中国李(Prunus salicina)自交不亲和性与中国樱桃(P.pseudocerasus)自交亲和性机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要以中国李(Prunus salicina)和中国樱桃(P. pseudocerasus)的‘南京垂丝’及其自交后代为材料,首先鉴定了其自交不亲和性或自交亲和性,进而鉴定花粉和雌蕊S特异性识别决定因子,以及部分品种的S基因型,在此基础上开展了其自交不亲和性或自交亲和性机制的研究,取得主要结果如下:
     一、首先对中国李花粉悬浮剂进行筛选,进而调查了30个品种的花粉量(粒/花朵)和花粉萌发率,最后采用软件SAS8.2对实验数据进行了平均距离法聚类分析和判别分析,并计算花粉量、萌发率分级临界值。结果表明,中国李具有可育的雄配子体(花粉粒),10%葡萄糖溶液是中国李比较合适的花粉悬浮剂。从试验品种间的花朵花粉量来看,最高为'Redgold'(37,169粒/花朵),最低为‘三华李2号’(4,720粒/花朵),可分为4类:Ⅰ类品种占16.7%,花粉量≥32362粒/花朵;Ⅱ类品种占30.0%,花粉量处于32,361~22,556粒/花朵;Ⅲ类品种占46.7%,花粉量处于22,555~9,559粒/花朵;Ⅳ类品种占6.6%,花粉量≤9,558粒/花朵。从品种间的花粉萌发率来看,最高为品系‘82-1-109’(89%),最低为品系‘84-21-62’(9%),可分为4类:Ⅰ类品种占13.3%,花粉萌发率≥76%;Ⅱ类品种占33.3%,花粉萌发率处于75~52%;Ⅲ类品种占36.7%,花粉萌发率处于51~25%;Ⅳ类品种占16.7%,花粉萌发率≤24%。
     二、对中国李32个品种进行了自然自交授粉,5个品种进行人工自交授粉,16个组合进行人工杂交授粉,采取花柱固定、苯胺蓝荧光染色后用荧光显微镜观察了人工授粉72 h后花柱内花粉管生长情况,并在人工授粉后不同时期进行了坐果率统计。实验结果表明,所有品种经人工自交授粉与自然自交授粉后,在果实采收期的坐果率均为0,表现出自交不亲和性;“盖县大李×芙蓉李”的杂交组合,在果实采收期的坐果率为0,表现为杂交不亲和性;“盖县大李×黄皮李”和“金砂李×油柰”的杂交组合,在果实采收期的坐果率分别为3.15%和4.67%,表现为弱的杂交不亲和性;其余13个组合,在果实采收期的坐果率处于7.76-22.90%,表现为杂交亲和性;授粉72 h后,杂交不亲和组合的花粉管与自交的一样,在花柱中上部生长受到抑制,而杂交亲和组合的花粉管可生长到花柱基部。以上实验结果表明中国李属于典型的配子体型自交不亲和性果树。人工授粉后不同时期统计坐果率,结果表明,中国李由于自交不亲和性引起的落果,可以持续到授粉后40天左右。
     三、采用李属雌蕊S-RNase基因特异性保守引物进行PCR和RT-PCR,并对扩增产物进行克隆、测序和序列比对,在中国的10个传统李品种中获得了8个符合雌蕊S特异性识别决定因子必要条件的新基因,分别被命名为中国李S-RNase-7~S-RNase-14(基因库登录号分别为AY71290、AY902455、AY996051、DQ003310、DQ512908、DQ512909、DQ512910和EF177345),同时鉴定了中国李25个品种的S-RNases基因型。在中国的传统李品种中鉴定出了更丰富的S-RNase基因多态性。在授粉后,完全亲和性杂交组合的坐果率不一定比半亲和性杂交组合的高。中国李S-RNase-h在本研究样本中表现最高的基因频率,预示着该基因可能与某些优良农艺性状有连锁关系。
     四、在中国李上鉴定了8个与李属其它物种SFB基因的序列相似性处于76%(中国李的SFB-c与杏的SFB-2)到87%(中国李的SFB-7与梅的SFB-1)之间,并被命名为PsSFB (Prunus salicina S-haplotype-specific F-box gene)(基因库登录号分别是DQ849084、DQ849085、DQ849086、DQ849087、DQ849088、DQ849089和DQ849090)。它们具有与李属其它物种SFB基因相似的结构特征,表现高度的s单元型特异多态性,在花粉中特异性表达。3个包含PsSFBs和S-RNases基因的基因组片段也被成功扩增,它们的物理距离约为410 bp-2,800 bp。这些研究结果表明PsSFBs基因就是中国李GSI的花粉S特异性识别决定因子。
     五、以表现自交亲和性的中国樱桃(Prunus pseudocerasus)的‘南京垂丝’及其157个自交后代为材料,开展了其S基因型的鉴定,新发现了中国樱桃4个S单元型(Prunus pseudocerasus S-haplotypes, PpsS-haplotypes)。‘南京垂丝’的S基因型被鉴定为S-1/S-3'/S-5/S-7,每个PpsS-haplotype至少含有中国樱桃1个S-RNase基因(P.pseudocerasus S-RNase, PpsS-RNase)和中国樱桃1个SFB基因(P. pseudocerasus S-haplotype-specific F-box, PpsSFB)。这些PpsS-RNases和PpsSFBs分别在花柱和花粉中特异性表达,且与李属植物的S-RNases和SFBs具有相似的结构特征,满足作为S特异性识别决定因子的必要条件,并遵守四体遗传规律。c-DNAs全长序列分析表明,PpsS-haplotype-3'的SFB不能扩增成功,而PpsS-haplotype-3'的S-RNase以及其余PpsS-haplotype都未发现异常。自交授粉后,S基因型为S-7/S-1,S-7/S-5和S-1/S-5的二倍体花粉表现自交亲和性,而S基因型为S-3'/S-7,S-3'/S-1和S-3'/S-5的二倍体花粉则表现自交不亲和性。这些研究结果表明,PpsS-haplotype-1、-5和-7具有正常的S特异性识别,它们之中的任何2个S-haplotype之间的‘竞争性效应’导致了中国樱桃‘南京垂丝’表现自交亲和性。
Using Chinese traditional plum cultivar, Chinese cherry cultivar 'Nanjing Chuisi' and its selfed progenies, we firstly identified their self-(in)compatibility, and then identified their S determinants as well as their S genotypes to studied on their mechanism of self-(in)compatibility. The results are shared as below:
     1. Experiments had been done to select appropriate method for suspending Chinese plum pollen grains. Pollen grain numbers and pollen germination ratio of thirty cultivars or strains had been investigated. Average distance cluster and discrimination analysis had been made on pollen grain numbers and pollen germination ratio of thirty cultivars or strains using software SAS8.2. The limit value of every level of pollen grain numbers and pollen germination ratio had been calculated. It was turned out that 10% glucose solution was appropriate for suspending Chinese plum pollen grains, and that Chinese plum had fertile male gametes. According to pollen grain numbers, thirty cultivars or strains had been classified into four obvious clusters, i.e.,Ⅰbeing more than 32,361 per flower,Ⅱranging from 22,556 to 32,361 per flower,Ⅲranging from 9,559 to 22,555 per flower,Ⅳbeing less than 9,559 per flower. According to pollen germination ratio, thirty cultivars or strains had been classified into four obvious clusters, i.e.,Ⅰbeing more than 75%,Ⅱranging from 75% to 52%,Ⅲranging from 51% to 25%,Ⅳbeing less than 25%.
