基因干扰肝肠钙黏附蛋白联合p53分子靶向治疗肝癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分靶向肝肠钙黏附蛋白miR-30-based shRNA慢病毒的构建、鉴定及大量包装
     目的:
     以Ll-cadherin基因为靶标设计miR-30-based shRNA序列,构建重组慢病毒,用以研究肝肠钙黏附蛋白在肝癌生长和转移过程中的作用,并为基因干扰治疗肝癌的动物实验提供工具。
     方法:
     参照冷泉港实验室设计的miR-30-based shRNA系列库,采用Openbiosystem公司定制的以逆转录病毒为基本骨架,确认有效干扰靶基因和对照基因的PSM2系列载体,由PSM2质粒PCR制备携带miR-30-basedshRNA序列的插入片段,再提纯浓缩测序后与慢病毒线性质粒连接,构建重组pLUNIG-miLl-cadherin工作质粒。同时重组构建干扰荧光素酶基因pLUNIG-miLuciferase工作质粒作为非靶基因干扰对照。采用四质粒包装系统,重组pLUNIG-miLl-cadherin或pLUNIG-miLuciferase为工作质粒,PCMV-VSVG、PMDL-G/P-RRE、PRSV-REV为包装质粒,用磷酸钙-DNA共沉淀法转入293T细胞中包装,收集病毒上清液并浓缩,Q-RT-PCR测定病毒拷贝数。慢病毒感染MHCC97H细胞,上清液转染293T细胞排除病毒复制性。G418筛选稳定感染的MHCC97H-miLl-cadherin和MHCC97H-miLuciferase细胞株,经实时定量PCR,细胞免疫组化及Western blotting检测证实MHCC97H-miLl-cadherin细胞中Ll-cadherin的有效下调。
     结果:
     1、用BLAST同源检索进行测序结果的鉴定。成功获得命名为pLUNIG-miLl-cadherin和pLUNIG-miLuciferase的工作质粒。
     2、稳定感染的MHCC97H-miLl-cadherin细胞株中Ll-cadherin mRNA的表达有一定程度降低,相对值约为MHCC97H对照组的49%。细胞免疫荧光染色显示,MHCC97H-miLl-cadherin细胞中Ll-cadherin蛋白的表达与非靶基因干扰MHCC97H-miLuciferase细胞组相比明显降低。Western blotting进一步确认,MHCC97H-miLl-cadherin细胞中Ll-cadherin蛋白(120 KDa)的表达明显降低,非靶基因干扰MHCC97H-miLuciferase细胞组与无处理对照MHCC97H细胞组Ll-cadherin表达接近。
     3、大量包装后慢病毒浓缩原液通过实时定量PCR检测得到每批病毒拷贝的数量级均在10~9以上,且病毒无复制性。
     结论:
     1、构建了新一代双选择系统的重组慢病毒携带miR-30-based shRNA系列工作质粒,包括靶基因和荧光素酶基因干扰对照两种。证实慢病毒是携带shRNA进入肝癌细胞的理想载体。
     2、在基因和蛋白表达水平证实应用miR-30-based shRNA能有效地抑制高转移潜能人肝癌细胞株MHCC97H内Ll-cadherin的表达。
     3、完成了用于体外和活体实验的高滴度重组慢病毒的大批量包装生产、浓缩和复制性的检测。
     第二部分基因干扰肝肠钙黏附蛋白的人肝癌细胞株的细胞生物学属性改变
     目的:
     研究慢病毒介导的肝肠钙黏附蛋白miR-30-based shRNA稳定转染的肝癌细胞株MHCC97H-miLl-cadherin的细胞增殖、粘附、克隆形成、迁移、侵袭、细胞周期、细胞凋亡以及针对性的药物敏感性的变化。探讨其相关关键信号途径。
     方法:
     以荧光素酶干扰MHCC97H-miLuciferase细胞和无处理MHCC97H细胞作为对照组,运用吸光度测量法进行细胞增殖实验和细胞粘附实验;Pl/Rnase染色-流式细胞分析法检测细胞周期;TUNEL法检测细胞凋亡;软琼脂法进行细胞克隆形成实验;TRANSWELL法检测细胞迁移和侵袭能力;MTT法进行多种化疗药及p53基因药物敏感性实验及Western blotting进行相关信号通路的初步探讨。
     结果:
     1、靶基因干扰组MHCC97H-miLl-cadherin细胞的生长速度和粘附能力较对照组细胞明显抑制,靶基因干扰组与对照组相比差异具有显著统计学意义(P<0.05)。
     2、靶基因干扰组MHCC97H-miLl-cadherin细胞与荧光素酶干扰组MHCC97H-miLuciferase细胞和无处理对照组MHCC97H细胞相比S期细胞百分比明显减少,G0-G1期细胞百分比明显增多,靶基因干扰组与对照组相比差异具有显著统计学意义(P<0.01)。
     3、靶基因干扰组MHCC97H-miLl-cadherin凋亡阳性细胞为8.52±1.43%,显著高于荧光素酶干扰组MHCC97H-miLuciferase(1.55±0.33%),靶基因干扰组与对照组相比差异具有显著统计学意义(P<0.001)。
     4、MHCC97H-miLl-cadherin组的细胞软琼脂克隆数明显少于MHCC97H和MHCC97H-miLuciferase组,抑制率为91.3%,靶基因干扰组与对照组相比差异具有显著统计学意义(P<0.001)。
     5、迁移和侵袭实验中MHCC97H-miLl-cadherin组的穿膜细胞明显少于MHCC97H和MHCC97H-miLuciferase组,抑制率分别为90.2和88.3%,靶基因干扰组与对照组相比差异具有显著统计学意义(P<0.001)。
