小麦/中间偃麦草体细胞杂交早期及愈伤组织杂种染色质消减/渐渗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物体细胞杂交技术能够转移不同亲缘关系物种间所具有的优良性状,利用该技术向作物转移有价值的基因,已经进行了30多年的尝试,获得了一些用于作物改良的新种质和新品系(种),跨越了有性杂交中的不亲和性和花期不遇等障碍,在作物育种中显示出强大的优势。小麦是重要的粮食作物,对小麦体细胞杂交机制进行深入的理论探讨具有重要意义。本实验室建立了利用不对称体细胞杂交介导的不同亲缘关系禾谷类植物的异(外)源染色质直接渐渗到小麦基因组中,从而创制小麦渐渗系的技术体系。已开展的不对称体细胞杂交工作大多关注于对外源目的性状转移的研究,尚无利用该技术创制外源基因渐渗系并对渐渗的影响因素如异源染色质消减、渐渗发生的时期及影响因素等进行系统深入的研究。本论文选取与小麦亲缘关系较近的异属植物中间偃麦草(Elytrigiaintermedium(Host)Nevski)进行了扬麦158(+)中间偃麦草的对称与不对称(UV辐照)体细胞杂交,获得了体细胞杂种愈伤组织;利用细胞学和基因组原位杂交技术(GISH,Genomic in situ hybridization),对体细胞杂交后1、2、3周的融合产物及获得的杂种愈伤组织进行了染色质消减、渐渗的初步分析。结果表明,对称/不对称体细胞杂种中,供体(中间偃麦草)染色质主要以微核的形式在细胞间期发生消减;染色质还存在在有丝分裂后期形成微核、多核体中形成微核、滞后染色体(桥)及自融合中发生核外排等现象;另UV 1min组融合1周的材料中发现,扬麦158自融合来源的细胞有丝分裂末期形成的两个子细胞的过程中,由于细胞分裂周期不同步,首先完成有丝分裂的细胞将还在处于分裂期的细胞中的少数几条染色体(滞后染色体)随机带入该细胞中,该结果间接支持了前人推测的两细胞周期不同步是导致体细胞杂种中染色质消减的原因之一。在UV辐照1min组合中,培养2周的融合体中观察到一个细胞中存在2-4个微核而无主核的细胞,推测是由于UV辐照使细胞中遗传物质发生变异,导致有丝分裂中形成的微核数量增加,在分裂后期被包裹细胞膜内,在随后的细胞分裂中微核逐渐丢失。这也是有丝分裂过程中染色质发生消减的一个间接证据。综合分析对称/不对称体细胞杂交产物出现的各种变化,初步确定异源染色质的消减和渐渗主要发生在原生质体融合7天内或更早,消减和渐渗过程可延续至融合培养2-3周或更长时间。
     对再生愈伤组织进行了形态学、酯酶/过氧化物酶、RAPD(Randomly amplifiedpolymorphism DNA,随机扩增多态性DNA)和SSR(Simple Sequence Repeat简单序列重复)标记分析,发现,在得到的178个再生克隆中有17个是体细胞杂种,杂种表型偏向扬麦158,并有少量中间偃麦草染色质渐渗入小麦基因组中;该结果与GISH分析结果相符合。
Plant somatic hybridization not only allows bypassing normal crossfertilization but also increases our ability to investigate the mechanism of chromatin elimination and introgression between relatively remote species. This technique has successfully allows for the improvement of a crop species by the transfer of agronomical relevant traits. For wheat, works carried out in our laboratory had generated many intra-, interspecies and generic somatic hybrid plants. The system of wheat introgression lines has established by transferring exogenous chromatin from other cereals by somatic hybridization in our laboratory. In this work, preliminary report describes a somatic hybrid route to introgression involved in wheat and Elytrigia intermedium (Host) Nevski, which will be more efficient than sexual crossing.
     Prior to fusion, callus-derived protoplasts of E.intermedium were irradiated with ultraviolet light (UV, 380μW/cm~2) for 0s, 30s and 1min respectively, and then were fused with suspension-derived protoplasts of common wheat by PEG (Neomycin phosphate transferase) method. Seventeen somatic hybrid cell lines from total 178 regenerated clones were verified by peroxidase/esterase isoenzymes, cytological observation, RAPD (Randomly amplified polymorphism DNA), SSR (Simple Sequence Repeat) and GISH (Genomic in situ hybridization) analysis. The phenotypes of them all were resembled to wheat, and a few chromatins of E. intermedium were observed to introgression into genomics of wheat.
