]. Syst Biol. 2002, 51: 754-760.
    [124] Holder M, Lewis PO. Phylogeny estimation: traditional and Bayesian approaches[J]. Nat Rev Genet. 2003, 4: 275-284.
    [125]徐广,方庆权,Keirans JE, Durden LA。分子系统进化关系分析的一种新方法-贝叶斯法在硬蜱属中的应用[J]。动物学报。2003,49:380-388。
    [126] Huelsenbeck JP, Ronquist F. MrBayes, Bayesian inference of phylogenetic trees[J]. Bioinformatics. 2001, 17: 753-755.
    [127] LeachéAD, Reeder TW. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus),A comparison of parsimony, likelihood, and Bayesian approaches[J]. Systematic Biology. 2002, 51:41-62.
    [128] Wilcox TP, Zwickl DJ, Heath TA, Hillis DM. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support[J]. Mol Phylogenet Evol. 2002, 25: 361-371.
    [129] Reed DL, Carpenter KE, deGravelle MJ. Molecular systematics of the Jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches [J]. Mol Phylogenet Evol. 2002, 23: 513-524.
    [130] Suzuki Y, Glazko GV, Nei M. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics[J]. Proc Natl Acad USA. 2002, 99: 16138-16143.
    [131] Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life[J]. Nat Rev Genet. 2005, 6: 361-375.
    [132] Kim J. Improving the accuracy of phylogenetic estimation by combining different methods[J]. Syst Biol. 1993, 42: 331-340.
    [133] Zink RM, Avise JC. Patterns of mitochondrial DNA and allozyme evolution in the avian genus Ammodramas[J]. Syst Zool. 1990, 39: 148-161.
    [134] Ben SH, Suchentrunk F, Shahin AB, Ben AEA. Phylogenetic analysis of mtCR-1 sequences of Tunisian and Egyptian hares (Lepus sp. or spp., Lagomorpha) with different coat colours[J]. Mamm Biol. 2007, 72 (4): 224-239.
    [135] Ben SH, Suchentrunk F, Ben AA .On shortcomings of using mtDNA sequence divergence for the systematics of hares (genus Lepus): An example from cape hares[J]. Mamm biol. 2007, 02.
    [136] Philippe H, Laurent J. How good are deep phylogenetic trees? [J] Curr Opin Genet Dev. 1998, 8: 616-623.
    [137]朱震达,陈治平,吴正。塔克拉玛干沙漠风沙地貌研究[M]。北京:科学出版社, 1981: 1-8。
    [138]高前兆。塔里木南缘水资源与生态环境建设战略[J]。冰川冻土。2000,22 (3):298-308。
    [139] Gao Y. Current studies on the Chinese Yarkand hare[J]. Acta Zool Fenn. 1983, 174: 23-25.
    [140] Angerman R. Beitrage zur Kenntnis der Gattung Lepus ( Lagomorpha, Leporidae).IV. Lepus yarkandensis Gunther, 1875 and Lepus oiostolus Hodgson, 1840 zwei endemische Hasenarten Zentralasiens[J]. Mitteilungen aus dem Zoologischen Museum in Berlin, 1967, 43 (2):189-203.
    [141] Zhang D R, Chen M Y, Murphy R W, et al. Genealogy and palaeodrainage basins in Yunnan Province: Phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae) [J]. Mol Ecol. 2010, 19: 3406–3420.
    [142] Che J, Zhou W W, Hu J S. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia[J]. Proc Natl Acad Sci USA. 2010, 107: 13765–13770.
    [143]葛肖虹,刘永江,任收麦。青藏高原隆升动力学与阿尔金断裂[J]。中国地质。2002,29 (4):346-350。
    [144]葛肖虹,任收麦,刘永江。青藏高原末次快速隆升与“亚澳”陨击事件[J]。第四纪研究。2004,24 (1):67-73。
    [145] Sambrook J, Fritsch EF, Maniatis T.“Molecular Cloning, A laboratory Mannual”. 2nd ed[M]. NY: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989.
    [146] Gissi C, Gullberg A, Arnason U. The complete mitochondrial DNA sequence of the rabbit, Oryctolagus cuniculus[J]. Genomics. 1998, 50: 161-169.
    [147] Irwin DM, Kocher TD, Wilson AC. Evolution of the Cytochrome b Gene of Mammals[J]. J Mol Evol. 1991, 32: 128-143.