     6、靶基因干扰组MHCC97H-miLl-cadherin细胞与荧光素酶干扰组MHCC97H-miLuciferase细胞和无处理对照组MHCC97H细胞相比针对性的化疗药物如表阿霉素、卡铂以及基因药物rAd-p53的敏感性明显增高。
     7、通过Wnt/β-catenin信号通路改变,Ll-cadherin的下调激活了GSK-3β的活性,从而导致β-catenin的降解,抑制了Cyclin D1的表达而相应增加Rb的表达,从而改变了MHCC97H细胞的肿瘤生物学属性。
     结论:
     1、MHCC97H-mi Ll-cadherin细胞株与对照组相比生物学属性改变明显,表现为增殖迟缓,粘附能力明显下降,软琼脂克隆形成,迁移、侵袭的能力明显减退,S期细胞百分比明显减少,G0-G1期细胞百分比明显增多,细胞自发凋亡显著增多。
     2、MHCC97H-mi Ll-cadherin细胞株与对照组相比对一些针对性的化疗药物如表阿霉素、卡铂的敏感性和抑制率明显增高。
     3、MHCC97H-mi Ll-cadherin细胞株与对照组相比对基因药物rAd-p53的敏感性和抑制率明显增高。
     4、人源性高转移潜能MHCC97H肝癌细胞株中Ll-cadherin的下调通过对细胞增殖和凋亡的调控明显改变了这一细胞株的肿瘤生物学属性,高度提示Ll-cadherin的癌基因特性
     第三部分基因干扰肝肠钙黏附蛋白联合rAd-p53分子靶向治疗对肝癌生长、转移的抑制作用及相关信号通路的初步探讨
     目的:
     探讨靶基因干扰处理的MHCC97H-mi-Ll-cadherin细胞皮下成瘤能力、继发性转移能力以及尾静脉注射后继发性转移能力变化。研究皮下移植肝癌荷瘤鼠联合分子靶向治疗后肿瘤生长的变化、肿瘤组织中Ll-cadherin、p53及其相关信号通路的基因表达的变化。
     方法:
     将裸鼠分三组分别于皮下种植MHCC97H-mi-Ll-cadherin、非特异性基因干扰对照MHCC97H-mi-Luciferase以及无处理对照MHCC97H细胞,观察靶基因干扰处理组与对照组相比裸鼠皮下成瘤能力和皮下肿瘤转移能力的变化;同样分组尾静脉注射三组肿瘤细胞观察靶基因干扰处理组与对照组相比继发性转移能力的变化;分组重组慢病毒瘤内注射和联合P53分子靶向治疗后观察对皮下移植人肝癌裸鼠肿瘤生长的影响;运用免疫组化及Western blotting检测皮下移植人肝癌荷瘤鼠分子靶向治疗后肿瘤组织中Ll-cadherin、P53表达水平的变化以及相关信号通路的基因表达的变化,同时免疫组化和实时定量PCR观察联合分子靶向治疗的生物学安全性,排除脱靶效应。
     结果:
     1、皮下接种MHCC97H-mi-Ll-cadherin细胞组肿瘤与MHCC97H-mi-Luciferase以及未经处理的MHCC97H细胞组相比明显生长缓慢。皮下接种8周后,MHCC97H-miLuciferase荧光素酶干扰组和MHCC97H无处理对照组中全部动物肺部均见明显转移灶,而MHCC97H-miLl-cadherin靶基因干扰组中全部动物肺部均未见明显转移灶。
     2、经尾静脉注射靶基因干扰组MHCC97H-miLl-cadherin细胞与荧光素酶干扰组MHCC97H-miLuciferase细胞8周后,与皮下接种肿瘤转移情况一致,MHCC97H-miLuciferase荧光素酶干扰组中全部动物肺部均见明显转移灶,而MHCC97H-miLl-cadherin靶基因干扰组中全部动物肺部均未见明显转移灶。
     3、与TRIS缓冲生理盐水(TBS)组和(干扰荧光素酶的重组慢病毒)Lenti-miLuciferase组肿瘤相比,重组腺病毒携带的p53基因(rAd-p53)组肿瘤,Lenti-miLl-cadherin(干扰肝肠钙黏附蛋白的重组慢病毒)组肿瘤和Lenti-miLl-cadherin+rAd-p53组肿瘤生长可见明显抑制,其中Lenti-miLl-cadherin+rAd-p53联合分子靶向治疗组抑制最明显。
     4、Western blotting显示瘤内注射携带miR-30-based shRNA的慢病毒7周后,可明显抑制皮下移植肝癌MHCC97H中Ll-cadherin蛋白的表达,且相应对照组中均可见Ll-cadherin蛋白的高表达。TBS组,Lenti-miLuciferase组和rAd-p53组的β-Catenin蛋白高表达且表达水平相接近,而Lenti-miLl-cadherin组和Lenti-miLl-cadherin+rAd-p53组β-Catenin蛋白表达明显降低。rAd-p53组和Lenti-miLl-cadherin+rAd-p53组Bax的表达水平明显增高,Bcl-XL的表达水平相应降低。Lenti-miLl-cadherin组、rAd-p53组和Lenti-miLl-cadherin+rAd-p53组的caspase3活性蛋白的表达明显增高,尤其是Lenti-miLl-cadherin+rAd-p53联合治疗组的caspase3活性蛋白的表达最高。
     5、免疫组化和实时定量PCR未发现此联合分子靶向治疗的生物学安全性隐患和脱靶效应。
     结论:
     1、人源性高转移潜能肝癌细胞株MHCC97H中Ll-cadherin的表达被明显抑制后可导致肿瘤生长和转移能力的明显下降,为Ll-cadherin可能可以作为体内肝癌治疗的靶点提供理论依据。
     2、瘤内注射携带miR-30-based shRNA的慢病毒可显著抑制皮下移植肝癌MHCC97H中Ll-cadherin蛋白的表达,并抑制肿瘤组织的生长。
     3、瘤内注射携带miR-30-based shRNA的慢病毒联合rAd-p53分子靶向治疗,可更有效抑制肿瘤组织的生长,为肝癌的联合分子靶向治疗提供有效的实验依据。
