携带IL-24基因的E1区双调控溶瘤腺病毒治疗肿瘤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前恶性肿瘤已经超越心血管疾病,成为危害人类健康和生命的头号杀手。在世界范围内每年肿瘤患者的发病率和死亡率都急剧增加,而且50年来大部分肿瘤患者的5年生存率并没有发生变化。传统的手术、放疗和化疗对恶性肿瘤的治疗无济于事,肿瘤的复发率和致死率仍然居高不下。由此可见,肿瘤的传统疗法的发展已经举步维艰,人类迫切需要寻找更加有效安全的治疗理念和方法来破除癌症无法治疗的“魔咒”。
     随着肿瘤的基因治疗和病毒治疗的日益发展,目前以肿瘤特异性增殖腺病毒(即溶瘤腺病毒)为代表的生物疗法已经成为癌症治疗领域的研究热点。此后刘新垣院士融合了基因治疗和病毒治疗的优势提出了一种新型的肿瘤治疗策略:靶向基因-病毒治疗策略,通过溶瘤病毒载体携带一个或多个肿瘤治疗基因来实现对肿瘤细胞的有效杀伤,从而为肿瘤治疗的前景带来了新的曙光与希望。
     溶瘤腺病毒的改造位点通常选在对病毒复制有重要调控作用的E1区,如通过删除E1B 55kD区域或者E1A CR2区的24bp碱基来分别靶向不同的信号通路。还可以利用肿瘤或组织特异性启动子替代E1A或E1B野生型启动子来限制溶瘤腺病毒在特定的肿瘤或组织中复制增殖。Mda-7/IL-24(melanoma differentiation associated gene-7/interleukin-24)是一种新型的广谱抗肿瘤的多功能细胞因子,能选择性地促进肿瘤细胞凋亡而对正常细胞没有毒害,并具有潜在的“旁观者效应”,而且还能诱导免疫调节反应和抑制肿瘤血管生成。实验室目前已经完成了ZD55-IL-24(E1B 55kD删除)和Ad.sp- E1A_((△24))-IL-24(E1A 24bp删除)两种E1区单调控溶瘤腺病毒的体内与体外实验,结果两者都显示了非常好的肿瘤杀伤与抑制效果。
     我们将IL-24基因插入到E1A和E1B双调控的溶瘤腺病毒载体Ad·sp·E1A_((△24))·E1B_((△55))中,构建出重组基因病毒Ad·sp·E1A_((△24))·E1B_((△55))·IL-24。体外实验表明Ad·sp·E1A_((△24))·E1B_((△55))·IL-24能诱导多种肿瘤细胞的死亡如肺癌、鼻咽癌、肝癌、结肠癌、宫颈癌等肿瘤细胞,而且肺癌NCI-H460荷瘤裸鼠实验也证明Ad·sp·E1A_((△24))·E1B_((△55))·IL-24能够有效地抑制肿瘤的疯狂增长。本实验首次利用E1A和E1B双调控的溶瘤腺病毒载体携带肿瘤治疗基因IL-24在体外和体内实验中都实现了对肿瘤良好的抑制作用,从而为肿瘤靶向性治疗的研究提供了一个实验参考。
Currently malignant tumors have taken over the cardiovascular and cerebrovascular diseases and become the first-leading lethiferous disease. In the worldwide, the morbidity and mortality of tumor patients have increased dramatically each year, and the 5-year survival rates of the majority of cancer patients have not been improved. Traditional therapies such as surgery, radiotherapy and chemotherapy were found to no avail and tumor recurrent rates and mortality rates remain very high, which indicate that the development of traditional therapies has been trapped. Therefore, it is imperative to develop more effective and secure therapeutic programs to break the“curse”that cancer cannot be cured.
     As gene therapy and viroherapy for cancer treatment have well developed in these days, the biological therapy such as the conditionally replicating adenoviruses (oncolytic adenoviruses) has become a hot research. Prof. Liu then combines the advantages of gene therapy and viroherapy and proposes a novel strategy for cancer treatment named“Cancer Targeting Gene-Virotherapy”. The strategy is to incorporate one or more therapeutic genes into oncolytic viral vector, which has brought new light and hope for cancer treatment.