     2. Natural self pollination have been done on 32 Chinese plum cultivars which fruit sets were caculated just before havest, artificial self pollination had been done on 5 cultivars, artificial cross pollination had been conducted on 16 cross combinations, pollen tube growthes in the style at 72 h after artificial self/cross pollination had been observed, fruit set were caculated at different time after artificial self/cross pollination. It was turned out that the fruit sets of all cultivars at havest after natural/artifcial self pollination were O demonstrating Chinese plum exhibiting self-incompatibility, and that fruit set of "Gaixiandali×Furongli" was O at havest after artificial cross pollination showing Chinese plum having cross-incompatible combination, and that "Gaixiandali×Huangpili" and "Jinshali×Younaili" which fruit sets were 3.15% and 4.67% respectifely at havest after artificial cross pollination showing Chinese plum having week-cross-incompatible combinations, and that there were 13 cross combinations which fruit sets were 7.76-22.90% at havest after artificial cross pollination showing Chinese plum having cross-compatible combinations, and that at 72 h after pollination, the pollen tubes could growth at the base of the styles in cross-compatible combinations, but could not in selfing and in cross-incompatible combination. All of above results demonstrated that Chinese plum exhibited classic gametophytic self-incompatibility. Furthermore, fruits had fallen till 40 d after pollination because of self-incompatibility in Chinese plum.
     3. Eight new genes, which mach necessary conditions for pistil S-determinant and were named as S-RNase-7~S-RNase-14 (Accession No. is AY71290, AY902455, AY996051, DQ003310, DQ512908, DQ512909, DQ512910 and EF177345 respectively), were identified in 10 Chinese traditional plum cultivars by PCR using S-RNase gene specific consensus primers. Furthrumore, S-RNase genotypes of 25 Chinese plum cultivars in all were determined. Abudent S-RNases diversity was identified in Chinese traditional plum cultivars. Fruit sets of fully compatible cross-combination were not always higher than that of semi-compatible cross-combinations. S-RNase-h had the highest gene frequency in sample of the present study implying its lingkage with some excellent agricultural traits.
     4. We determined eight novel sequences, which showed sequence high similarity to SFB genes of other Prunus species from 76% (between SFB-c from P. salicina and SFB-2 from P. armeniaca) to 87% (between SFB-7 from P. salicina and SFB-1 from P. mume), and named these sequences PsSFBs (P. salicina S-haplotype-specific F-box genes) (Accession No. is DQ849084, DQ849085, DQ849086, DQ849087, DQ849088, DQ849089 and DQ849090 respectively). The gene structure and the characteristic domains in deduced amino acid sequences of the PsSFB genes were similar to those of SFB genes from other Prunus. The eight identified PsSFB sequences showed S-haplotype-specific polymorphism with 74 to 83% amino acid sequence identity among them, and were exclusively expressed in the pollen. Three sequences from 410 bp to 2,800 bp of the intergenic region between the PsSFB sequences and the S-RNase alleles were obtained indicating their physical linkage. These results suggest that the PsSFB alleles are the pollen S-determinants of GSI in Chinese plum.
     5. Four PpsS-haplotypes (Prunus pseudocerasus S-haplotypes) comprising of at least two genes i.e., PpsS-RNase (P. pseudocerasus S-RNase) and PpsSFB (P. pseudocerasus S-haplotype-specific F-box), have been isolated in self-compatible tetraploid P. pseudocerasus CV. Nanjing Chuisi and its selfed progenies. S-genotype of 'Nanjing Chuisi' was determined as S-1/S-3'/S-5/S-7. These PpsS-RNases and PpsSFBs, respectively, expressed exclusively in style and in pollen, share the typical structure features with S-RNases and SFBs from other Prunus species, match with the necessary conditions for S-determinants, and comply with tetrosomic inheritence. SFB in PpsS-haplotype-3'was not amplified by PCR, while no mutations leading to dysfunction were found in S-RNase-3 and other S-haplotype based on their full-length c-DNAs. After self pollinantion, diploid pollen grains with S-genotypes S-7/S-1, S-7/S-5 and S-1/S-5 exhibited self-compatibility, while pollen grains with S-genotypes S-3'/S-7, S-3'/S-1 and S-3'/S-5 exhibited self-incompatibility. These results suggest that the PpsS-haplotype-1, PpsS-haplotype-5 and PpsS-haplotype-7 are functional, and that competitive interaction between two of them confer self-compatibility on cultivar 'Nanjing Chuisi'.