     4、慢病毒载体Ll-cadherin基因干扰和抑癌基因P53联合分子靶向治疗中未发现明显生物学安全性隐患和脱靶效应。
     5、Ll-cadherin基因干扰和抑癌基因P53作用后相关信号通路研究提示Ll-cadherin的下调与GSK3β蛋白的激活和β-Catenin降解呈正相关。Lenti-miLl-cadherin和rAd-p53治疗肝癌分别通过不同途径调控肿瘤细胞凋亡,引起的肿瘤生长抑制,具有协同作用。
PartⅠEstablishment,characterization and package of miR-30-based shRNA lentivirus targeted at LI-cadherin
     Purpose:
     The study designed the miR-30-based shRNA sequence targeted at LI-cadherin gene and packaged the recombinant lentivirus to study the role of LI-cadherin in the growth and metastasis of HCC.
     Materials and Methods:
     Based on miR-30-based shRNA library of Cold Spring Harbour carried by the PSM2 vector,the pLUNIG-miLI-cadherin as the recombinant working plasmid and pLUNIG-miLuciferase as non-specifically interfering control plasmid was established.Ca3(PO4) 2-DNA coprecipitates was used to transfect 293T cells with either the pLUNIG-miLI-cadherin or pLUNIG-miLuciferase and the other three helper plasmids PCMV-VSVG, PMDL-G/P-RRE and PRSV-REV.The virus supernatant was collected and condensed.Q-RT-PCR was used to examine the copies of lentivirus. MHCC97H cells were infected by the lentivirus.The stable transfectants were selected with G418 as titled MHCC97H-miLI-cadherin and MHCC97H-miLuciferase cell line.Q-RT-PCR,Immunocytochemistry and Western blotting were used to investigate whether the expression of LI-cadherin in MHCC97H-miLI-cadherin cells had been efficiently knocked down.
     Results:
     The sequences of the working plasmids were analyzed with BLAST method. Two working plasmids were acquired as titled pLUNIG-miLI-cadherin and pLUNIG-miLuciferase.
     The expression of LI-cadherin mRNA was downregulated to a certain degree.Immunocytochemistry showed the expression of LI-cadherin protein was significantly lower in MHCC97H-miLI-cadherin cells than in MHCC97H -miLuciferase cells.Western blotting further confirmed that the expression of LI-cadherin protein was significantly downregulated in MHCC97H-miLI-cadherin cells.
     The titre of the condensed lentivirus supernatant was above 10~9 as examined by Q-RT-PCR.The lentivirus was shown to have no function to replicate.
     Conclusion:
     The modified lentivirus is proved to be a novel generation with double selection system,which carries miR-30-based shRNA recombinant working plasmids targeted at LI-cadherin or Luciferase.Lentivirus has also been proved to be an ideal vector to induce shRNA into HCC cells.
