用分子标记技术初步解析甘蓝型油菜种子含油量QTL簇qcO.C2
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界范围内的重要油料作物之一,油菜籽含油量是决定油菜经济价值的主要因素,提高油菜含油量成为众多科学家与育种家关注的目标。
     本实验室以甘蓝型油菜欧洲冬性品种Tapidor和中国半冬性栽培种Ningyou7为亲本构建了TN DH系作图群体和遗传图谱,并利用该图谱定位了种子含油量QTL,其中在C2连锁群上发现了一个含油量QTL簇(命名为qcO.C2)。通过回交、表型筛选和分子标记辅助选择,构建了导入了供体亲本Tapidor的qcO.C2区段的高世代回交群体和近等基因系。鉴于C2连锁群及qcO.C2区段分子标记稀疏(分别为25个和8个),为了解析qcO.C2的遗传效应及克隆相关基因,必须在C2连锁群尤其是目标QTL区间内加密分子标记。
     本研究采用了多种分子标记技术加密分子标记:
     1.采用SRAP分子标记技术。结合分离群体分组分析法(BSA)和三步筛选原则筛选了58条SRAP引物随机组合发展的672对SRAP引物对,在C2连锁群上加密了11个SRAP分子标记,在TN遗传图谱的其他14个连锁群上增加了37个SRAP标记;同时对定位在C2连锁群上的SRAP标记进行了测序以及序列分析,将其中的2个SRAP标记成功转化为SCAR标记,已用于近等基因系的筛选和构建中。
     2.采用AFLP分子标记技术。结合BSA法筛选了200对AFLP引物组合,在C2连锁群上加密了5个分子标记,在TN连锁图的其它13个连锁群增加了34个AFLP标记,随后也对这些定位在C2连锁群上的AFLP标记进行了测序以及序列分析。
     3.采用STS分子标记技术。利用C2连锁群上已有DNA序列信息的标记与拟南芥基因组进行了电子比对作图(in silico mapping),根据初步比对结果对白菜BAC序列和Tapidor BAC末端序列(BES)等信息进行分析,从而开发新的STS标记,最终在C2连锁群上加密了8个STS标记,在TN连锁图的其它4个连锁群上增加了6个STS标记。
     通过以上几种分子标记技术,在C2连锁群,一共增加了27个新标记,C2连锁群上的平均标记密度从1Marker/5cM增加到1Marker/2.6cM。对TN DH群体12个不同环境下的含油量表型变异再次进行QTL分析,C2连锁群上检测到的QTL数目从13个增加到20个。且经过QTL整合后,QTL的分布较以往更加集中,置信区间也有所缩小。
     将qcO.C2区间内的所有新标记的序列信息与拟南芥基因组进行了电子比对作图后,基本明确了此目标区段从上到下分别与拟南芥第5条染色体的A区段(C5A)、第5条染色体的E区段(C5E)和第1条染色体的E区段(C1E)同源。结合QTL整合后的置信区间,初步预测qcO.C2与油脂合成相关的9个候选基因。
Rapeseed {Brassica napus L.) is an important oil crop worldwide, and seed oil content is the main determinant of its value. So, increasing the seed oil content of rapeseed becomes the main objective of many scientists.
     There is a segregating population of 202 double haploid lines (designated as TN DH population) and a genetic map in our Lab. This population is derived from a cross between Tapidor, a European winter cultivar of Brassica napus L., and Ningyou7, a Chinese semi-winter cultivar. Tens of QTL related to seed oil content variation with the populaton were identified, and a QTL cluster was detected on the C2 linkage group of the map (designated as qcO.C2). This cluster explained 25% of the phenotypic variation with superior alleles contributed from Tapidor. Based on the resources and information above, we developed near isogenic lines (NILs) for dissecting the QTL cluster with backcrossing, phenotype screening and molecular marker assisted selecting. Because of the limitation of markers on C2 and the QTL region (25 markers and 8 markers, respectively), adding more powerful markers in the QTL region is required for dissecting genetic control of qcO.C2 and gene cloning.
     Different methods of developing molecular markers were applied for adding more markers on C2 in this study:
     1. A total of 672 pairs of SRAP primer were screened in three-step procedure with Bulked Segregant Analysis (BSA) strategy. As a result, 11 SRAP markers were located on C2, and 37 SRAP markers were located on another 14 linkage groups. Then these newly developed markers on C2 were sequenced and analysed. Two SRAP markers were transformed into SCAR markers successfully, and these SCAR markers have been involved in marker assiated selection for developing NILs.
     2. A total of 200 pairs of AFLP primer were screened with the same strategy above. As a result, five AFLP markers were located on C2, and 34 AFLP markers were located on another 13 linkage groups. And then, these new markers on C2 were also done sequence-analysis.