    [148] Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC. Dynamics of mitochondrial DNA evolution in animals, Amplification and sequencing with conserved primers[J]. Proc Natl Acad Sci USA. 1989, 86: 6194 - 6200.
    [149] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic AcidsResearch, 1997, 24: 4876-4882.
    [150] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Mol Biol Evol. 2007, 4:1596-1599.
    [151] Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics. 2003, 19: 2496-2497.
    [152] Peakall, R. and Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes. 2007, 6: 288-295.
    [153] Smouse PE, Long JC. Matrix correlation analysis in anthropology and genetics[J]. Yearbook Phys Anthropol. 1992, 35, 187-213.
    [154] Smouse PE, Long JC, Sokal RR. Multiple regression and correlation extensions of the Mantel test of matrix correspondence[J]. Systematic Zoology. 1986, 35, 627-632.
    [155] Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Biology. 1999, 16: 37-48.
    [156] Excoffier LG, Laval Schneider S.Arlequin ver.3.0: An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online. 2005: 47-50.
    [157] Excoffier L, Smouse PE, Quattiro JM. Analysis of molecular variance from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data[J]. Genetics. 1992, 131: 479-491.
    [158] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics. 1989, 123:584-595.
    [159] Fu YX. Statistical tests of neutrality of mutations against population growth, hitching and background selection[J]. Genetics. 1997, 147: 915-925.
    [160] Harpending HC, Sherry ST, Rogers AR, et al. The genetic structure of ancient human populations[J]. Curr. Anthropol. 1993,34:483-496.
    [161] Huelsenbeck JP, Ronquist F. MrBayes, Bayesian inference of phylogenetic trees[J]. Bioinformatics.2001, 17: 753-755.
    [162] LeachéAD, Reeder TW. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus), A comparison of parsimony, likelihood, and Bayesian approaches[J]. Systematic Biology. 2002, 51:41-62.
    [163] Rannala B, Yang Z. Probability distribution of molecular evolutionary trees, a new method of phylogenetic inference[J]. Journal of Molecular Evolution. 1996, 43: 303-311.
    [164] Cantatore P, Roberti M, Pesole G, et al. Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals[J]. J Mol Evol. 1994, 39:589-597.
    [165] Irwin DM, Kocher TD, Wilson AC. Evolution of the Cytochrome b Gene of Mammals[J]. J Mol Evol. 1991, 32: 128-143.
    [166] Arctander P, Kat PW, Siegismund HR. Extreme genetic differences among populations of Grant’s gazelle, Gazella granti, in Kenya[J]. Heredity. 1995, 76:465-475.
    [167] Simonsen BT. Population Structure and History of African Bovids[D]. PhD Thesis. Denmark: Department of Population Biology, University of Copenhagen, 1997.
    [168] Simonsen BT, Siegismund HR, Arctander P. Population structure of African Buffalo inferred from mtDNA sequences and microsatellite loci, high variation but low differentiation[J]. Mol Ecol. 1998, 7: 225-237.
    [169] Nyakaana1 S, Arctander P, Siegismund HR. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci[J]. Heredity. 2002: 89: 90-98.
    [170] Stangel PW, Lennartz MR, Smith MH. Genetic variation and population structure of red-cockaded woodpeckers[J]. Conserv Bio. 1992, 6: 283-292.
    [171] Anthony TG, Conway DJ, Cox-Singh J. Fragmented population structure of plasmodium falciparum in a region of declining endemicity[J]. J Infect Dis.2005, 191(9): 1558-1564.
    [172] Provan J, Beatty GE, Hunter AM, et al. Restricted gene flow in fragmented populations of a wind-pollinated tree[J]. Conserv Genet. 2008, 9: 1521-1532.
    [173] Su H, Qu LJ, He K. The Great Wall of China: a physical barrier to gene flow[J]? Heredity. 2003, 90(3): 212-219.
    [174] Whittaker RH, Levin SA, Root RB. Niche, habitat, and ecotope[J]. American Nature. 1973, 107: 321-338.
    [175] Reid WV, Kenton RM. Keeping options alive: the scientific basis for conserving biodiversity[M]. Winshington DC: World Resouces Institute, 1989.
    [176] Bauert MR, Kalin M, Baltisberger M. No genetic variation detected within isolated relict populations of Saxif raga cernua in the Alps using RAPD markers[J]. Molecular Ecology. 1998, 7 (11): 1519-1527.