     Since the E1A and E1B play critical roles in regulating adenoviral replication, modifications were usually located in E1 region of adenoviral DNA. We can target diverse abnormal signal pathways in tumor cells by deleting E1B-55kD or E1A-24bp of adenoviral genome. Besides, we can use the cancer or tissue specific promoters to replace the E1A or E1B wild-type promoter. Mda-7/IL-24(melanoma differentiation associated gene-7/interleukin-24)is a new multifunctional cytokine with the ability of suppressing many tumor types. IL-24 can selectively induce apoptosis of tumor cells and leave normal cells unaffected, and it also can induce immune response and suppress tumor angiogenesis. Our lab has successfully constructed two E1 single-restricted oncolytic adenovirus, ZD55-IL-24(deletion of E1B 55kD)and Ad.sp- E1A(△24)-IL-24(deletion of E1A 24bp). Results showed that both could effectively suppress tumors in vitro and in vivo experiments.
     We introduced IL-24 into the E1A, E1B double-restricted oncolytic adenovirus and constructed the Ad·sp·E1A_((△24))·E1B_((△55))·IL-24. Data showed that Ad·sp·E1A_((△24))·E1B_((△55))·IL-24 had excellent antitumor effect in vitro for human lung, nasopharyngeal, liver, colorectal, cervical carcinoma cell lines. Furthermore, Ad·sp·E1A_((△24))·E1B_((△55))·IL-24 could also effectively inhibit the progression of the xenograft NCI-H460 carcinoma in nude mice. This study firstly used the E1A and E1B double-restricted oncolytic adenovirus vector carrying IL-24 to treat tumors and attained efficient anti-tumor effect, which provides an experimental foundation for cancer therapy.
引文
[1] Kirn DH. Replication-selective microbiological agents: fighting cancer with targeted germ warfare [J]. The Journal of clinical investigation 2000;105:837-839.
    [2] Kirn D. Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? [J]. Gene therapy 2001;8:89-98.
    [3] Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer [J]. Nature medicine 2000;6:879-885.
    [4] Ganly I, Kirn D, Eckhardt G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer [J]. Clin Cancer Res 2000;6:798-806.
    [5] Lamont JP, Nemunaitis J, Kuhn JA, Landers SA, McCarty TM. A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience) [J]. Annals of surgical oncology 2000;7:588-592.
    [6] Liu XY. Targeting gene-virotherapy of cancer and its prosperity [J]. Cell research 2006;16:879-886.
    [7] Liu XY, Gu JF, Shi WF. Targeting gene-virotherapy for cancer [J]. Acta biochimica et biophysica Sinica 2005;37:581-587.
    [8] Pei Z, Chu L, Zou W, et al. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice [J]. Hepatology 2004;39:1371-1381.
    [9] Zhang ZL, Zou WG, Luo CX, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy [J]. Cell research 2003;13:481-489.
    [10] Zhang Z, Zou W, Wang J, et al. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, soluble Flt-1 [J]. Mol Ther 2005;11:553-562.
    [11] Zhang Y, Gu J, Zhao L, et al. Complete elimination of colorectal tumor xenograft by combined manganese superoxide dismutase with tumor necrosis factor-related apoptosis-inducing ligand gene virotherapy [J]. Cancer research 2006;66:4291-4298.
    [12] Zhao L, Dong A, Gu J, et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer [J]. Cancer gene therapy 2006;13:1011-1022.
    [13] Barnett BG, Crews CJ, Douglas JT. Targeted adenoviral vectors [J]. Biochimica et biophysica acta 2002;1575:1-14.
    [14] Douglas JT. Adenoviral vectors for gene therapy [J]. Molecular biotechnology 2007;36:71-80.
    [15] Kanerva A, Hemminki A. Adenoviruses for treatment of cancer [J]. Annals of medicine 2005;37:33-43.