     Fashions of chromatin elimination of E.intermedium in early stage and regenerated calli of wheat somatic hybridization was analysised by cytological and GISH method. The results showed that donor chromatin were mainly eliminated in interphase through micronucleus formation in early stage somatic hybridization, other patterns of chromatin elimination of donor in early stage of wheat including micronucleus formation in anaphase, micronucleus formation in multi-nucleus and segregation of parents. The lagging chromosomes, chromosome bridges, nucleus efflux and abnormal nucleus were also expressed in some symmetric and asymmetric somatic hybrid clones. Interestingly, desynchronized cell cycle and a random chromosomes distribution in dividing cells were noticed in asymmetric somatic hybrid cell lines. Two-four micronucleus without main nucleus was found in 2 weeks-culture by UV treatment for 1min, which meant that this micronucleus might be lost gradually during the following cell division.
     In conclusion, the main period of donor chromatin elimination and introgression took place during the early stage, in other word, were from 5 to 15 days after fusants were cultured.
引文
1. Afonso, C.L., Harkins, K.R., Thomas-Compton, M.A., Krejci, A.E., Galbrainth, D.W., Selection of somatic hybrid plants in Nicotiana through fluorescence-activated sorting of protoplasts. Nature Biotechnology, 1985, 3(9): 811-816.
    2. Aggarwal, R.K., Brar, D.S., Huang, N., Molecular analysis of introgression in Oryza sativa/O. brachyantha and O. sativa/O, granulata derivatives. International Rice Research Notes (Philippines), 1996.
    3. Aifen, Z., Guangmin, X., Huimin, C., Han, H., Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa. Science in China Series C: Life Sciences, 2001, 44(3): 294-304.
    4. Akagi, H., Sakamoto, M., Negishi, Fujimura, T., Construction of rice cybrid plants. Molecular Genetics and Genomics, 1989, 215(3): 501-506.
    5. Anderson, E., Hubricht, L., Hybridization in Tradescantia. III. The evidence for introgressive hybridization. American Journal of Botany, 1938: 396-402.
    6. Babiychuk, E., Kushnir, S., Gleba, Y.Y., Spontaneous extensive chromosome elimination in somatic hybrids between somatically congruent species Nicotiana tabacum L. and Atropa belladonna L. Theoretical and Applied Genetics, 1992, 84(1): 87-91.
    7. Bauer-Weston, B., Keller, W., Webb, J., Gleddie, S., Production and characterization of asymmetric somatic hybrids between Arabidopsis thaliana and Brassica napus. Theoretical and Applied Genetics, 1993, 86(2): 150-158.
    8. Carlson, P.S., Smith, H.H., Dealing, R.D., Parasexual interspecific plant hybridization. Proceedings of the National Academy of Sciences, 1972, 69(8): 2292-2294.
    9. Davies, D.R., Chromosome elimination in interspecific hybrids. Heredity, 1974,32:267-270.
    10. Deng, J.Y., Cui, H.F., Da, Y.Z., Chuan, E.Z., Guang, M.X., Analysis of remote asymmetric somatic hybrids between common wheat and Arabidopsis thaliana. Plant Cell Reports, 2007, 26(8):1233-1241.
    11. Donini, P., Koebner, R.M.D., Ceoloni, C, Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theoretical and Applied Genetics, 1995, 91(5): 738-743.
    12. Fengning, X., Guangmin, X., Huimin, C., Effect of UV dosage on somatic hybridization between common wheat(Triticum aestivum L.) and Avena saliva L. Plant science(Limerick), 2003,164(5): 697-707.
    13. Finch, R.A., Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma, 1983, 88(5): 386-393.
    14. Furusho, M., Suenaga, K., Nakajima, K., Production of haploid barley plants from barleyxmaize and barley×Italian ryegress crosses. Ikushugaku Zasshi, 1991, 41(1): 175-179.
    15. Galbraith, D.W., Mauch, T.J., Identification of fusion of plant protoplasts. II. Conditions for the reproducible fluorescence labelling of protoplasts derived from mesophyll tissue. Z. Pflanzenphysiol, 1980,98: 129-140.