    [177] Nesbo CL , Magnhagen C , Jakobsen KS. Genetic differentiation among stationary and anadromous perch (Perch fluviatilis) in the Baltic Sea[J]. Hereditas Lund. 1998, 129(3): 241-249.
    [178] Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation[J]. Biol J Linn Soc. 1996, 58: 247-276.
    [179] Hewitt GM. Post-glacial re-colonization of European biota[J]. Biol J Linn Soc. 1999, 68: 87-112
    [180] Lessa EP, Cook JA, Patton JL. Genetic footprints of demographic expansion in North America, but not Amazonia, during the late Quaternary. Proc Natl Acad Sci USA. 2003, 100: 10331-10334.
    [181] Galbreath K, Cook J A. Genetic consequences of Pleistocene glaciations for the tundra vole (Microtus oeconomus) in Beringia[J]. Mol Ecol. 2004, 13: 135-148
    [182] Zheng B, Xu Q, Shen Y. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation[J]. Quatern Int. 2002, 97(98): 93-101.
    [183] Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary[J]. Proc R Soc Lond B Biol Sci. 2004, 359: 183-195.
    [184] Elmore A J, Manning S J, Mustard J F, et al. Decline in alkali meadow vegetation cover in California:The effects of groundwater extraction and drought[J]. J Appl Ecol. 2006, 43: 770-779.
    [185] Li X, Lu L, Cheng GD. Quantifying landscape structure of the Heihe River Basin, north-west china using FRAGSTATS[J]. J Arid Environ. 2001, 48: 521-535.
    [186] Puckridge JT, Walker KF, Costelle JF. Hydrological persistence and the ecology of dryland rivers[J]. Regul River. 2000, 16: 385-402.
    [187] Naumburg E, Mata-Gonzalez R, Hunter RG. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation[J]. Environ Manage. 2005, 35:726-740.
    [188] Yang XP, Zhu ZD, Jaekel D. Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River, Xinjiang,China: The relationship between high mountain glaciation and landscape evolution in foreland desert regions[J]. Quatern Int. 2002, 97(98): 155-166.
    [189] Chen YN, Chen YP, Li WH. Response of the accumulation of proline in the bodies of Populus euphratica to the change of groundwater level at the lower reaches of Tarim River[J]. Chinese Sci Bull, 2003, 48: 1995-1999.
    [190] Chen YN, Li W, Xu HL. The influence of groundwater on vegetation in the lower reaches of Tarim River, China[J]. Acta Geograph Sin. 2003, 58: 542-549.
    [191] Chen YN, Zilliacus H, Li WH. Ground-water level affects plant species diversity along the lower reaches of the Tarim river, Western China[J]. J Arid Environ. 2006, 66: 231-246.
    [192] Hou P, Beeton RJS, Carter RW. Response to environmental flows in the lower Tarim River, Xinjiang, China: Ground water[J]. J Environ Manage. 2007, 83: 371-382.
    [193]李庆伟,田春宇,李爽。鹰科四种鸟类线粒体DNA的差异和分子进化关系的研究[J]。遗传。2001,23 (6):529-534。
    [194] Luo SJ, Kim JH, JohnsonWE. Phylogeography and genetic ancestry of tigers (Panthera). PLoS Biol. 2004, 2(12): 2275-2293.
    [195] Darlu P, Lecointre G. When does the incongruence length difference test fail[J]? Mol Biol Evol. 2002,19: 432- 437.
    [196] Xiao H, Chen SY, Liu ZM, Zhang RD, Li WX, Zan RG, Zhang YP. Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences[J]. Mol Phylogenet Evol. 2005.
    [197] Yoder AD, Irwin JA, Payseur BA. Failure of the ILD to determine data combinability for Slow Loris phylogeny[J]. Syst Biol. 2001, 50: 408-424.
    [198]阎雪岚,唐文乔,杨金权。基于线粒体控制区的序列变异分析中国东南部沿海凤鲚种群遗传结构[J]。生物多样性。2009,17 (2):143-150。
    [199] Aerziguli S, Mairepati P, Dilixiati A. The comparison of skull morphology of Yarkand hare (Lepus yarkandensis) different geographical populations[J]. Xinjiang Agricul Sci. 2010, 47: 162-163.
    [200] O’Brien S J, Mayr E. Bureaucratic mischief: recognizing endangered species and subspecies[J]. Science. 1991, 251: 1187-1188.