引文
白松龄,伊凯,刘国成,韩振海,许雪峰,王冬梅,李天忠.‘寒富’苹果的自花结实性及其S基因型[J].园艺学报,2008,(4):475-480
    曹后男,李永勋,沈允权,邓继先.中国主要李品种间交配亲和性的研究[J].延边农学院学报,1993,15(4):201-205
    陈迪新,张绍铃,陶书田.沙梨花粉原位萌发与花粉管生长特性[J].南京农业大学学报,2004,27(3):34-37
    陈迪新,张绍铃.梨不同花龄自花与异花授粉的花柱内花粉管生长及坐果率的比较[J].果树学报,2007,24(5):575-579
    杜玉虎,张绍铃,姜雪婷,张德林.果梅花不同发育阶段花粉原位萌发及花粉管生长特性[J].果树学报,2007,24(3):373-377
    杜玉虎,张绍铃.温度对果梅离体花柱S-RNase特异性识别的影响[J].中国农业科学,2008,41(9):2734-2740
    冯建荣,陈学森,孔宁,束怀瑞.杏(Prunus armeniaca)自交不亲和强度及其授粉受精相关特性[J].果树学报,2006,23(5):690-694
    冯建荣,陈学森,吴燕,杨献科,王华磊.杏自交不亲和性S-RNase基因型的检测[J].石河子大学学报(自然科学版),2007,(2):168-171
    衡伟,张绍铃,方成泉,吴华清,吴俊.梨20个品种S基因型的鉴定及新S-RNases基因的克隆[J].园艺学报,2008,35(3):313-318
    衡伟,张绍铃,张好艳,吴俊,李秀根.12个梨品种S基因型的鉴定[J].园艺学报,2007,34(4):853-858
    贾云云,马之胜,李军英.几种落叶果树花粉量比较研究[J].河北农业科学,2005,9:54,57-58
    江南,谭晓风,陈洪,王秀利,张琳,曾艳玲.梨S基因芯片的试制及分子杂交条件的优化[J].园艺学报,2008,(4):481-486
    李锋,张冰冰,计秀杰,张艳波,邢国杰.抗寒紫叶李新品种‘长春彩叶李’[J].园艺学报,2007,34(2):534
    李天忠,加藤直斡,奥野智旦.红星苹果花柱S-核酸酶的分离与纯化[J].农业生物技术学报,2005,(5):568-571
    李晓,吴华清,吴俊,陶书田,张绍铃.不同发育阶段甜樱桃花授粉后花粉萌发和花粉管生长的差异[J].果树学报,2008,25(4):501-505
    李晓,张绍铃,陶书田,吴华清,吴俊.中国樱桃与甜樱桃花粉原位萌发及花粉管生长的差异[J].西
    北植物学报,2007,27(3):0429-0434
    李晓芳,李茂福,韩振海,许雪峰,李天忠.‘鸭梨’芽变‘闫庄梨’自交亲和性分子机制初步研究[J].园艺学报,2007,35(1):13-18
    梁文杰,谭晓风,张琳,曾艳玲,姜傲芳,曹玉芬,李秀根.8个中国梨品种S基因型的分子鉴定[J].果树学报,2007,(6):757-760
    刘大英,徐发德,李培菊.15个国外李品种花粉生活力的观察[J].河北林果研究,18:157-160
    刘威生,刘成先,张愈学,王家民.李树丰产栽培技术[J].北方果树,1996,(1):40-43
    骆建霞,史燕山,顾俊芹,木红梅,韩宝星,仇泽新.木奈李授粉座果习性的研究[J].天津农业科学,1999,5(3):14-17
    牛俊海,鲁晓民,汤继华,胡彦民.禾本科植物自交不亲和性及其分子生物学研究进展[J].分子植物育种,2006,4(2):269-274
    乔玉山,章镇,房经贵,沈志军,赵密珍.李种质资源ISSR反应体系的建立[J].果树学报,2003,20(4):270-274
    寺見廣雄,岛泻博高,岛津裕.日本梨各品の不稔性因子の分析[M].園藝学会研究集録,1946,3:267-271
    孙山,徐秋萍,刘寄宪,杨式忠,王家喜.引进李品种间授粉亲和性研究[J].中国南方果树,1999,28(3):38-39
    谭晓风,乌云塔娜,中西テッ,李秀根,曹玉芬,杨谷良.中国梨品种自交不亲和新基因的分离鉴定[J].中南林学院学报,2005b,(1):1-3
    谭晓风,乌云塔娜,中西テッ,李秀根.中国砂梨7个自交不亲和新基因的分离与测序[J].中南林学院学报,2005a,(4):1-6
    谭晓风,曾艳玲,乌云塔娜,李秀根,张党权.雪花梨及其亲缘品种S基因型的确定[J].果树学报,2006,(3):355-358
    陶书田,张绍铃,陈迪新,韦碧云.果梅花粉原位萌发及花粉管生长特性的研究[J].果树学报,2004,21(4):338-340
    王化帮.李不同品种花粉生活力的测定[J].安徽农业科学,2005,33:1639,1656
    王然,王成荣,潘季淑,郑开文.蔷薇科若干种核果类果树植物的核型分析[J].莱阳农学院学报,1992,9(2):123-129
    王少先.4种检验方法在辣椒花粉生活力检验上的应用效果[J].河南农业科学,1998,(2):25-26
    王玉柱,杨丽,阎爱玲,王淑凤.李品种选育研究进展[J].果树学报,2002,19(5):340-345
    乌云塔娜,谭晓风,曹玉芬,李秀根.白梨新S基因的克隆[J].园艺学报,2006a,(2):385-388
    乌云塔娜,谭晓风,曹玉芬,张林,邓建军.白梨品种4个新S基因的分离与鉴定[J].园艺学报,2007,(4):859-864
    乌云塔娜,谭晓风,李秀根.砂梨不同S基因型异花授粉和蕾期自花授粉试验[J].中国南方果树,2006b,35(6):47-51
    吴华清,衡伟,李晓,黄绍西,张绍铃.‘大果黄花’梨自交亲和性变异机制研究[J].南京农业大学学报,2007b,30(2):29-33
    吴华清,齐永杰,张绍铃.‘奥嗄二十世纪’梨自交亲和性分子机制及其遗传特性研究[J].园艺学报,2008,35(8):1009-1116
    吴华清,张绍铃,吴巨友,王迎涛,吴俊.‘金坠梨’自交亲和性突变机制的初步研究[J].园艺学报,2007a,34(2):295-300
    吴俊,谷超,张绍铃,张树军,宋宏峰,赵习平,刘铁铮.11个中国杏品种S-RNase基因的检测与序列分析[J].南京农业大学学报,2008,(4):37-42
    杨谷良,谭晓风.梨自交不亲和新基因S35-RNase的克隆与表达分析[J].园艺学报,2007,(3):751-754
    郁香荷,孙猛,刘威生.李种质资源自花和自然坐果率及分级标准[J].中国果树,2008,(3):17-19
    袁德义,谭晓风,张琳,赵思东,乌云塔娜,段经华,曹玉芬.新高系梨10个品种S基因型的鉴定[J].园艺学报,2007,(6):1353-1360
    曾艳玲,谭晓风,张党权,李秀根,曾晓峰.白梨和砂梨S基因型确定及S34新基因的分离[J].植物学报,2008,25(3):292-297
    曾艳玲,谭晓风,张党权,曾晓峰,李秀根,刘先雄.5个中国砂梨品种S基因型的确定[J].浙江林学院学报,2007,(6):654-660
    张剑英,朱亚伟,陈运娣.李品种花粉量及花粉发芽率的测定[J].河北林业科技,2006,(1):9,14
    张琳,谭晓风,周建,何小勇,袁德义,胡姣,龙洪旭.7个砂梨品种s基因型的确定及1个新S-RNase基因的分离鉴定(英文)[J].林业科学,2008,(10):42-48
    张绍铃,曹生民,吴华清.果树自交不亲和性基因型及其鉴定方法[J].果树学报,2003c,(5):358-363
    张绍铃,平土冢伸,徐国华,房经贵,刘友良.梨自交不亲和及其亲和突变品种花柱内S4(S4SM)基因的表达与作用的比较[J].植物学报,2001,43(11):1172-1178
    张绍铃,平土冢伸.梨花柱S糖蛋白对花粉萌发及花粉管生长的影响[J].园艺学报,2000,27(4):251-256
    张绍铃,谢文暖,陈迪新,高付永.8种果树花粉量及花粉萌发与生长的差异[J].上海农业学报,2003b,19:67-69
    张绍铃,杨记磙,李秀根,平土冢伸,Wolukau J N.梨自交不亲和性强度不同的品种间花柱S糖蛋白含量的差异[J].园艺学报,2002,29(2):165-167
    张绍铃,周建涛,徐义流,陈迪新,徐国华,吴桂法.梨花柱半离体培养法及品种自交不亲和基因型鉴定[J].园艺学报,2003a,30(6):703-706
    张树军,黄绍西,张绍铃,吴俊,衡伟,吴华清,宋宏峰.槜李等15个李品种S基因型鉴定及其多态性分析[J].果树学报,2008,(3):338-342
    张雪梅,李保国,崔惠英,齐国辉.苹果新品种自交不亲和基因型的分子生物学鉴定[J].园艺学报,2007,34(3):747-750
    张颖,罗凤霞,年玉欣.矮牵牛花粉生命力测定方法的研究[J].种子,2005,24(8):26-28
    张妤艳,吴俊,衡伟,张绍铃.京白梨等品种S基因型鉴定及新基因S28和S30的核苷酸序列分析[J].园艺学报,2006,(3):496-500
    张好艳,张绍铃,吴俊,张瑞萍,李秀根.八月酥等14个梨品种自交不亲和基因(S基因)型的鉴定.果树学报,2007,24(2):135-139
    张子学,孙峰.辣椒花粉生活力最佳测定方法的筛选[J].种子,2002,(1):32-33
    赵密珍,刘西强,郭洪,杜平.2个李品种授粉试验[J].中国果树,2001,(2):15-18
    钟晓红.李树授粉试验及其花粉生活力测定[J].湖南农学院学报,1994,20:138-142
    朱更瑞,龚方成,左覃元,王力荣.桃花粉量的测定与分析[J].果树学报,1998,19:360-363
    朱立武,孙文平,陈家玉.李品种花粉活力及授粉初步研究[J].安徽农业大学学报,2000,27(3):214-216
    Ai Y, Singh A, Coleman C E, Ioerger T R, Kheyr-Pour A, Kao T H. Self-incompatibility in Petunia inflata: Isolation and characterization of cDNAs encoding three S-allele-associated proteins[J]. Sexual plant reproduction,1990, (3):130-138
    Anderson M A, Cornish E C, Mau S L, Williams E G, Hoggart R, Atkinson A, Bonig I, Grego B, Simpson R, Roche PJ, Haley J D, Penschow J D, Niall H D, Tregear G W, Coghlan J P, Crawford R J, Clarke A E. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata[J]. Nature,1986,321:38-44