     The expression of LI-cadherin protein in MHCC97H has been successfully knocked down with miR-30-based shRNA interfering method.
     A large quantity of package and production of the recombinant lentivirus with high titres has been successfully performed for the use in in vitro and in vivo experiments.
     PartⅡCharacterization of changes in biological properties of MHCC97H-miLI-cadherin cells
     Purpose:
     To study the changes in the cell proliferation,adhesion,clone formation, migration,invasion,cell cycle,apoptosis,and related drugs sensitivity of MHCC97H-miLI-cadherin cells.To explore the possible underlying mechanisms.
     Materials and Methods:
     Cell proliferation and adhesion assays detected by comparing OD values. Cell cycle assays examined by PI/Rnase staining-Flow Cytometry.Cell apoptosis assays checked by TUNEL.Cloning formation assays measured by soft agar.Cell migration and invasion assays calculated by TRANSWELL methods.Drug sensitivity assays monitored by MTT.Signaling pathways exploration using Western blotting.
     Results:
     The cell growth and cell adhesion ability of MHCC97H-miLI-cadherin cells were markedly inhibited as compared to controls.Statistic analyses showed significant difference between MHCC97H-miLI-cadherin cells and controls.
     The percentage of cells in S phase in MHCC97H-miLI-cadherin cells was significantly less than that in MHCC97H-miLuciferase cells and blank control, whereas the percentage of cells in G0-G1 phase in MHCC97H-miLI-cadherin cells was significantly higher than that in MHCC97H-miLuciferase cells and blank control.
     The percentage of positive apoptotic cells in MHCC97H-miLI-cadherin cells was 8.52±1.43%,which was significantly higher than 1.55±0.33%in MHCC97H-miLuciferase cells.
     The number of clone formation,migration and invasion in MHCC97H-miLI-cadherin group was significantly less than that in MHCC97H-miLuciferase and blank control groups.The inhibition rate of MHCC97H-miLI-cadherin group was respectively 93.1%,90.2%and 88.3%. Statistic analysis showed significant difference between MHCC97H-miLI-cadherin group and control groups.
     The drug sensitivity and inhibition rate of Epirubcin,Carboplatin to MHCC97H-miLI-cadherin cells was significantly elevated as compared to MHCC97H-miLuciferase cells and blank control.Statistic analysis showed significant difference between MHCC97H-miLI-cadherin group and control groups.
     The drug sensitivity and inhibition rate of rAd-p53 to MHCC97H-miLI-cadherin cells was significantly elevated as compared to MHCC97H-miLuciferase cells and blank control.Statistic analysis showed significant difference between MHCC97H-miLI-cadherin group and control groups.
     The Wnt/β-catenin pathway was possibly involved in the biological changes of MHCC97H-miLI-cadherin cells.In brief,the downregulation of LI-cadherin activated GSK-3β,then led to the degradation ofβ-catenin,inhibited the expression of CyclinD1 and accordingly increased the expression of Rb.
     Conclusion:
     MHCC97H-miLI-cadherin cells show great changes in the cell biological properties as compared to MHCC97H-miLuciferase cells and blank control MHCC97H cells including retarded proliferation;decreased ability in cell adhesion,clone formation,cell migration and invasion;the decrease in the percentage of cell number in S phase and increase in the percentage of cell number in G0-G1 phase;the increase in the cell apoptosis and drug sensitivity.
     All these results demonstrate that the downregulation of LI-cadherin has obviously altered the tumor properties of the HCC cell line,strongly indicating the oncogene property of LI-cadherin.
     PartⅢInhibition of growth and metastasis of Hepatocellular Carcinoma by lentivirus-induced RNAi therapy combined with rAd-p53 gone therapy and involved signaling pathways
     Purpose:
     To study the changes in cancergenesis and metastasis of MHCC97H-miLI-cadherin cells after subcutaneous inoculation in nude mice. To study the changes in metastasis of MHCC97H-miLI-cadherin cells after tail vein injection in nude mice.To study the changes in tumor growth of subcutaneous inoculated HCC and the expression of LI-cadherin in tumor cells after combined gene therapies.To explore the signaling pathway related to LI-cadherin down-regulation.
     Materials and Methods:
     MHCC97H-miLI-cadherin cells,MHCC97H-miLuciferase cells,and blank control MHCC97H cells were subcutaneously inoculated into adult nude mice respectively to investigate the difference in cancergenesis and metastasis among the three groups.MHCC97H-miLI-cadherin cells, MHCC97H-miLuciferase cells,and blank control MHCC97H cells were injected into adult nude mice via tail vein respectively to investigate the difference in cancergenesis and metastasis among the three groups.The therapeutic effect of intratumor injection of lenti-miLI-Cadherin with and without rAd-p53 on the growth of subcutaneously inoculated HCC in nude mice was investigated.The expression of LI-cadherin and related molecules in subcutaneously inoculated HCC were investigated after intratumor injection of lenti-miLI-Cad with and without rAd-p53 by IHC and westen blotting assays. The biological safety and off-target effects of combined gene therapies were also investigated with IHC and Q-RT-PCR.