    [16] Noureddini SC, Curiel DT. Genetic targeting strategies for adenovirus [J]. Molecular pharmaceutics 2005;2:341-347.
    [17] Kochanek S, Schiedner G, Volpers C. High-capacity 'gutless' adenoviral vectors [J]. Current opinion in molecular therapeutics 2001;3:454-463.
    [18] Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents [J]. Nature medicine 1997;3:639-645.
    [19] Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo [J]. Oncogene 2000;19:2-12.
    [20] Heise C, Hermiston T, Johnson L, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy [J]. Nature medicine 2000;6:1134-1139.
    [21] Howe JA, Demers GW, Johnson DE, et al. Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy [J]. Mol Ther 2000;2:485-495.
    [22] Li B, Liu X, Fan J, et al. A survivin-mediated oncolytic adenovirus induces non-apoptotic cell death in lung cancer cells and shows antitumoral potential in vivo [J]. The journal of gene medicine 2006;8:1232-1242.
    [23] Zhu ZB, Chen Y, Makhija SK, et al. Survivin promoter-based conditionally replicative adenoviruses target cholangiocarcinoma [J]. International journal of oncology 2006;29:1319-1329.
    [24] Zhang KJ, Wang YG, Cao X, et al. Potent antitumor effect of interleukin-24 gene in the survivin promoter and retinoblastoma double-regulated oncolytic adenovirus [J]. Human gene therapy 2009;20:818-830.
    [25] Zhang Q, Chen G, Peng L, et al. Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulated oncolytic adenovirus [J]. Clin Cancer Res 2006;12:6523-6531.
    [26] Kim E, Kim JH, Shin HY, et al. Ad-mTERT-delta19, a conditional replication-competent adenovirus driven by the human telomerase promoter, selectively replicates in and elicits cytopathic effect in a cancer cell-specific manner [J]. Human gene therapy 2003;14:1415-1428.
    [27] Yu de B, Zhong SY, Yang M, et al. Potent antitumor activity of double-regulated oncolytic adenovirus-mediated ST13 for colorectal cancer [J]. Cancer science 2009;100:678-683.
    [28] Sa Cunha A, Bonte E, Dubois S, et al. Inhibition of rat hepatocellular carcinoma tumor growth after multiple infusions of recombinant Ad.AFPtk followed by ganciclovir treatment [J]. Journal of hepatology 2002;37:222-230.
    [29] Shi YJ, Gong JP, Liu CA, et al. Construction of a targeting adenoviral vector carrying AFP promoter for expressing EGFP gene in AFP-producing hepatocarcinoma cell [J]. World J Gastroenterol 2004;10:186-189.
    [30] Ido A, Uto H, Moriuchi A, et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter [J]. Cancer research 2001;61:3016-3021.
    [31] Ge K, Jiang Q, Xu DH, Zheng ZC, Liu XY. Experimental treatment for human colorectal carcinoma by tissue type specific expression of herpes simplex virus thymidine kinase gene [J]. Shi yan sheng wu xue bao 1998;31:259-264.
    [32] Sagawa T, Takahashi M, Sato T, et al. Prolonged survival of mice with multiple liver metastases of human colon cancer by intravenous administration of replicable E1B-55K-deleted adenovirus with E1A expressed by CEA promoter [J]. Mol Ther 2004;10:1043-1050.
    [33] Gotoh A, Kamidono S, Chung LW. Clinical application for gene therapy in prostate cancer [J]. Hinyokika kiyo 1997;43:829-833.
    [34] Gotoh A, Ko SC, Shirakawa T, et al. Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer [J]. The Journal of urology 1998;160:220-229.
    [35] Latham JP, Searle PF, Mautner V, James ND. Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector [J]. Cancer research 2000;60:334-341.
    [36] Wakayama M, Abei M, Kawashima R, et al. E1A, E1B double-restricted adenovirus withRGD-fiber modification exhibits enhanced oncolysis for CAR-deficient biliary cancers [J]. Clin Cancer Res 2007;13:3043-3050.