    Bai C, Sen P, Hofman K, Ma L, Goebel M, Harper W, Elledge S. Skpl connects cell cycle regulation to the ubiquitin proteolysis machinery through a novel motif, the F-box[J]. Cell,1996,86,263-274
    Beppu K, Takemoto Y, Yamane H, Yaegaki H, Yamaguchi M, Kataoka I, Tao R. Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by PCR and cross-pollination tests[J]. The journal of horticultural science and biotechnology,2003,78:315-318
    Beppu K, Yamane H, Yaegaki H, Yamaguchi M, Kataoka I, Tao R. Diversity of S-RNase genes and S haplotypes in Japanese plum (Prunus salicina Lindl.)[J]. The journal of horticultural science and biotechnology,2002,77:685-664
    Bernatzky R, Glaven R H, Rivers B A. S-related protein can be recombined with self-compatibility in interspecific derivatives of Lycopersicon[J]. Biochemical genetics,1995,33:215-225
    Boskovic R, Tobutt K R, Schmidt H, Sonneveld T. Reexamination of (in) compatibility genotypes of two John Innes self-compatible sweet cherry selections[J]. Theoretical and applied genetics,2000, 101:234-240
    Boskovic RI, Wolfram B, Tobutt K R, Cerovic R, Sonneveld T. Inheritance and interactions of incompatibility alleles in the tetraploid sour cherry[J]. Theoretical and applied genetics,2006,112: 315-326
    Bredemeijer, GM, Blass, J. S-specific proteins in styles of self-incompatible Nicotiana alata[J]. Theoretical and applied genetics,1981,59:185-190
    Broothaerts W, Keumans J, Nerum I V. Self-fertile apple resulting from S-RNase gene silencing[J]. Plant cell reports,2004,22:497-501
    Chawla B, Bernatzky R, Liang W, Marcotrigiano M. Breakdown of self-incompatibility in tetraploid Lycopersicon peruvianum:inheritance and expression of S-related proteins[J]. Theoretical and applied genetics,1997,95:992-996
    Chen X L, Chen X S, Shu H R. Identifying the S Genotypes of Sweet Cherry (Prunus avium L.) Cultivars[J].Acta genetica Sinica,2004,31(10):1142-1148
    Cheng J, Han Z, Xu X, Li T. Isolation and identification of the pollen-expressed polymorphic F-box genes linked to the S-locus in apple (Malus × domestica)[J]. Sexual plant reproduction,2006, 19:175-183
    Chung I K, Lee S Y, Lim P O, Oh S A, Kim Y S, Nam H G. An S RNase gene of Lycopersicon peruvianum L. is highly expressed in transgenic tobacco but does not affect self-incompatibility[J]. Journal of plant physiology,1999,154:63-70
    Clark K R, Okuley J J, Collins P D, Sims T L. Sequence variability and developmental expression of S-alleles in self-incompatible and pseudo-self-compatible petunia[J]. Plant cell,1990,2:815-826
    Crane M B, Lewis D. Genetical studies in pears. III. Incompatibility and sterility[J]. Journal of genetics, 1942,43:31-42
    Cruz-Garcia F, Hancock CN, Kim D, McClure B. Stylar glycoproteins bind to S-RNase in vitro[J]. Plant journal,2005,42:295-304
    De Nettancourt D. Incompatibility and Incongruity in Wild and Cultivated Plants[M].2001, (Berlin: Springer-Verlag)
    Dowd P E, McCubbin A G, Wang X, Verica J A, Tsukamoto T, Ando T, and Kao T H. Use of Petunia as a model for the study of solanaceous type self-incompatibility[J]. Annal of botany,2000,85:87-93
    East E M, Mangelsdorf A J. A new interpretation of the hereditary behavior of sef-sterile plants[J]. Proceedings of the national academy of sciences of the united states of america,1925,11:166-171
    Entani T, Iwano M, Shiba H, Che F S, Isogai A, Takayama S. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume:identification of a pollen-expressed F-box gene with allelic diversity[J]. Genes to cells,2003,8:203-213
    Entani T, Takayama S, Iwano M, Shiba H, Che F S, Isogai A. Relationship between polyploidy and pollen self-incompatibility phenotype in Petunia hybrida Vilm[J]. Bioscience biotechnology and biochemistry,1999,63:1882-1888
    Fincham J R S. Genetic analysis[M]. Blackwell Science UK,1994, pp 102-110
    Goldraij A, Kondo K, Lee C B, Hancock C N, Sivaguru M, Vazquez-Santana S, Kim S, Phillips T E, Cruz-Garcia F, McClure B. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana[J]. Nature,2006,439:805-810
    Golz J F, Clarke A E, Newbigin E, Anderson M A. A relic S-RNase is expressed in the styles of self-compatible Nicotiana sylvestris[J]. Plant journal,1998,16:591-596
    Golz J F, Oh H Y, Su V, Makoto Kusaba, Newbigin E D. Genetic analysis of Nicotiana pollen-part mutants is consistent with the presence of an S-ribonuclease inhibitor at the S locus[J]. Proceedings of the national academy of sciences of the united states of america,2001,98:15372-15376
    Golz J F, Su V, Clarke A E, Newbigin E. A Molecular Description of Mutations Affecting the Pollen Component of the Nicotiana alata S locus[J]. Genetics,1999,152:1123-1135
    Green P J. The ribonucleases of higher plants[J]. Annual review of plant biology,1994,45:421-445
    Hancock C N, Kent L, McClure B. The 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana[J]. Plant journal,2005,43:716—723