     3. Base on the sequence of new markers on C2, in silico mapping with Arabidopsis genome sequence was done. We analysed some sequence from B. rapa genome and Tapidor BAC end according to the result of in silico mapping. Then, eight STS markers were newly developed and located on C2, and six STS markers were located on another four linkage groups.
     In summary, 27 new markers were added onto C2 from this study. The marker density of C2 was increased from lMarker/5cM to lMarker/2.6cM. And then, QTL mapping was practiced for seed oil content variation from 12 experiments again. The number of QTL on C2 was increased, from 13 to 20. After meta-analysis, the location of QTL was concentrated than before, and the QTL confidence interval was also refined. There were three synteny blocks (C5A, C5E and C1E) of Arabidopsis genome identified sequentially along the confident interval of qcO. C2 after in silico mapping analysis, and nine candidate genes related to seed oil formation were discussed.
引文
1.丁效华.作物数量性状基因图位克隆研究进展.植物遗传资源学报,2005,6:464-468
    2.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    3.刘志文,傅廷栋,刘雪平,涂金星,陈宝元.作物分子标记辅助选择的研究进展、影响因素及其发展策略.植物学通报,2005,22(增刊):82-90
    4.龙艳.甘蓝型油菜开花期QTL定位及分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    5.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004,31:1309-1315
    6.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    7.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种,北京:科学出版社,2001
    8.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29:741-746
    9.吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析.遗传学报,2001,28:947-955
    10.张洁夫,戚存扣,浦惠明,等.甘蓝型油菜含油量的遗传与QTL定位.作物学报,2007,33:1495-1501
    11.李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究.中国油料作物学报,2002,24:10-14
    12.傅廷栋,杨光圣,涂金星,等.中国油菜生产的现状与展望.中国油脂,2003,28:11-13
    13.朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报(农业生命科学版),2000,26:1-6
    14.Adler F R,Chase K,Cregan P B,et al.Genetics of soybean agronomic traits:Ⅰ.Comparison of three related recombinant inbred population.Crop Sci,1999,39:1642 -1651
    15.Ahmad R,Potter D,Southwick S M.Genotyping of peach and nectarine cultivars with SSR and SRAP molecular marker.Journal of American Society for Horticultural Science,2004,129:204-210
    16.Alrefai R,Berke T G,Rocheford T R.Quantitative trait locus analysis of fatty acid concentrations in maize.Genome,1995,38:894-901
    17.Alpert K B,Grandillo S,Tanksley S D.fw 2.2:a major QTL controlling fruit weight is common to both red- and green- fruited tomato species.Theor App Genet,1995,91:994-1000
    18.Altschul S F,Lipman D J.Protein database searches for multiple alignment.Proc Natl Acad Sci USA,1990,87:5509-5513
    19.Attia T,REbbelen G.Cytogenetic relationship within cultivated Brassica analyzed in amphidiploid from the three diploid ancestors.Can J Genet Cytol,1986,28:323-329
    20.Baianu I C,Diers B W,Fehr W R,et al.Putative alleles for increased yield from soybean plant introduction.Crop Sci,2004,44:784-791
    21.Beisson F,Koo A J,Ruuska S,et al.Arabidopsis genes involved in acyl lipid metabolism.A 2003 census of the candidates,a study of the distribution of expressed sequence tags in organs,and a web-based database.Plant Physiol,2003,132:681-697
    22.Brummer E C,GraefG L,Orf J H,et al.Mapping QTL for seed protein and oil content in eight soybean population.Crop Sci,1997,37:370-378