     Results:
     The subcutaneously inoculated tumor of MHCC97H-miLI-cadherin group grew much more slowly as compared to MHCC97H-miLuciferase and blank control groups.8 weeks after subcutaneous inoculation,all animals in MHCC97H-miLuciferase and blank control groups showed metastasis in lung, however,no metastasis was observed in MHCC97H-miLI-cadherin group. Similar to subcutaneous inoculation,all animals in MHCC97H-miLuciferase group via tail vein injection showed metastasis in lung and no metastasis was observed in MHCC97H-miLI-cadherin group.
     The growth of HCC tumor in rAd-p53 group,lenti-miLI-cadherin group and lenti-miLI-cadherin plus rAd-p53 group was remarkably inhibited as compared to TBS group and lenti-miLuciferase group.Among the former three groups, the growth of HCC tumor in lenti-miLI-cadherin plus rAd-p53 group showed the strongest inhibition.
     Western blotting showed that 4 weeks after the last intratumor injection of lenti-miLI-cadherin,the expression of LI-cadherin was significantly downregulated whereas high expression of LI-cadherin was shown in control groups.The expression of total GSK3βwere high and at the similar level in all five groups while the S9 phosphated GSK3βare apparently dawnregulated in lenti-miLI-cadherin group and lenti-miLI-cadherin plus rAd-p53 group.The expression ofβ-catenin in TBS group,lenti-miLuciferase group were high and at the similar level,which was in contrast to significant downregulation ofβ-catenin in lenti-miLI-cadherin group and lenti-miLI-cadherin plus rAd-p53 group.The expression of Cyclin D1 in TBS group,lenti-miLuciferase group was high and at the similar level,which was in contrast to significant downregulation of Cyclin D1 in lenti-miLI-cadherin group and lenti-miLI-cadherin plus rAd-p53 group and the expression of Rb were upregulated correspondingly.The expression of P53 were high in all five groups especially in rAd-p53 group and lenti-miLI-cadherin plus rAd-p53 group but without any obvious relationship with the LI-cadherin expression.The expression of Bax in rAd-p53 group and lenti-miLI-cadherin plus rAd-p53 group was elevated,whereas the expression of Bcl-XL decreased accordingly. The expression of cleaved caspase 3 in rAd-p53 group,lenti-miLI-cadherin group and lenti-miLI-cadherin plus rAd-p53 group was obviously induced.No risk in biological safety and off-target effects of combined gene therapies were observed using IHC and Q-RT-PCR assays.
     Conclusion:
     Downregulation of LI-cadherin expression in MHCC97H cells leads to the marked decrease in the tumor growth and metastasis,providing evidence that LI-cadherin can be therapeutic target for HCC treatment.
     Intratumor injection of lenti-miLI-cadherin can significantly downregulate the expression of LI-cadherin,which may be associated with inhibiting tumor growth.
     Intratumor injection of lenti-miLI-cadherin together with rAd-p53 shows greater effects on inhibiting tumor growth,providing evidence to apply combined gene therapies for treatment with HCC.
     No risk in biological safety and off-target effects of combined gene therapies have been observed during the period of drug admistration.
     The study of involved signaling pathway suggesting that the downregulation of LI-cadherin was closely related to activation of GSK-3βand degradation ofβ-catenin;indicating that the tumor growth inhibition due to lenti-miLI-cadherin and rAd-p53 therapy was associated with the different signaling pathway to cooperate and increase in the cell apoptosis.
引文
1 Kiyosawa K, Umemura T, Ichijo T, et al. Hepatocellular carcinoma: recent trends in Japan. Gastroenterology, 2004,127(5 Suppl 1):S17-26.
    2 Villanueva A, Newell P, Chiang DY, et al. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis, 2007,27(1):55-76.
    3 Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin, 2005,55(2)74-108.
    4 Tang, Z.Y, Ye, S.L, Liu, Y.K, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 130(4), 2004. 187-96.
    5 Jaeck D, Bachellier P, Oussoultzoglou E, et al. Surgical resection of hepatocellular carcinoma. Post-operative outcome and long-term results in Europe: an overview. Liver Transpl, 2004,10(2 Suppl 1):S58-63.
    6 Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet, 2003,362(9399): 1907-17.
    7 Marelli L, Stigliano R, Triantos C, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol, 2007,30(1):6-25.
    8 Avila MA, Berasain C, Sangro B, et al. New therapies for hepatocellular carcinoma. Oncogene, 2006,25(27):3866-84.
    9 Abou-Alfa GK. Hepatocellular carcinoma: molecular biology and therapy. Semin Oncol, 2006,33(6 Suppl 11):S79-83.
    10 Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007-an update. J Gene Med, 2007,9(10):833-42.