    Hauck N R, Yamane H, Tao R and Iezzoni A F. Self-compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.)[J]. Sexual plant reproduction,2002,15:39-46
    Hauck N R, Yamane H, Tao R, Iezzoni A F. Accumulation of non-functional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus[J]. Genetics,2006,172: 1191-1198
    Heng W, Wu H Q, Chen Q X, Wu J, Huang S X, Zhang S L. Identification of S-genotypes and novel S-RNase alleles in Prunus mume[J]. The journal of horticultural science and biotechnology,2008, 83:689-694
    Hiralsuka S, Nakashima M, Kamasaki K, et al. Comarison of an S-protein expression between self-compatible and -incompatible Japanese pear cultivars[J]. Sexual plant reproduction,1999,12: 88-93
    Hua Z H, Kao T H. Identification and characterization of components of a putative Petunia S-Locus F-box-containing E3 ligase complex involved in S-RNase-based selfincompatibility[J]. Plant cell, 2006,18:2531-2543
    Huang S, Lee H S, Karunanandaa B, Kao T H. Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen[J]. Plant cell,1994,6:1021-1028
    Ida K, Norioka S, Yamamoto M, Kumasaka T, Yamashita E, Newbigin E, Clarke A E, Sakiyama F, Sato M. The 1.55 (?) resolution structure of Nicotiana alata SF11-RNase associated with gametophytic self-incompatibility[J]. Journal of molecular biology,2001,314:103-112
    Igic B, Kohn J R. Evolutionary relationships among self-incompatibility RNases[J]. Proceedings of the national academy of sciences of the united states of america,2001,98:13167-13171
    Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R. Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus[J]. Sexual plant reproduction,2004,16:235-243
    Ikeda K, Ushijima K, Yamane H, Tao R, Hauck N R, Sebolt A M, Iezzoni A F. Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry[J]. Sexual plant reproduction,2005,17:289-296
    Ioerger T R, Gohlke J R, Xu B, Kao T H. Primary structural features of the self-incompatibility protein in Solanaceae[J]. Sexual plant reproduction,1991,4,81-87
    Ishimizu T, Endo T, Yamaguchi-Kabata Y, Nakamura K T, Sakiyama F, Norioka S. Identification of regions in which positive selection may operate in S-RNase of Rosaceae:Implication for S-allele-specific recognition sites in S-RNase[J]. Febs letters,1998,440:337-342
    Ishimizu T, Inoue K, Shimonaka M, Saita T, Terai O, Norioka S. PCR-based method for identifying the S-genotypes of Japanese pear cultivars[J]. Theoretical and Applied Genetics,1999,98:961-967
    Ishimizu T, Sato Y, Saito T, Yoshimura Y, Norioka S, Nakanishi T, Sakiyama F. Identification and partial amino acid sequences of seven S-RNases associated with self-incompatibility of the Japanese pear, Pyrus pyriforia Nakai[J]. Journal of biochemistry,1996,120:326-334
    Kao T H, McCubbin A G. How flowering plants discriminate between self and non-self pollen to prevent inbreeding[J]. Proceedings of the national academy of sciences of the united states of america,1996, 93:12059-12065
    Kao T H, Tsukamoto T. The molecular and genetic bases of S-RNase-based self-incompatibility[J]. Plant cell,2004,16:S72-S83
    Karunanandaa B, Huang S, Kao T H. Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil[J]. Plant cell,1994, 6:1933-1940
    Kawata Y, Sakiyama F, Tamaoki H. Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae[J]. European journal of biochemistry,1988,176:683-697
    Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences[J]. Journal of molecular evolution,1980,16:111-120
    Komori S, Soejima J, Ito Y, Bessho H, Abe K, Kotoda N. Discrimination of cross incompatibility by number of seeds per fruit and fruit set percentage in apple[J]. Bulletin of the Fruit Tree Research Station (Japan),1999,33:97-112
    Kondo K, Yamamoto M, Matton D P, Sato T, Hirai M, Norioka S, Hattori T, Kowyama Y. Cultivated tomato has defects in both S-RNase and HT genes required for stylar function of self-incompatibility[J]. Plant journal,2002,29:627-636
    Kowyama Y, Kunz C, Lewis I, Newbigin E, Clarke A E, Anderson M A. Self-compatibility in a Lycopersicon peruvianum variant (LA2157) is associated with a lack of style S-RNase activity [J]. Theoretical and applied genetics,1994,88:859-864
    Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum[J]. Plant molecular biology,2002,50:29-42
    Lee H S, Huang S, Kao T H. S proteins control rejection of incompatible pollen in Petunia inflata[J]. Nature,1994,367:560-563
    Lewis D. Incopatibility in flowering palnts[J]. Recept Recognition Ser,1976, A2:167-198
    Lewis D. Structure of the incompatibility gene. Ⅱ[J]. Heredity,1949,3:339-355
    Li J H, Nass N, Kusaba M, Dodds P N, Treloar N, Clarke A E, Newbigin E. A genetic map of the Nicotiana alata S locus that includes three pollen-expressed genes[J]. Theoretical and applied genetics,2000,100,956-964