    23.Burns M J,Barnes S R,Bowman J G,et al.QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i) Seed oil content and fatty acid composition.Heredity,2003,90:39-48
    24.Busso C,Attia T,REbbelen G.Trigenomic combinations for the analysis of meiotic control in the cultivated Brassica species.Genome,1987,29:331-333
    25.Butruille D V,Guries R P,Osborn T C.Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L.Genetics,1999,153:949-964
    26.Castiglioni P,Ajmone P,van Wijk R,Motto M.AFLP markers in a molecular linkage map of maize:codominant scoring and linkage group distribution.Theoretical Applied Genetics,1999,99:425-431
    27.Cheung W Y,Landry B S,Raney P,Pakow G F W.Molecular mapping of seed quality traits in Brassica juncea(L.) Czern.and Coss.Acta Hort,1998,459:139-147
    28.Choudhary B R,Joshi P,Ramarao S.Interspecific hybridization between Brassica carinata and Brassica rapa.Plant Breeding,2000,119:417-420
    29.Collard B C Y,Jahufer M Z Z,Brouwer J B,Pang E C K.An introduction to markers quantitative trait loci(QTL) mapping and marker-assisted selection for crop improvement:The basic concepts.Euphytica,2005,142:169-196
    30.Doyle J J,Doyle J L.A rapid DNA isolation procedure for small quantifies of fresh leaf tissue.Phytochemistry Bulletin,1987,19:11
    31.Drenkard E,Richter B G,Rozen S,Stutius L M,Angell N A,Mindrinos M,Cho R J,Oegner P J,Davis R W.A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis.Plant Physiol,2000,124:1483-1492
    32.Dudley J W,Lambert R J.Ninety generations of selection for oil and protein in maize.Maydica,1992,37:81-87
    33.Ecke W,Uzunova M,Weissleder K.Mapping the genome of rapeseed(Brassica napus L.) 2.Localization of genes controlling erucic acid synthesis and seed oil content.Theor Appl Genet,1995,91:972-977
    34.Edwards M D,Stuber C W,Wendel J F.Molecular marker facilitated investigations of quantitative-trait loci in maize.I.Numbers,genomic distribution and types of gene action.Genetics,1987,116:113-125
    35.Foisset N,Delourme R,Barret P,Hubert N,Landry B S,Renard M.Molecular mapping analysis of Brassica napus using isozyme,RAPD and RFLP markers on double haploid progeny.Theor Appl Genet,1996,93:1017-1025
    36.Fourmann M,Barret P,Froger N,Baron C,Chariot F,Delourme R,Brunel D.From Arabidopsis thaliana to Brassica napus:development of amplified consensus genetic markers(ACGM) for construction of a gene map.Theor Appl Genet,2002,105:1196-1206
    37.Gale M D,Devos K M.Comparative genetics in the grasses.Proc NatlAcad Sci USA,1998,95:1971-1974
    38.Goffinet B,Gerber S.Quantitative trait loci:a meta analysis.Genetics,2000,155:463-473
    39.Hayes B,Goddard M E.The distribution of the effects of genes affecting quantitative traits in livestock.Genet Sel Evol,2001,33:209-229
    40.Herselman L,Thwaites R,Kimmins F M,et al.Identificationand mapping of AFLP markers linked to peanut(Arachis hypogaea L.) resistance to the aphid vector of groundnuy rosette disease.Theoretical and Applied Genetics,2004,109:1426-1433
    41.Howell E C,Kearsey M J,Jones G H,King G J,Armstrong S J.A and C genome distinction and chromosome identification in brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization.Genetics,2008,180:1849-1857
    42. Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 348-358
    