    [201] Fan ZL, Ma YJ, Ji F. Relations between exploitation-utilization of water resources and oasis evolution and ecological balance in Tarim Basin[J]. Journal of Natural Resources. 2001, 16: 22-26.
    [202] Skinner JD, Chimimba C. Mammals of the Southern African Sub-Region. A Comprehensive Reference Covering Mammals of the Southern African Subregion[M]. Cambridge Univ. 2005.
    [203] Suchentrunk F, Ben SH, Sert H. Phylogenetic aspects of nuclear and mitochondrial gene pool characteristics of South and North African cape hares (Lepus capensis) and European brown hares (L. europaeus). In: Alves, P.C., Ferrand, N., Hackla¨nder, K. (Eds.), Lagomorph Biology: Evolution, Ecology, and Conservation [M]. Heidelberg: Springer Publ. 2007: 65-85.
    [204] Van HWF, Groen AF, Prins HHT. Phylogeography of the African buffalo based on mitochondrial and Y-chromosomal loci: Pleistocene origin and population expansion of the Cape buffalo subspecies [J]. Mol Ecol. 2002,11: 267-279.
    [205]杨军校,周炜帏,饶定齐, Poyarkov AN, Kuzmin SL,车静. 2010.阿尔泰林蛙的物种有效性及其分类地位——来自系统发育分析的证据[J]。动物学研究, 31(4): 353-360.
    [206]Gissi C, Gullberg A, Arnason U. The complete mitochondrial DNA sequence of the rabbit, Oryctolagus cuniculus[J]. Genomics. 1998, 50: 161-169.
    [207] Slatkin M, Hudson RR. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations[J]. Genetics. 1991, 129:554-562.
    [208] Massimo P, Francesco R, Valter T, Ettore R. 2003. Hare populations in Europe: intra and interspecific analysis of mtDNA variation [J]. CR Biologies, 326: 80-84.
    [209] Su B, Fu YX, Wang YX, LJ, Chakraborty R. Genetic diversity and population history of the red panda ( Ailurus fulgens) as inferred from mitochondrial DNA sequence variations [J]. Mol Biol Evol. 2001,18 (6):1070-1076.
    [210] He DQ, Zhu Q, Chen SY, Wang HY, Liu YP, Yao YG. A homogenous nature of native Chinese duck matrilineal pool [J]. BMC Evol Biol. 2008, 8: 298.
    [211]Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation [J]. Biol J Linn Soc. 1996, 58: 247-261.
    [212] Shi YF, Cui JZ, Su Z. The quaternary glaciations and environmental variations in China [M]. Hebei: Hebei Science and Technology Publishing House, 2006.
    [213] Wright S. Isolation by distance[J]. Genetics. 1943, 28 : 114-138.
    [214]田风贵,马志杰,陈智华。分子生态学与生物多样性研究[J]。西南民族大学学报(自然科学版)。2005,31(1):115-120。
    [215]曲若竹,侯林,吕红丽,李海燕。群体遗传结构中的基因流[J]。遗传。2004,26(3):377-382。
    [216] Floyd CH, Van Vuren D H, May B. Marmots on great basin moutaintops: using genetics to test a biogeographic paradigm[J]. Ecology. 2005, 86 (8): 2145-2153.
    [217] Goossens B, Chikhi L, Taberlet P. Microsatellite analysis of genetic variation within Alpine marmot populations in the French Alps[J]. Molecular Ecology. 2001, 10(1): 41-52.
    [218] Trizio I, Crestanello B, Galbusera P. Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) [J]. Molecular Ecology. 2005, 14 (2): 469-481.
    [219] Mayr E, Ashlock PD. Principles of systematic biology [M]. New York: McGraw-Hill, 1991.
    [220] Girman DJ , VilàC, Geffen E, Creel S, Mills MGL, McNutt JW, Ginsberg J, Kat PW, Mamiya KH, Wayne RK. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus) [J]. Mol Ecol. 2001,10:1703-1723.
    [221] Luo SJ, Kim JH, Johnson WE, Walt J, Martenson J, Yuhki N, Miquelle DG, Uphyrkina O, Goodrich JM, Quigley HB. Phylogeography and genetic ancestry of tigers Panthera tigris [J]. PLoS Biol, 2004, 2 (12): 2275-2293.
    [222]罗述金, Jae-heup Kim, Warren E J, Dale G M,黄世强,潘文石, James LDS, Stephen J O′B.中国及其他分布区域野生虎的系统地理学和遗传起源研究进展[J]。动物学研究, 2006,27(4): 441-448.