    Li T Z, Katoh N. Fujita T, Asada T, Shiozaki Y, Okuno T. Observations on stylar-transmitting tissue cells and cDNA cloning of S-RNase in a self-fruitful apple'Hirodai Ichigo'[J]. J Japan Soc Hort Sci,2002,71 (4):553-560
    Lind J L, Bacic A, Clarke A E, Anderson M A.A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins[J]. Plant journal,1994,6:491-502
    Lind J L, Bo"nig I, Clarke A E Anderson M A. A style-specific 120 kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo[J]. Sexual plant reproduction,1996,9:75—86
    Livermore J R, Johnstone F E. The effect of chromosome doubling on the crossability of Solanum chacoense, S. jamesii and S. bulbocastanum with S. tuberosum[J]. American Journal of Potato Research,1940,17:170-173
    Luu D T, Qin X, Laublin G, Yang Q, Morse D, Cappadocia M. Rejection of S-Heteroallelic Pollen by a Dual-Specific S-RNase in Solanum chacoense Predicts a Multimeric SI Pollen Component[J]. Genetics,2001,159:329-335
    Luu DT, Xike Q, Morse D, Cappadocia M. S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility[J]. Nature,2000,407,649-651
    Martin F W. The inheritance of self-incompatibility in hybrids of Lycopersicon esculentum Mill. x L. chilense Dun[J]. Genetics,1961,46:1443-1454
    Masuda Y, Yamada T, Kuboyama T, Marubashi W. Identification and characterization of genes involved in hybridlethality in hybrid tobacco cells (Nicotiana suaveolens × N. tabacum) using suppression subtractive hybridization[J]. Plant cell reports,2007, doi:10.1007/s00299-007-0352-5
    Matsuura T, Sakai H, Unno M, Ida K, Sato M, Sakiyama F, Norioka S. Crystal structure at 1.5 A resolution of Pyrus pistil ribonuclease responsible for gametophytic self-incompatibility[J]. Journal of biological chemistry,2001,276:45261-45269
    Matthews P and Lapins K. Self-fertile sweet cherries[J]. Fruit Var. Hort. Digest,1967,21:36-37
    Matton D P, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M. Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition[J]. Plant cell,1997 9:1757-1766
    McClure B A, Gray J E, Anderson M A, and Clarke A E. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA[J]. Nature,1990,347:757-760
    McClure B A, Haring V, Ebert P R, Anderson M A, Simpson R J, Sakiyama F, Clarke A E. Style self-incompatibility gene products of Nicotiana alata are ribonucleases[J]. Nature,1989, 342:955-957
    McClure BA, Mou B, Canevascini S, Bernatzky R. A small asparaginerich protein required for S-allele-specific pollen rejection in Nicotiana[J]. Proceedings of the national academy of sciences of the united states of america,1999,96:13548-13553
    McClure, B. S-RNase and SLF Determine S-Haplotype-Specific Pollen Recognition and Rejection[J]. Plant cell,2004,16:2840-2847
    McCubbin A G, Kao T H. Molecular recognition and response in pollen and pistil interactions[J]. Annual review of cell and developmental biology,2000,16:333-364
    McCubbin A G, Wang X, Kao T H. Identification of self-incompatibility (S-) locus linked pollen cDNA markers in Petunia inflata[J]. Genome,2000,43:619-627
    Mizutani F, Hirota R, Hino A, Amano S, Kadoya K, Watanabe J, Akiyoshi H. Fruit growth and development of Chinese cherry(Prunus pseudocerasus Lindl.)[J]. Bulletin of the experimental farm college of agriculture, Ehime University,1995,16:1-10
    Moriya Y, Yamamoto K, Okada K, Iwanami H, Bessho H, Nakanishi T, Takasaki T. Development of a CAPS marker system for genotyping European pear cultivars harboring 17 S alleles[J]. Plant cell reports,2007,26:345-354
    Murfett J, Atherton T L, Mou B, Gasser C S, McClure B A. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection[J]. Nature,1994,367:563-566
    Norioka N, Norioka S, Ohnishi Y. Moleculat cloning and nucleotide sequences of cDNAs encoding S-allele specific stylar RNases in a self-incmpatible cultivar and its self-compatible mutant of Japanese pear Pyrus pyrifolia Nakai [J]. The Journal of biochemistry,1996,120:335-345
    Nunes M D S, Santos R A M, Ferreira S M, Vieira J, Vieira C P. Variability patterns and positively selected sites at the gametophytic self-incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population[J]. New phytologist,2006,172:577-587
    Nyeki J and Szabo Z. Cross-incompatibility in stone fruits[J]. Acta Hort. (ISHS),1997,437:213-218
    O'Brien M et al. Molecular analysis of the stylar-expressed Solanum chacoense asparagine-rich protein family related to the HT modifier of gametophytic self-incompatibility in Nicotiana[J]. Plant journal, 2002,32:1-12
    Oginuma K. A cytological study of the tetraploid Prunus pseudocerasus (2n equals 32)[J]. Kromosomo, 1988,2(51-52):1710-1714
    Qiao H, Wang F, Zhao L, Zhou J L, Lai Z, Zhang Y S, Robbins T P, Xue Y B. The F-Box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility[J]. Plant cell,2004b, 16:2307-2322
    Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, and Xue Y. The F-box protein AhSLF-S2 physically interacts with S-RNases tha may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum[J]. Plant cell,2004a, 16:582-595
    Richman A D, Kao T H, Schaeffer S W, Uyenoyama, M K. S-allele sequence diversity in natural populations of Solanum carolinense (horsenettle)[J]. Heredity,1995,75:405-415
    Romero C, Vilanova S, Burgos L, Martinez-Calvo J, Vicente M, Llacer G, Badenes M L. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes[J]. Plant molecular biology,2004,56:145-157
    Royo J, Kunz C, Kowyama Y, Anderson M A, Clarke A E, Newbigin E. Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum[J]. Proceedings of the national academy of sciences of the united states of america, 1994,91:6511-6514
    Sapir G, Stern R A, Shafir S, Goldway M. S-RNase based S-genotyping of Japanese plum (Prunus salicina Lindl.) and its implication on the assortment of cultivar-couples in the orchard[J]. Scientia horticulturae,2008,118:8-13
    Sapir G, Stern R, Eisikowitch H, Goldway M. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis[J]. The journal of horticultural science and biotechnology,2004,79:223-27
    Sassa H, Hirano H, Ikeshashi H. Identification and characterization of stylar glycoproteins associated with self-incompatibility of Japanese pear Pyrus serotina Rehd[J]. Molecular and General Genetics, 1993,241:17-25
    Sassa H, Hirano H, Nishio T, Koba T. Style-specific self-incompatibility mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina)[J]. Plant journal,1997,12:223-227.
    Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T. S locus F-box brothers:Multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear[J]. Genetics,2007,175:1869-1881
    Sassa H, Mase N, Hirano H, Ikeshashi H. Identification of self-incompatibility related glycoproteins in styles of apple (Malus x domestica) [J]. Theoretical and applied genetics,1994,89:201-205
    Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H. Self incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T-2/S ribonuclease superfamily[J]. Molecular and General Genetics,1996,250(5):547-557
    Sijacic P, Wang X, Skirpan A L, Wang Y, Dowd P E, McCubbin A G, Huang S, Kao T H. Identification of the pollen determinant of S-RNase-mediated self-incompatibility[J]. Nature,2004,429:302-305
    Sims T L, Ordanic M. Identification of a S-ribonucleasebinding protein in Petunia hybrida[J]. Plant molecular biology,2001,47:771-783
    Singh A, Ai Y, Kao T H. Characterization of ribonuclease activity of three S-allele-associated proteins of Petunia inflata[J]. Plant physiology,1991,96:61-68
    Sonneveld T, Tobutt K R, Robbins T P. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers[J]. Theoretical and applied genetics,2003,107:1059-1070
    Sonneveld T, Tobutt K R, Vaughan S P, Robbins T P. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene[J]. Plant cell,2004,17:37-51
    Sonneveld T, Tobutt K R, Vaughan S P, Robbins T P. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene[J]. Plant cell,2005,17:37-51
    Sullivan J A, Shirasu K, Deng X W. The diverse roles of ubiquitin and the 26S proteasome in the life of plants[J]. Nature reviews genetics,2003,4:948-958
    Surbanovski N, Tobutt K R, Konstantinovic'M, Maksimovic'V, Sargent D J, Stevanovic'V, Ortega E, BoSkovic'R I. Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele[J]. Plant journal,2007,50:723-734
    Tamura M, Ushijama K, Sassa H, Hirano H, Tao R, Gradziel T M, Dandekar A M. Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theoretical and applied genetics,2000,101:344-349
    Tan Xiao-Feng, Zhang Lin, Wuyun Ta-Na, Yuan De-Yi, Cao Yu-Fen, Jiang Ao-Fang, Liang Wen-Jie, Zeng Yan-Ling. Molecular Identification of Two New Self-incompatible Alleles (S-alleles) in Chinese Pear (Pyrus bretschneideri)[J]. Journal of plant physiology and molecular biology,2007, 33(1):61-70
    Tao R, Habu T, Namba A, Yamane H, Fuyuhiro, F, Iwamoto K, Sugiura A. Inheritance of Sf-RNase in Japanese apricot (Prunus mume) and its relation to self-compatibility. Theoretical and applied genetics,2002,105:222-228
    Tao R, Yamane H, Sassa H, Mori H, Gradziel T M, Dandekar A M, Sugiura A. Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis)[J]. Plant and cell physiology,1997,38:304-11
    Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H. Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cheery[J]. Journal of the American society for horticultural science,1999,124:224-233
    Tejaswin. Variability of pollen grain feature a plant strategy to maximize reproductive fitness in two species of Dianthus[J]. Sexual plant reproduction,2002,14:347-353
    Terai O, Sato Y, Saito T, Abe K, Kotobuki K. Identification of homozygote of self-incompatibility gene (S-gene), as useful tools to determine the S-genotype in Japanese pear, Pyrus pyrifolia Nakai[J]. Bulletin of the Fruit Tree Research Station (Japan),1999,32:31-38
    Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic acids research,1994,22:4673-4680
    Tobutt KR, Boskovic R, Cerovic R, Sonneveld T and Ruzic D. Identification of incompatibility alleles in the tetraploid species sour cherry[J]. Theoretical and applied genetics,2004,108:775-785
    Tsai D S, Lee H S, Post L C, Kreiling K M, Kao TH. Sequence of an S-protein of Lycopersicon peruvianum and comparison with other solanaceous S-proteins[J]. Sexual plant reproduction,1992, 5:256-263
    Tsukamoto T, Ando T, Watanabe H, Marchesi E, Kao T H. Duplication of the S-locus F-box gene is associated with breakdown of pollen function in an S-haplotype identified in a natural population of self-incompatible Petunia axillaries[J]. Plant molecular biology,2005,57:141-153
    Tsukamoto T, Hauck N R, Tao R, Jiang N, Iezzoni A F. Molecular characterization of three non-functional S-haplotypes in sour cherry(Prunus cerasus)[J]. Plant molecular biology,2006, 62:371-383
    Ushijima K, Sassa H, Dandekar A M, Gradziel T M, Tao R, Hirano H. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism[J]. Plant cell,2003,15:771-781
    Ushijima K, Sassa, H, Tao R, Yamane H, Dandekar A M, Gradziel T M, Hirano H. Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): Primary structural features and sequence diversity of the S-RNases in Rosaceae[J]. Mol Gen Genet,1998,260:261-268
    Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck N R, Iezzoni AF, Tao R. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume[J]. Plant journal,2004,39:573-586
    Van Deurs, B. et al. Estimation of the amount of internalized ricin that reaches the trans-golgi network[J]. Journal of cell biology,1988,106,253-267
    Vaughan S P, Russell K, Sargent D J, Tobutt K R. Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility genotype[J]. Theoretical and applied genetics,2006,112:856-866
    Vilanova S, Badenes ML, Burgos L, Martinez-Calvo J, Llacer G, and Romero C. Self-Compatibility of Two Apricot Selections Is Associated with Two Pollen-Part Mutations of Different Nature[J]. Plant physiology,2006,142:629-641
    Wang X, Hughes A L, Tsukamoto T, Ando T, Kao T H. Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata[J]. Plant physiology,2001,125:1012-1022
    Wang Y, Wang X, McCubbin A G, Kao T H. Genetic mapping and molecular characterization of the self-incompatibility (S-) locus in Petunia inflata[J]. Plant molecular biology,2004,54:727-742
    Wesche J, Rapak A, Olsnes S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol[J]. Proceedings of the national academy of sciences of the united states of america,1999,274:34443-34449
    Wunsch A, Hormaza I. Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L.)[J]. Theoretical and applied genetics, 2004,108:299-305
    Xue Y B, Carpenter R, Dickinson H G, Coen E S. Origin of allelic diversity in Antirrhinum S locus RNases[J]. Plant cell,1996,8:805-814
    Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M. Molecular characterization of S-RNase genes and Sgenotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.)[J]. Sexual plant reproduction,2001,13:251-257
    Yamane H, Ikeda K, Hauck N R, Iezzoni A F, Tao R. Self-incompatibility (S) locus region of the mutated S6-haplotypes of sour cherry (Prunus cerasus) contains a functional pollen S-allele and a non-functional pistil S allele[J]. Journal of experimental botany,2003c,54:2431-2434
    Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium[J]. Plant and cell physiology,2003a,44:764-769
    Yamane H, Tao R, Sugiura A, Hauck N R, Iezzoni A F. Identification and characterization of S-RNases in tetraploid sour cherry (Prunus cerasus)[J]. Journal of the American society for horticultural science, 2001,126:661-667
    Yamane H, Tao R, Sugiura A. Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. cv. sordum)[J]. Plant Biotech,1999,16:389-396
    Yamane H, Ushijima K, Sassa H, Tao R. The use of the S haplotype-specific F-box protein gene, SFB as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume)[J]. Theoretical and applied genetics,2003b,107:1357-1361
    Zhang S L, Hiralsuka S. Cultivar and developmental differences in S-protein cincenlralion and self-incompatibility in the Japanese pea[J]. Hortscience,2000,35:917-920
    Zhang S L, Huang S X, Kitashiba H, Nishio T. Identification of S-haplotype-specific F-box gene in Japanese plum (Prunus salicina Lindl.)[J].Sexual plant reproduction,2007,20:1-8
    Zisovich A H, Stern R A, Sapir G, Shafir S, Goldway M. The RHV region of S-RNase in the European pear (Pyrus communis) is not required for the determination of specific pollen rejection[J]. Sex Plant Reprod,2004,17:151-156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700