    11 Meyer M, Wagner E. Recent developments in the application of plasmid DNA-based vectors and small interfering RNA therapeutics for cancer. Hum Gene Ther, 2006,17(11): 1062-76.
    12 Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther, 2006,13(18): 1313-9.
    13 Lo HW, Day CP, Hung MC. Cancer-specific gene therapy. Adv Genet, 2005,54:235-55.
    14 Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene, 2006,25(27):3778-86.
    15 Saffroy R, Pham P, Lemoine A, et al. [Molecular biology and hepatocellular carcinoma: current status and future prospects]. Ann Biol Clin (Paris), 2004,62(6):649-56.
    16 Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene, 2006,25(27):3787-800.
    17 Zucman-Rossi J, Laurent-Puig P. Genetic diversity of hepatocellular carcinomas and its potential impact on targeted therapies. Pharmacogenomics, 2007,8(8):997-1003.
    18 Hussain SP, Schwank J, Staib F, et al. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene, 2007,26(15):2166-76.
    19 Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology, 2007,45(1):42-52.
    20 Lepourcelet M, Chen YN, France DS, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 2004,5(1):91-102.
    21 Huber AH, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell, 2001,105(3):391-402.
    22 Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta, 2003,1653(1):1-24.
    23 Ishizaki Y, Ikeda S, Fujimori M, et al. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol, 2004,24(5): 1077-83.
    24 Taniguchi K, Roberts LR, Aderca IN, et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene, 2002,21 (31):4863-71.
    25 Cui J, Zhou X, Liu Y, et al. Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. J Gastroenterol Hepatol, 2003,18(3):280-7.
    26 Zucman-Rossi J, Jeannot E, Nhieu JT, et al. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology, 2006,43(3):515-24.
    27 Prange W, Breuhahn K, Fischer F, et al. Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. J Pathol, 2003,201(2):250-9.
    28 Inagawa S, Itabashi M, Adachi S, et al. Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res, 2002,8(2):450-6.
    29 Farazi PA, Glickman J, Homer J, et al. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res, 2006,66(9):4766-73.
    30 Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther, 2002,1(8):639-49.
    31 Rocha S, Martin AM, Meek DW, et al. p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol, 2003,23(13):4713-27.
    32 Gu J, Zhang L, Swisher SG, et al. Induction of p53-regulated genes in lung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis. Oncogene, 2004,23(6): 1300-7.
    33 Yin Y, Liu YX, Jin YJ, et al. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature, 2003,422(6931):527-31.
    34 Li M, Brooks CL, Wu-Baer F, et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science, 2003,302(5652):1972-5.
    35 Wong BW, Luk JM, Ng IO, et al. Identification of liver-intestine cadherin in hepatocellular carcinoma—a potential disease marker. Biochem Biophys Res Commun, 2003,311(3):618-24.
    36 Yasui W, Oue N, Aung PP, et al. Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer, 2005,8(2):86-94.
    37 Yasui W, Oue N, Ito R, et al. Search for new biomarkers of gastric cancer through serial analysis of gene expression and its clinical implications. Cancer Sci, 2004,95(5):385-92.
    38 Ko S, Chu KM, Luk JM, et al. Overexpression of LI-cadherin in gastric cancer is associated with lymph node metastasis. Biochem Biophys Res Commun, 2004,319(2):562-8.
    39 Wang XQ, Luk JM, Garcia-Barcelo M, et al. Liver intestine-cadherin (CDH17) haplotype is associated with increased risk of hepatocellular carcinoma. Clin Cancer Res, 2006,12(17):5248-52.
    40 Wang XQ, Luk JM, Leung PP, et al. Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res, 2005,11(2 Pt 1):483-9.
    41 Kreft B, Berndorff D, Bottinger A, et al. LI-cadherin-mediated cell-cell adhesion does not require cytoplasmic interactions. J Cell Biol, 1997,136(5):1109-21.
    42 Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391 (6669):806-11.
    43 Chen Y, Lin MC, Yao H, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology, 2007,46(1):200-8.
    44 Boden D, Pusch O, Silbermann R, et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res, 2004,32(3):1154-8.
    45 Sun D, Melegari M, Sridhar S, et al. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 2006,41(1):59-63.
    46 Aghi M, Martuza RL. Oncolytic viral therapies - the clinical experience. Oncogene, 2005,24(52):7802-16.
    47 Yang ZR, Wang HF, Zhao J, et al. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther, 2007,14(7):599-615.
    48 Fish RJ, Kruithof EK. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol, 2004,5:9.
    49 Shillitoe EJ, Pellenz C. Factors that limit the effectiveness of herpes simplex virus type 1 for treatment of oral cancer in mice. Clin Cancer Res, 2005,11(8):3109-16.
    50 Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003,33(3):401-6.
    51 Paddison PJ, Cleary M, Silva JM, et al. Cloning of short hairpin RNAs for gene knockdown in mammalian cells. Nat Methods, 2004,1(2): 163-7.
    52 Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6836):494-8.