    16. Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanvic, S., Büβ, C., Kumlehn, J., Matzk, F., Houben, A., Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. The Plant Cell Online, 2005,17(9): 2431-2438.
    17. Gupta, S.B., Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginifolia and a hybrid derivative of N. tabacum showing chromosome instability. Genome, 1969,11(1): 133-142.
    18. Ho, K.M., Kasha, K.J., Genetic control of chromosome elimination during haploid formation in barley. Genetics, 1975, 81(2): 263-275.
    19. Hohmann, U., Graner, A., Endo, T., Herrmann, R., Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theoretical and Applied Genetics, 1995, 91(4): 618-626.
    20. Kao, K.N., Michayluk, M.R., A method for high-frequency intergeneric fusion of plant protoplasts. Planta, 1974, 115(4): 355-367.
    21. Kasha, K.J., Kao, K.N., High frequency haploid production in barley (Hordeum vulgare L.), 1970.
    22. Kisaka, H., Kameya, T., Production of somatic hybrids between Daucus carota L. and Nicotiana tabacum. Theoretical and Applied Genetics, 1994, 88(1): 75-80.
    23. Kyozuka, J., Kaneda, T., Shimamoto, K., Production of cytoplasmic male sterile rice (Oryza sativa L.) by cell fusion. Bio/technology, 1989, 7: 1171-1174.
    24. Laurie, D.A., Bennett, M.D., Wheat × maize hybridization. Genome, 1986, 28(2): 313-316.
    25. Laurie, D.A., Bennett, M.D., The production of haploid wheat plants from wheat X maize crosses. Theoretical and Applied Genetics, 1988a, 76(3): 393-397.
    26. Laurie, D.A., Bennett, M.D., Chromosome behaviour in wheat × maize, wheat × sorghum and barley x maize crosses. In :Brandham P E (ed) , Kew Chromosome Conference III. Her Majesty' s Stationary Office ,London , 1988c, 167-177.
    27. Laurie, D.A., Bennett, M.D., Cytological evidence for fertilization in hexaploid wheatx sorghum crosses. Plant Breeding, 1988b, 100(2): 73-82.
    28. Laurie, D.A., Bennett, M.D., The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome, 1989,32(6): 953-961.
    29. Laurie, D.A., O'Donoughue, L.S., Bennett M.D., Wheat × maize and other wide sexual hybrids: their potential for genetic manipulation and crop improvement. 1990: 5-126
    30. Li, Z., Heneen, W.K., Production and cytogenetics of intergeneric hybrids between the three cultivated Brassica diploids and Orychophragmus violaceus. Theoretical and Applied Genetics, 1999, 99(3): 694-704.
    31. Li, Z., Liu, H.L., Luo, P., Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theoretical and Applied Genetics, 1995,91(1): 131-136.
    32. Li, Z., Wu, Liu, J.G., Liu, H.L., Heneen, W.K., Production and cytogenetics of the intergeneric hybrids Brassica juncea× Orychophragmus violaceus and B. carinata× O. violaceus. Theoretical and Applied Genetics, 1998, 96(2): 251-265.
    33. Li, Z.Y., Liu, H.L., Heneen, W.K., Meiotic behaviour in intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Hereditas, 1996, 125(1): 69-75.
    34. Liu, J., Xu, X., Deng, X., Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell, Tissue and Organ Culture, 2005, 82(1): 19-44.
    35. Lukaszewski, A.J., Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. TAG Theoretical and Applied Genetics, 1995,90(5): 714-719.
    36. McClintock, B., The significance of responses of the genome to challenge. Science, 1984,226(4676): 792-801.
    37. Melchers, G., Sacristan, M.D., Holder, A.A., Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Research Communications, 1978,43(4): 203-218.
    38. Michel, B., Replication fork arrest and DNA recombination. Trends in Biochemical Sciences, 2000, 25(4): 173-178.
    39. Minqin, W., Guangmin, X., Zhenying, P., High UV-tolerance with introgression hybrid formation of Bupleurum scorzonerifolium Willd. Plant Science, 2005,168(3): 593-600.
    40. O'Donoughue, L.S., Bennett, M.D., Durum wheat haploid production using maize wide-crossing. Theoretical and Applied Genetics, 1994, 89(5): 559-566.
    41. Ohkawa, Y., Suenaga, K., Ogawa, T., Production of haploid wheat plants through pollination of sorghum pollen. Ikushugaku Zasshi, 1992, 42(4): 891-894.