    43. Isleib T G. Cost-effective transfer of recessive traits via the backcrossing procedure. Crop Sci,1997,37: 139-144
    
    44. Jackson S A, Cheng Z, Wang M L, et al. Comparative fluorescence in situ hybridization Mapping of a 4312kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics, 2000, 156:833-838
    
    45. Jin M Y, Li J N , Fu F Y, et al. QTL Analysis of the oil content and the hull content in Brassica napus L. Agricultural Sciences in China , 2007, 6 : 414-421
    
    46. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics,1999, 152: 1203-1216
    
    47. Kowalski S D, Lan T H, Feldmann KA, Paterson A H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved gene order. Genetics,1994,138:499-510
    
    48. Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica. Genetics, 1996, 144:1903-1910
    
    49. Li M, Li Z, Qian W, Meng J. Production and cytogenetic studies of hybrids derived from crosses between Brassica trigenomic diploids and B. napus. Chromosome Research, 2004, 12: 417-426
    
    50. Li Y Y, Shen J X, Wang T H , et al. QTL analysis of yield-related traits and their association with functional markers in Brassica napus L.. Australian Journal of Agricultural Research, 2007,58: 759-766
    
    51. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103:455-461
    
    52. Lukens L, Zou F, Lydiate D, Parkin I A, Osborn T C. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003, 164: 359-372
    
    53. Mahmood T, Rahman M H, Stringam G R, Yeh F, Good A G Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet, 2006, 113: 1211-1220
    54.Meinke D W.Arabidopsis thaliana:A model plant for genome analysis,Science,1998,282-662
    55.Meng J,Shi S,Gan L,Li Z,Qun X.The production of yellow-seeded Brassica napus(AACC)through crossing interspecific hybrids of B.campesrtis(AA) and B.carinata(BBCC) with B.napus.Euphytica,1998,103:329-333
    56.Mestries E,Gentzbittel L,Tourvieille D,Nicolas P,Vear F.Analyses of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers(Helianthus annuus L.) using molecular markers.Molecular Breeding,1998,(4):215-226
    57.Michelmore R W,Paran I,Kesseli RV.Identification of markers linked to disease-resistance genes by bulked segregant analysis:A rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci U S A.1991,88:9828-9832
    58.Monna L,Miyao A,Inoue T,Fukuoka S,Yamazaki M,Zhong H S,Sasaki T,Minobe Y.Determination of RAPD markers in rice and their conversion into sequence tagged sites(STS)and STS-specific primers.DNA Research,1994,1:139-148
    59.Nataraj A J,Olivos-Glander I,Kusukawa N,Highsmith WE Jr.Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection.Electrophoresis,1999,20:1177-1185
    60.Nesi N,Delourme R,et al.Genetic and molecular approachs to improve nutritional value of Brassica napus L.seed.C.R.Biologies,2008,331:736-771
    61.Norden A J,Gorbet D W,Knauft D A,et al.Variability in oil quality among peanut genotypes in the Florida breeding program.Peanut Sci,1987,14:7-11
    62.Ohlrogge J,Browse J.Lipid Biosynthesis.Plant Cell,1995,7:957-970
    63.Parkin I A,Sharpe A G,Keith D J,Lydiate D J.Identification of the A and C genome of amphidiploid Brassica napus(oilseed rape).Genome,1995,38:1122-1131
    64.Parkin I A,Lydiate D J,Trick M.Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A.thaliana chromosome 5.Genome,2002,45:356-366
    65.Parkin I A,Sharpe A G,Lydiate D J.Patterns of genome duplication within the Brassica napus genome.Genome,2003,46:291-303
    66.Parkin I A,Gulden S M,Sharpe A G,Lukens L,Trick M,Osborn T C,Lydiate D J.Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-781
    67.Pereira M G,Lee M,Bramel-Cox P,et al.Construction of an RFLP map in sorghum and comparative mapping in maize.Genome,1994,37:236-243
    68.Qiu D,Morgan C,Shi J,et al.A comparative linkage map of oilseed rape and it s use for QTL analysis of seed oil and erucic acid content.Theoretical and Applied Genetics,2006,114:67-80
    69.Quijada P A,Ivan J,Maureira,et al.Confirmation of QTL controlling seed yield in spring canola (Brassica napus L.) hybrids.Molecular Breeding,2004,13:193-200
    70.Quijada P A,Udall J A,Lambert B,et al.Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed(Brassica napus L.):identification of genomic regions from winter germplasm.Theoretical and Applied Genetics,2006,113:549-561
    71.Rahman M H.Production of yellow-seeded Brassica napus through interspecific crosses.Plant Breeding,2001,120:463-472
    72.Ramsay L D,Jennings D E,Bohuon E J,Arthur A E,Lydiate D J,Kearsey M J,Marshall D F.The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci.Genome,1996,39:558-567