    53 Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002,296(5567):550-3.
    54 Abordo-Adesida E, Follenzi A, Barcia C, et al. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther, 2005,16(6):741-51.
    55 Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998,72(11):8463-71.
    56 Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci, 2005,30(2): 106-14.
    57 Li Y, Tang ZY, Ye SL, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol, 2001,7(5):630-6.
    58 Oue N, Hamai Y, Mitani Y, et al. Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res, 2004,64(7):2397-405.
    59 Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell, 2002,2(2):103-12.
    60 Behari J, Zeng G, Otruba W, et al. R-Etodolac decreases beta-catenin levels along with survival and proliferation of hepatoma cells. J Hepatol, 2007,46(5):849-57.
    61 Yeo W, Mok TS, Zee B, et al. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst, 2005,97(20): 1532-8.
    62 Giannelli G, Antonaci S. Novel concepts in hepatocellular carcinoma: from molecular research to clinical practice. J Clin Gastroenterol, 2006,40(9):842-6.
    63 Qin X, Zhang H, Zhou X, et al. Proliferation and migration mediated by Dkk-1/Wnt/beta-catenin cascade in a model of hepatocellular carcinoma cells. Transl Res, 2007,150(5):281-94.
    64 Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 2008,452(7187):591-7.
    65 Behrens J. Control of beta-catenin signaling in tumor development. Ann N Y Acad Sci, 2000,910:21-33; discussion 33-5.
    66 Gotoh J, Obata M, Yoshie M, et al. Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3 beta and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis, 2003,24(3):435-42.
    67 Lee JL, Ryu MH, Chang HM, et al. Efficacy and safety of epirubicin and etoposide combination chemotherapy in advanced hepatocellular carcinoma: A retrospective analysis. J Gastroenterol Hepatol, 2007.
    68 Homma H, Mezawa S, Doi T, et al. A comparative randomized trial of intermittent intrahepatic arterial carboplatin- versus doxorubicin-lipiodol emulsion in advanced hepatocellular carcinoma (stage IV). Hepatogastroenterology, 2004,51(58):1135-9.
    69 Wang F, Cao Y, Zhao W, et al. Taxol inhibits melanoma metastases through apoptosis induction, angiogenesis inhibition, and restoration of E-cadherin and nm23 expression. J Pharmacol Sci, 2003,93(2): 197-203.
    70 Hata K, Osaki M, Dhar DK, et al. Evaluation of the antiangiogenic effect of Taxol in a human epithelial ovarian carcinoma cell line. Cancer Chemother Pharmacol, 2004,53(1):68-74.
    71 Laufs S, Nagy KZ, Giordano FA, et al. Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther, 2004,10(5):874-81.
    72 Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab, 2003,80(1-2): 148-58.
    73 Pariente N, Morizono K, Virk MS, et al. A novel dual-targeted lentiviral vector leads to specific transduction of prostate cancer bone metastases in vivo after systemic administration. Mol Ther, 2007,15(11): 1973-81.
    74 Dullaers M, Van Meirvenne S, Heirman C, et al. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther, 2006,13(7):630-40.
    75 Breckpot K, Aerts JL, Thielemans K. Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther, 2007,14(11):847-62.
    76 Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006,441 (7092):537-41.
    77 Chin R, Earnest-Silveira L, Koeberlein B, et al. Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: factors contributing to hepatocarcinogenesis. J Hepatol, 2007,47(3):325-37.
    78 Chang CJ, Chen YH, Huang KW, et al. Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology, 2007,45(3)746-54.
    1 Tang, Z.Y, Ye, S.L, Liu, Y.K, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol,2004. 187-96.
    2 Villanueva A, Newell P, Chiang DY, et al. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis, 2007,27:55-76.
    3 Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet, 2003,362:1907-17.
    4 Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology, 2003,37:429-42.
    5 Marelli L, Stigliano R, Triantos C, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol, 2007,30:6-25.
    6 Avila MA, Berasain C, Sangro B, et al. New therapies for hepatocellular carcinoma. Oncogene, 2006,25:3866-84.
    7 Abou-Alfa GK. Hepatocellular carcinoma: molecular biology and therapy. Semin Oncol, 2006,33:S79-83.
    8 Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007-an update. J Gene Med, 2007,9:833-42.
    9 Tsai RY. A molecular view of stem cell and cancer cell self-renewal. Int J Biochem Cell Biol, 2004,36:684-94.
    10 Cha MY, Kim CM, Park YM, et al. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology, 2004,39:1683-93.
    11 Rubio D, Garcia-Castro J, Martin MC, et al. Spontaneous human adult stem cell transformation. Cancer Res, 2005,65:3035-9.
    12 Trosko JE, Tai MH. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells. Contrib Microbiol, 2006,13:45-65.
    13 Lotem J, Sachs L. Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene, 2006,25:7663-72.
    14 Trosko JE. From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion. Ann N Y Acad Sci, 2006,1089:36-58.
    15 Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006,6:674-87.