    42. Pickering, R.A., Partial control of chromosome elimination by temperature in immature embryos of Hordeum vulgare L. x H. bulbosum L. Euphytica, 1985, 34(3): 869-874.
    43. Pickering, R.A., Morgan, P.W., The influence of temperature on chromosome elimination during embryo development in crosses involving Hordeum spp., wheat (Triticum aestivum L.) and rye (Secale cereale L.). Theoretical and Applied Genetics, 1985,70(2): 199-206.
    44. Power, J.B., Cummins, S.E., Cocking, E.C., Fusion of isolated plant protoplasts. Nature, 1970,225(5237): 1016-1018.
    45. Riera-Lizarazu, O., Mujeeb-Kazi, A., Polyhaploid production in the Triticeae: wheat x Tripsacum crosses. Crop Science, 1993,33(5): 973.
    46. Riera-Lizarazu, O., Rines, H.W., Phillips, R.L., Cytological and molecular characterization of oat x maize partial hybrids. Theoretical and Applied Genetics, 1996,93(1): 123-135.
    47. Rieseberg, L.H., Wendel, J.F., Introgression and its consequences in plants. Hybrid zones and the evolutionary process, 1993: 70-109.
    48. Rines, H.W., Dahleen, L.S., Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Science, 1990,30(5): 1073.
    49. Sencia, M., Takeda, J., Abe, S., Nakamura, T., Induction of cell fusion of plant protoplasts by electrical stimulation. Jpn Soc Plant Physiol. 1979, 1441-1443.
    50. Sibikeev, S.N., Voronina, S.A., Krupnov, V.A., Genetic control for resistance to leaf rust in wheat-Agropyron lines: Agro 139 and Agro 58. Theoretical and Applied Genetics, 1995,90(5): 618-620.
    51. Subrahmanyam, N.C., Kasha, K.J., Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma, 1973,42(2): 111-125.
    52. Sun, J., Liu, H., Wang, J., The production of haploid wheat plants via wheat x maize hybridization. Acta Botanica Sinica (China), 1992.
    53. Ushiyama, T., Shimizu, T., Kuwabara, T., High frequency of haploid production of wheat through intergeneric cross with teosinte. Ikushugaku Zasshi,1991,41(2):353-357.
    54.Vlahova,M.,Hinnisdaels,S.,Frulleux,F.,Claeys,M.,Atannassov,A.,Jacobs,M.,UV irradiation as a tool for obtaining asymmetric somatic hybrids between Nicotiana plumbaginifolia and Lycopersicon esculentum.Theoretical and Applied Genetics,1997,94(2):184-191.
    55.Wang,J.,Xiang,F.,Xia,G.,Chen,H.,Transfer of small chromosome fragments of Agropyron elongatum to wheat chromosome via asymmetric somatic hybridization.Science in China series C Life Science-English Edition,2004,47:434-441.
    56.Weiss,M.C.,Green,H.,Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes.Proceedings of the National Academy of Sciences,1967,58(3):1104-1111.
    57.Xia,G.,Xiang,F.,Zhou,A.,Wang,H.,Chen,H.,Asymmetric somatic hybridization between wheat(Triticum aestivum L.) and Agropyron elongatum(Host) Nevishi.Theoretical and Applied Genetics,2003,107(2):299-305.
    58.Yamagishi,H.,Landgren,M.,Forsberg,J.,Glimelius,K.,Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system.Theoretical and Applied Genetics,2002,104(6):959-964.
    59.Zhou,A.,Xia,G.,Introgression of the Haynaldia villosa genome into γ-ray-induced asymmetric somatic hybrids of wheat.Plant Cell Reports,2005,24(5):289-296.
    60.Zimmermann,U.,Scheurich,P.,High frequency fusion of plant protoplasts by electric fields.Planta,1981,151(1):26-32.
    61.白建荣,侯变英,分子标记在植物育种中的应用[J].山西农业科学,1999,27(1):86-89.
    62.陈纯贤,朱立煌,玉米特异DNA通过有性杂交导入小麦DH后代的分子证据[J].中国科学:C辑,1997,27(5):432-437.
    63.崔彬彬,朱维红,冯大领,细胞融合技术研究进展[J].保定师范专科学校学报,2007,20(2):48-50.