    [223] Krüger K, Gaillard C, Stranzinger G, Rieder S. Phylogenetic analysis and species allocation of individual equids using microsatellite data [J]. J Anim Breed Genet. 2005, 122: 78-86.
    [224] Burbrink FT, Lawson R, Slowinski JB. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept [J]. Evolution. 2000, 54: 2107-2118.
    [225] Fischer A, Pollack J, Thalmann O, Nickel B, P??bo S. Demographic history and genetic differentiation in Apes [J]. Curr Biol, 2006, 16: 1133-1138.
    [226] Robert M, John CMJ, John MV, Paul TC, Leslie JR. Phylogeographic analysis and environmental niche modeling of the plain-bellied watersnake (Nerodia erythrogaster) reveals low levels of genetic and ecological differentiation [J]. Mol Phylogenet Evol. 2010, 55: 985-995.
    [227] Alpers DL, Vuuren BJ, Van AP, Robinson TJ. Population genetics of the roan antelope ( Hippotragus equinus) with suggestions for conservation [J]. Mol Ecol, 2004,13: 1771-1784.
    [228] Pyron RA, Burbrink FT. Systematics of the Common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy [J]. Zootaxa. 2009, 2241: 22-32.
    [229] Raxworthy C, Ingram C, Rabibisoa N, Pearson R. Applications of Ecological Niche Modeling forspecies delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar [J]. Syst Biol. 2007, 56: 907-923.
    [230]王思博,杨赣源。新疆啮齿动物志[M]。乌鲁木齐:新疆人民出版社。1983:30-38。
    [231]相雨,杨奇森,夏霖。中国兔属动物的分类现状和分布[J]。四川动物。2004,23(4):391-397。
    [232] Slimen HB, Suchentrunk F, Amma AB, Elgaaied. On shortcomings of using mtDNA sequence divergence for the systematics of hares (genus Lepus): An example from cape hares[J]. Mamm. Boil. 2008, 73: 25-32.
    [233] Massimo S, Laura I, Hichem B S. Mitochondrial CR-1 Variation in Sardinian Hares and Its Relationships with Other Old World Hares (Genus Lepus) [J]. Biochemical Genetics. 2007, 45: 305-323.
    [234] Avise JC. Molecular Markers, Natural History, and Evolution. 2nd ed[M]. Sinauer, Sunderland, MA, 2004.
    [235] Altukhov Yu P, Salmenkova EA. DNA polymorphism in population genetics[J]. Russ J Genet. 2002, 38(9): 989-1008.
    [236] James Mallet. Hybridization as an invasion of the genome[J]. Trends in Ecology and Evolution. 2005, 20(5):229-237.
    [237] Leaky PR. Isolation and porous genomes: rapid introgression of maternally inherited DNA Kai M A Chan1,2 and Simon A levin1. Evolution, 2005, 59(4): 720-729.
    [238] Conrad AM, Matthee, Bettine JV. A Molecular Supermatrix of the Rabbits and Hares (Leporidae) Allows for the Identification of Five Intercontinental Exchanges During the Miocene[J]. Syst Biol. 2004, 53(3): 433-447.
    [239] Schl?tterer C. Evolutionary dynamics of microsatellite DNA[J]. Chromosoma. 2000, 109: 365-371
    [240] Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers[J]. Ecol Lett. 2006, 9: 615-629.
    [241] Matthee CA, Burzlaff JD, Taylor JF, Davis SK. Mining the mammalian genome for artiodactylsystematics[J]. Syst Biol. 2001, 50:367-390.
    [242] McGuire JA, Linkem CW, Koo MS. Mitochondrial introgression and incomplete lineage sorting through space and time: phylogenetics of crotaphytid lizards[J]. Evolution. 2007, 61:2879-2897.
    [243] Chen W, Bi K, Fu J. Frequent mitochondrial gene introgression among high elevation Tibetan megophryid frogs revealed by conflicting gene genealogies[J]. Mol Ecol. 2009, 18: 2856-2876.
    [244] Castillo AGF, Beall E, Moran JL. Introgression in the genus Salmo via allotriploids[J]. Molecular Ecology. 2007, 16:1741-1748.
    [245] Alves PC, Melo-Ferreira J, Hélder F, Pierre B. The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus[J]. Phil Trans R Soc B. 2008, 363: 2831-2839.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700