    16 Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology, 2001,33:738-50.
    17 Liu Y, Poon RT, Li Q, et al. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res, 2005,65:3691-9.
    18 Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene, 2006,25:3818-22.
    19 Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 2007,132:2542-56.
    20 Suetsugu A, Nagaki M, Aoki H, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun, 2006,351:820-4.
    21 Yang ZF, Ngai P, Ho DW, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008,47:919-28.
    22 Yang ZF, Ho DW, Ng MN, et al. Significance of CD90(+) Cancer Stem Cells in Human Liver Cancer. Cancer Cell, 2008,13:153-66.
    23 Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene, 2006,25:3778-86.
    24 Huntly BJ, Gilliland DG. Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. Cancer Cell, 2004,6:199-201.
    25 Pang RW, Poon RT. From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology, 2007,72 Suppl 1:30-44.
    26 Pang R, Poon RT. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett, 2006,242:151-67.
    27 Shen Z, Yang ZF, Gao Y, et al. The kringle 1 domain of hepatocyte growth factor has antiangiogenic and antitumor cell effects on hepatocellular carcinoma. Cancer Res, 2008,68:404-14.
    28 Ishikawa H, Nakao K, Matsumoto K, et al. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene. Hepatology, 2003,37:696-704.
    29 Kountouras J, Zavos C, Chatzopoulos D. Apoptotic and anti-angiogenic strategies in liver and gastrointestinal malignancies. J Surg Oncol, 2005,90:249-59.
    30 Ohlfest JR, Demorest ZL, Motooka Y, et al. Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther, 2005,12:778-88.
    31 Scappaticci FA, Smith R, Pathak A, et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther, 2001,3:186-96.
    32 O'Neil BH, Venook AP. Hepatocellular carcinoma: the role of the North American Gl Steering Committee Hepatobiliary Task Force and the advent of effective drug therapy. Oncologist, 2007,12:1425-32.
    33 Zhu AX. Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer, 2008,112:250-9.
    34 Zhu AX, Blaszkowsky LS, Ryan DP, et al. Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol, 2006,24:1898-903.
    35 Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol, 2006,24:4293-300.
    36 Minami M, Daimon Y, Mori K, et al. Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as an early drastic genetic change leading to hepatocarcinogenesis. Oncogene, 2005,24:4340-8.
    37 Benn J, Schneider RJ. Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc Natl Acad Sci U S A, 1995,92:11215-9.
    38 Chin R, Earnest-Silveira L, Koeberlein B, et al. Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: factors contributing to hepatocarcinogenesis. J Hepatol, 2007,47:325-37.
    39 Su F, Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol, 1996,70:4558-66.
    40 Staib F, Hussain SP, Hofseth LJ, et al. TP53 and liver carcinogenesis. Hum Mutat, 2003,21:201-16.
    41 Lee YH, Yun Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem, 1998,273:25510-5.
    42 Dewantoro O, Gani RA, Akbar N. Hepatocarcinogenesis in viral Hepatitis B infection: the role of HBx and p53. Acta Med Indones, 2006,38:154-9.
    43 Yamanaka T, Kodama T, Doi T. Subcellular localization of HCV core protein regulates its ability for p53 activation and p21 suppression. Biochem Biophys Res Commun, 2002,294:528-34.
    44 Fukutomi T, Zhou Y, Kawai S, et al. Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology, 2005,41:1096-105.
    45 Bressac B, Kew M, Wands J, et al. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature, 1991,350:429-31.
    46 Osna NA, Clemens DL, Donohue TM Jr. Ethanol metabolism alters interferon gamma signaling in recombinant HepG2 cells. Hepatology, 2005,42:1109-17.
    47 Edamoto Y, Hara A, Biernat W, et al. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer, 2003,106:334-41.
    48 Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci, 2004,117:2417-26.
    49 Miyashita K, Shiraki K, Fuke H, et al. The cyclin-dependent kinase inhibitor flavopiridol sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int J Mol Med, 2006,18:249-56.
    50 Yang ZF, Poon RT, Liu Y, et al. High doses of tyrosine kinase inhibitor PTK787 enhance the efficacy of ischemic hypoxia for the treatment of hepatocellular carcinoma: dual effects on cancer cell and angiogenesis. Mol Cancer Ther, 2006,5:2261-70.
    51 Yang ZF, Poon RT, To J, et al. The potential role of hypoxia inducible factor 1 alpha in tumor progression after hypoxia and chemotherapy in hepatocellular carcinoma.Cancer Res,2004,64:5496-503.
    52 Jaeck D,Bachellier P,Oussoultzoglou E,et al.Surgical resection of hepatocellular carcinoma.Post-operative outcome and long-term results in Europe:an overview.Liver Transpl,2004,10:$58-63.
    53 Semela D,Piguet AC,Kolev M,et al.Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma.J Hepatol,2007,46:840-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700