    64.贾继增,分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    65.贾雅丽,郭周义,激光微束与光钳系统及其在生物学中的应用[J].激光生物学报,2002,11(5):381-387.
    66.李大玮,邱纪文,普通小麦与鸭茅状磨擦禾的远缘杂交:Ⅰ.胚形成频率[J].遗传学报,1994,21(5):398-402.
    67.李汝玉,简单序列重复(SSR)及其在农作物研究中的应用[J].山东农业科学,1999,(4):45-49.
    68.李再云,华玉伟,葛贤宏,徐传远,植物远缘杂交中的染色体行为及其遗传与进化意义[J].遗传,2005,27(2):315-324.
    69.李再云,刘焰,芸苔属与诸葛菜属间杂种的细胞遗传学[J].自然科学进展,2002,12(1):8-12
    70.李振声,容珊,陈漱阳,小麦远缘杂交.北京:科学出版社,1985.
    71.刘大钧,细胞遗传学.北京:中国农业出版社,1999
    72.刘辉,王子宁,小麦×玉米杂交后代的蛋白质及酯酶同工酶分析[J].植物学报:英文版,1996,38(5):357-361.
    73.刘拥海,俞乐,植物体细胞不对称杂交研究进展[J].生物学杂志,2004,21(2):10-13.
    74.刘振兰,董玉柱,菰物种专化DNA序列的克隆及其在检测菰DNA导入水稻中的应用[J].植物学报:英文版,2000,42(3):324-326.
    75.毛龙,周清,高秆野生稻与栽培稻杂交后代的RFLP分析[J].植物学报:英文版,1994,36(1):11-18.
    76.孙敬三,路铁刚,王景林,孙秀华,杨才,王秀英,莜麦与玉米的远缘杂交[J].植物学通报,1995b,37(4):255-258.
    77.孙敬三,陈纯贤,禾本科植物染色体消除型远缘杂交的研究进展进展[J].植物学通报,1998,15(1):1-7.
    78.孙敬三,桂耀林,植物细胞工程实验技术,北京:科学出版社,1995c.
    79.孙敬三,路铁刚,小麦×高粱的受精率和小麦单体的诱导[J].实验生物学报,1996,29(2):191-195.
    80.孙敬三,路铁刚,辛化伟,通过和玉米杂交诱导硬粒小麦单倍体[J].植物学报,1995a,37(6):452-457.
    81.王晶,向凤宁,夏光敏,陈惠民,利用不对称体细胞杂交向小麦转移高冰草染色体小片段[J].中国科学:C辑,2004,34(2):113-120.
    82.夏光敏,陈惠民,小麦与高冰草原生质体融合及再生能力的恢复[J].山东大学学报:自然科学版,1995,30(3):325-330.
    83.夏光敏,王槐,小麦与新麦草及高冰草属间不对称体细胞杂交的植物株再生[J].科学通报,1996,41(15):1423-1426.
    84.夏光敏,向凤宁,小麦与高冰草属间体细胞杂交获可育杂种植株[J].植物学报:英文版,1999,41(4):349-352.
    85.夏镇澳,番茄属和茄属的属间细胞杂交研究进展[J].植物生理学通讯,1996,32(3):169-174.
    86.向凤宁,夏光敏,小麦与燕麦不对称体细胞杂交的研究[J].中国科学:C 辑,2002,32(4):299-305.
    87.杨志松,刘适发,渐渗杂交的研究进展及其理论实践意义[J].四川动物,2008,27(4):703-707.
    88.张改娜,贾敬芬,植物体细胞杂交及其杂种鉴定方法研究进展[J].西北植物学报,2007,27(1):206-213.
    89.赵志礼,徐珞珊,核糖体DNA ITS区序列在植物分子系统学研究中的价值[J].植物资源与环境学报,2000,9(2):50-54.
    90.周爱芬,夏光敏,普通小麦与族毛麦不对称体细胞杂交的研究[J].中国科学:C辑,1996,26(1):31-37.
    91.周光宇,曾以申,杨晚霞,远缘杂交的分子基础——通过远缘交后高粱DNA序列确实重组入水稻[J].遗传学报,1980,7(2):119-122.
    92.朱新生,彭瑾,豌豆5S rRNA的cDNA克隆,全序列及结构特征分析[J].生物化学杂志,1997,13(5):509-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700