    [37] Cripe TP, Dunphy EJ, Holub AD, et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells [J]. Cancer research 2001;61:2953-2960.
    [38] O'Shea CC, Johnson L, Bagus B, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity [J]. Cancer cell 2004;6:611-623.
    [39] Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells [J]. Journal of virology 1998;72:9470-9478.
    [40] Goodrum FD, Ornelles DA. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection [J]. Journal of virology 1998;72:9479-9490.
    [41] Harada JN, Berk AJ. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication [J]. Journal of virology 1999;73:5333-5344.
    [42] Fukuda K, Abei M, Ugai H, et al. E1A, E1B double-restricted adenovirus for oncolytic gene therapy of gallbladder cancer [J]. Cancer research 2003;63:4434-4440.
    [43] Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma [J]. Nature medicine 1997;3:917-921.
    [44] Zaffaroni N, Pennati M, Daidone MG. Survivin as a target for new anticancer interventions [J]. Journal of cellular and molecular medicine 2005;9:360-372.
    [45] Shen C, Buck A, Polat B, et al. Triplex-forming oligodeoxynucleotides targeting survivin inhibit proliferation and induce apoptosis of human lung carcinoma cells [J]. Cancer gene therapy 2003;10:403-410.
    [46] Paduano F, Villa R, Pennati M, et al. Silencing of survivin gene by small interfering RNAs produces supra-additive growth suppression in combination with 17-allylamino-17-demethoxygeldanamycin in human prostate cancer cells [J]. Molecular cancer therapeutics 2006;5:179-186.
    [47] Ling X, Li F. Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology [J]. BioTechniques 2004;36:450-454, 456-460.
    [48] Zeis M, Siegel S, Wagner A, et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells [J]. J Immunol 2003;170:5391-5397.
    [49] Pisarev V, Yu B, Salup R, Sherman S, Altieri DC, Gabrilovich DI. Full-length dominant-negative survivin for cancer immunotherapy [J]. Clin Cancer Res 2003;9:6523-6533.
    [50] Mesri M, Wall NR, Li J, Kim RW, Altieri DC. Cancer gene therapy using a survivin mutant adenovirus [J]. The Journal of clinical investigation 2001;108:981-990.
    [51] Kamizono J, Nagano S, Murofushi Y, et al. Survivin-responsive conditionally replicating adenovirus exhibits cancer-specific and efficient viral replication [J]. Cancer research 2005;65:5284-5291.
    [52] Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression [J]. Oncogene 1995;11:2477-2486.
    [53] Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and isdesignated IL-24 [J]. J Immunol 2002;168:6041-6046.
    [54] Saeki T, Mhashilkar A, Chada S, Branch C, Roth JA, Ramesh R. Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro [J]. Gene therapy 2000;7:2051-2057.
    [55] Gupta P, Su ZZ, Lebedeva IV, et al. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine [J]. Pharmacology & therapeutics 2006;111:596-628.
    [56] Fisher PB. Is mda-7/IL-24 a "magic bullet" for cancer? [J]. Cancer research 2005;65:10128-10138.
    [57] Sarkar D, Su ZZ, Lebedeva IV, et al. mda-7 (IL-24): signaling and functional roles [J]. BioTechniques 2002;Suppl:30-39.
    [58] Zhao L, Gu J, Dong A, et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer [J]. Human gene therapy 2005;16:845-858.
    [59] Gomez-Manzano C, Balague C, Alemany R, et al. A novel E1A-E1B mutant adenovirus induces glioma regression in vivo [J]. Oncogene 2004;23:1821-1828.
    [60] Kim J, Kim JH, Choi KJ, Kim PH, Yun CO. E1A- and E1B-Double mutant replicating adenovirus elicits enhanced oncolytic and antitumor effects [J]. Human gene therapy 2007;18:773-786.
    [61] Zheng X, Rao XM, Snodgrass C, et al. Adenoviral E1a expression levels affect virus-selective replication in human cancer cells [J]. Cancer biology & therapy 2005;4:1255-1262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700