    73.Salvi S,Tuberosa R.To clone or not to clone plant QTLs:present and future challenges.Trends plant sci,2006,10:297-303
    74.Schranz M E,Lysak M A,Mitchell-Olds T.The ABC's of comparative genomics in the Bmssicaceae:building blocks of crucifer genomes.Trends in Plant Science,2006,11:535-542
    75.Sharma N,Anderson M,Kumar A,et al.Transgenic increase in seed oil content are associated with the differential expression of novel Brassica-specific transcripts.BMC Genomics,2008,9:619
    76.Sillito D,Parkin I A,Mayerhofer R,Lydiate D J,Good A G.Arabidopsis thaliana:a source of candidate disease-resistance genes for Brassica napus.Genome,2000,43:452-460
    77.Siloto R M,Truksa M,Brownfield D,Good A G,Weselake R J.Directed evolution of acyl-CoA:diacylglycerol:Development and characterization of Brassica napus DGAT1 mutagenized libraries.Plant Physiol Biochem,2009,47:456-461
    78.Smallwood M.The impact of genomics on crops for industry.Sci Food Agric,2006,86:1747-1754
    79.Snowdon R J,Friedrich T,Friedt W,K(?)hler W.Identifying the chromosomes of A- and C-genome diploid Brassica species B.rapa(syn.campestris) and B.oleracea in their amphidiploid B.napus.Theoretical and Applied Genetics,2002,104:533-538
    80.Snowdon R J,Kohler W,Kohler A.Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids.Theoretical and Applied Genetics,1997,95:1320-1324
    81.Sun Z D,Wang Z N,Tu J X,et al.An ultradense genetic recombination map for Brassica napus,consisting of 13551 SRAP markers.Theoretical and Applied Genetics,2007,114:1305-1317
    82.Terada R,Urawa H,Inagaki Y,Tsugane K,Iida S.Efficient gene targeting by homologous recombination in rice.Nature Biotechnology,2002,20:1030-1034
    83.Teutonico R A,Osborn T C.Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of Brassica napus,Brassica oleracea,and Arabidopsis thaliana.Theor Appl Genet,1994,89:885-894
    84.Thomas C M,Vos P,Zabeau M,Jones D A,et al.Identification of amplified restriction fragment polymorphism(AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvnm.The Plant Journal,1995,8:785-794
    85.U N.Genome-analysis in Brassica with special reference to the experimental formation of B.napus and its peculiarmode of fertilization.Japan J Bot,1935,7:389-452
    86.Ulrike B,Heiko C B.Evaluation B-genome intergration in Brassica napus with GISH.Proceeding of the 10th international Rapeseed Congress,Canberra,Australia.1999
    87.Vos P,Hogers R,Bleeker M,Reijans M,Hornes M,Frijters A,Pot J,Peleman J,Kuiper M,Zabeau M.AFLP:a new technique for DNA fingerprinting.Nucleic Acids Res,1995,23:4407-4414
    88.Weselake R J,Shah S,Tang M,et al.Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape(Brassica napus) to increase seed oil content.J Exp Bot,2008,59:3543-3549
    89.Williams J G,Kubelik A R,Livak K J,Rafalski J A,Tingey S V.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nuc Acids Res,1990,18:6531-6535
    90.Wu Y,Xiao L,Wu G,Lu C.Cloning of fatty acid elongasel gene and molecular identification of A and C genome in Brassica species.Sci China C Life Sci,2007,50:343-349
    91.Xu J,Francis T,Mietkiewska E,et al.Cloning and characterization of an acyl-CoA-depent diacylglycerol acyltransferase 1(DGAT1) gene from Tropaeolum majus,and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol J, 2008, 6: 799-818
    
    92. Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative traits loci. ProcNatl Acad Sci, 1993,90: 10972-10976
    
    93. Zhang J F, Qi C K, Pu H M, et al. Inheritance and QTL identification of oil content in rapeseed (Brassica napus L.). Acta Agronomica Sinica , 2007, 33: 1495-1501. (in Chinese)
    
    94. Zhang W K, Wang Y J , Luo G Z, et al. QTL mapping often agronomic traits on the soybean genetic map and their association with EST markers. Theoretical and Applied Genetics, 2004,108: 1131-1139
    
    95. Zheng P, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet. 2008 :40: 367-372
    
    96. Zhao J, Heiko C, Becker, et al. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theoretical and Applied Genetics, 2006, 113:33-38
    
    97. Zhao J, Becker H C, Zhang D, et al. Oil content in an European and Chinese rapeseed population:QTL with additive and epistatic effects and their genotype environment interactions. Crop Science, 2005,45: 51-59.
    
    98. Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to sclerotinia sclerotiorum in rapeseed (Brassica napus L). Theoretical and Applied Genetic, 2003, 106:759-764
    
    99. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700